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1. Introduction

Singularly perturbed problems involving a small parameter are ubiquitous in the field of
engineering and present a formidable challenge in their numerical solution. For example, in
the field of fluid mechanics such problems appear in the form of convection-diffusion partial
differential equations and are used, in the computation of temperature in compressible flows,
to describe the model equations for concentration of pollutants in fluids and to describe the
momentum relation of the Navier-Stokes equations. In the field of electrical engineering an
important application is the telegraph equation describing the voltage or the current as a
function of time and position along a cable. The discretization of such systems usually leads
to stiff systems of ordinary differential equations (ODEs) containing a small parameter. Such
equations are usually stiff and require special care in their numerical solution. On the other
hand, such systems can be treated by methods based on asymptotic analysis which renders
a reasonable approximate decomposition of the original system into two new systems, for
the slow mode and fast modes, respectively, which are no longer stiff. Of special interest
are asymptotic methods based on the Chapman-Enskog procedure (CEP) in which the bulk
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part of the slow mode is left unexpanded. This technique is especially popular amongst
mathematical physicists interested in obtaining the diffusion approximation for a wide
range of evolution equations, for example, the Boltzmann equation, telegraph equation, and
Fokker-Plank equation [1]. On the other hand, obtaining diffusion approximations is rather
complicated and involved and is confined to specialists in the field. In the 1990s Mika and
coworkers [2, 3] considered the application of the CEP for solving ODEs. The mathematical
theory was put on a sound footing, but subsequently, no attempts were made to promote
the numerical application of the method, despite very promising initial results. One reason
for this can be attributed to the requirement that their method based on the CEP require the
initial conditions for the unexpanded slow part of the solution which have to be recovered
from additional algebraic relations. This combined with the initial layer functions guarantee
a uniformly smooth solution over the entire domain. For such a solution to be comparable
to a direct numerical solution of the original system this step is crucial. In [3] the authors
focused on obtaining uniformly convergent O(ε2) approximations in the bulk region. In this
paper we propose a method for finding an O(ε3) correction to the approximate data. Further,
we examine the method for obtaining a solution over the entire domain that is comparable to
a direct numerical solution. The method is suitable for a larger range of the small parameter
ε than that considered previously. An adaptation of the CEP was also considered in [4, 5] for
solving problems in chemical kinetics and nuclear engineering, respectively.

Consider the initial value problem

ε
d2x

dt2
+A

dx

dt
+ f(x) = 0, x(0) = α,

dx

dt
(0) = s, (1.1)

where t ∈ [0, t1], t1 > 0, x(t), f(x), α, s ∈ R
n, n ≥ 1, and ε is a small positive parameter.

The eigenvalues of the matrix A have all positive real parts; hence A is invertible. By letting
z = dx/dt, the second-order system (1.1) is converted to the first-order system:

ε
dz

dt
= −Az − f(x), dx

dt
= z, x(0) = α, z(0) = s. (1.2)

The stiff differential equation (1.1) can be solved directly by using numerical methods, for
example the finite difference or finite element method. With a finite difference scheme one
could use a standard method on a special mesh or a standard mesh and a special method
[6]. This is to guarantee uniformly convergent schemes for all values of ε. These techniques,
involving discretization on standard meshes and layer-adapted meshes, are well established
when f is a linear function of x [7]. However, in our case f is a nonlinear function of the
dependent variable x and hence is much more difficult to analyse and solve using these
methods. On the other hand, an alternative approach commonly adopted, is to convert to
the first-order system (1.2) and then solve by using an implicit method, applicable for stiff
systems, since the solution of such systems is well established. It is well known that the
solution obtained in this way is usually costly. Alternatively, one could use approximation
methods from singular perturbation theory [8, 9] for solving (1.1) or (1.2). The drawback of
methods in this category is that they are based on heuristic derivations such as matching of
the inner solution in the initial layer with the outer solution in the outer layer. The idea is to
create an approximate solution by using the inner solution and then switching to an outer
solution ensuring that the inner and outer solutions coincide as nearly as possible at the
switch point. The problem is finding a suitable place to make the switch from one solution to
the other.
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The method proposed in this paper aims to avoid the difficulties presented by the
preceding two approaches. Here, we follow the algorithm of the asymptotic expansion first
proposed by Mika and Palczewski [2] for solving resonance type equations in kinetic theory
and subsequently applied to solving singularly perturbed systems of second-order ODEs
by Mika and Kozakiewicz [3]. As already mentioned, in this case the method is based
on the CEP in which the bulk solution for the slow variable x remains unexpanded. The
expansions are truncated to first-order in ε in order to derive the first-order version of the
steady state approximation. Here we derive new initial conditions satisfied by the differential
equations by using a Neumann expansion. The main point of the present exposition is that
there is no additional cost involved in deriving the new initial condition whilst at the same
time the numerical results are much improved for a larger range of the small parameter
ε. The application of the method is also considered for solving boundary value problems.
In performing a numerical investigation we apply the new algorithm to systems of initial
value problems (IVPs) and boundary value problems (BVPs). The numerical results for IVPs
show a significant improvement in the error and reaffirm the first-order rate of convergence
which is consistent with the theory [3] whilst the numerical results for BVPs demonstrate fast
convergence of the bulk solution.

2. Derivation of the Asymptotic Procedure

In order to keep the present exposition self-contained, we consider some aspects of the
derivation of the asymptotic method presented in [3] together with the procedure for
obtaining new initial conditions. The functions x and z in (1.2) are each decomposed into
a bulk solution depending on t and an initial layer solution depending on τ = t/ε. Hence

z(t) = z(t) + z̃(τ) +O
(

ε2
)

, x(t) = w(t) + x̃(τ) +O
(

ε2
)

, (2.1)

where

z(t) = z0(t) + εz1(t), z̃(τ) = z̃0(τ) + εz̃1(τ), x̃(τ) = x̃0(τ) + εx̃1(τ). (2.2)

The characteristic feature of the algorithm is that the bulk solution w for the slow variable
x remains unexpanded. Substituting (2.1) into (1.2) we obtain upon equating functions of t
and τ separately

ε
dz

dt
= −Az − f(w), (2.3)

dw

dt
= z, (2.4)

dx̃

dτ
= εz, (2.5)

dz̃

dτ
= −Az̃ + f(w(ετ)) − f(w(ετ) + x̃). (2.6)
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Now a postulate of the asymptotic method is that the bulk solution for the fast variable,
namely, z(t), depends on t through its functional dependence on w. To this end, we let
φ0(w(t)), φ1(w(t)) ∈ R

n be two functions and write

z0(t) = φ0(w(t)), z1(t) = φ1(w(t)). (2.7)

Hence

z(t) = φ0(w) + εφ1(w). (2.8)

Substituting (2.8) into (2.3) and (2.4) we obtain

ε

[

dφ0

dw

dw

dt
+ ε

dφ1

dw

dw

dt

]

= −A
(

φ0 + εφ1
)

− f(w), (2.9)

dw

dt
= φ0(w) + εφ1(w). (2.10)

Substituting (2.10) into (2.9) and equating coefficients of powers of ε we obtain

φ0(w) = −A−1f(w), (2.11)

dφ0

dw
φ0(w) = −Aφ1(w). (2.12)

and solving the above for φ1(w) gives

φ1(w) = −A−2df(w)
dw

A−1f(w). (2.13)

Hence, from (2.4) we obtain w(t) as the solution of the first-order system:

dw

dt
= −A−1

[

I + εA−1df(w)
dw

A−1
]

f(w). (2.14)

The initial condition w(0) is found by considering the initial conditions in (1.2). For this
we require the initial layer solutions. These are obtained by substituting (2.2) into (2.5) and
equating powers of ε yielding

˜dx0

dτ
= 0,

dx̃1

dτ
= z̃0. (2.15)

Clearly x̃0(τ) ≡ 0 since limτ→∞x̃0(τ) = 0 for the initial layer function. Upon substituting (2.2)
into (2.6) and using x̃0(τ) ≡ 0 we further obtain

dz̃0

dτ
= −Az̃0. (2.16)
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Hence

z̃0(τ) = e−Aτ z̃0(0), (2.17)

x̃1(τ) =
∫ τ

∞
z̃0(u)du

=
∫ τ

∞
e−Auz̃0(0)du

= −A−1e−Aτ z̃0(0).

(2.18)

Using the initial conditions x(0) = α and z(0) = s in (2.1) we obtain to first-order in ε
that

α = w(0) + εx̃1(0), (2.19)

s = φ0(w(0)) + εφ1(w(0)) + z̃0(0) + εz̃1(0). (2.20)

Mika and Kozakiewicz [3] now expand w(0) into powers of ε, namely, w(0) = w(0)|0 +
εw(0)|1. Upon equating coefficients of ε in (2.19)-(2.20) and using the initial layer functions
just derived, they obtained the expression

w(0) = α + εA−1
(

s +A−1f(α)
)

. (2.21)

Here w(0) is solved in a different manner. From (2.20) and (2.11) to zeroth order in ε we
obtain

z̃0(0) = s − φ0(w(0))

= s +A−1f(w(0)).
(2.22)

Using (2.19) and (2.18) we have

w(0) = α − εx̃1(0)

= α + εA−1
[

s +A−1f(w(0))
]

.
(2.23)

Hence w(0) is the root of the, in general, nonlinear vector equation (2.23). It is noted that the
solution of (2.23) maybe accomplished using the standard Newton method. However, this
is in general an expensive process. In order to avoid this we derive an explicit expression
for w(0) by letting w(0) = α + δ(ε), where δ(ε) is a function of ε and ||δ(ε)|| � ||α||. Upon
substitution into (2.23), using Taylor’s theorem and ignoring terms of order ‖δ(ε)‖2 we obtain
the new initial condition

w(0) = α +
[

I − εA−2f ′(α)
]−1

εA−1
[

s +A−1f(α)
]

. (2.24)
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To simplify the evaluation of (2.24) we use the first-order Neumann expansion for [I −
εA−2f ′(α)]−1, assuming that ε||A−2f ′(α)|| < 1 for any compatible matrix norm. Hence, (2.24)
simplifies to

w(0) = α + εA−1
[

s +A−1f(α)
]

+ ε2A−2f ′(α)A−1
[

s +A−1f(α)
]

. (2.25)

It is clear that no additional cost is borne in forming the Jacobian matrix terms representing
the derivative f ′(α) in (2.25) since the derivative is already used in (2.14). We note that (2.25)
reduces to (2.21) when the ε2 term is ignored.

The asymptotic convergence of the approximate solutions derived above is proved in
[2]. The condition concerning the nonlinear function in (1.2) is that f(x) ∈ C4(Rn), which
supplements the conditions necessary for the system to possess a unique solution on [0, t1].
Furthermore, the matrixA has all positive eigenvalues so that the initial layer solutions decay
exponentially.

3. Standard Approach

In the standard first-order approach described, for example, in [3] to solving (1.2), w(t) in
(2.1) is replaced by

x(t) = x0(t) + εx1(t). (3.1)

With this substitution in (2.3)–(2.6) one obtains the system

ε
d

dt
(z0 + εz1) = −A(z0 + εz1) − f(x0 + εx1)

= −A(z0 + εz1) − f(x0) − f ′(x0)εx1 +O
(

ε2
)

,

d

dt
(x0 + εx1) = z0 + εz1,

d

dτ
(x̃0 + εx̃1) = ε(z̃0 + εz̃1),

d

dτ
(z̃0 + εz̃1) = −A(z̃0 + εz̃1) + f(x0 + εx1) − f(x0 + εx1 + x̃0 + εx̃1)

= −A(z̃0 + εz̃1) + f(x0) + f ′(x0)εx1 − f(x0 + x̃0)

− f ′(x0 + x̃0)ε(x1 + x̃1) +O
(

ε2
)

.

(3.2)



Mathematical Problems in Engineering 7

Upon equating coefficients of ε and using the initial conditions, we obtain the following
systems of ODEs to be solved for the bulk solution for the slow variable x(t):

dx0

dt
= −A−1f(x0),

x0(0) = α,
(3.3)

dx1

dt
= −A−2f ′(x0)A−1f(x0) −A−1f ′(x0)x1, (3.4)

x1(0) = A−1
[

s +A−1f(α)
]

. (3.5)

As before x̃0 ≡ 0 and

x̃1(τ) = −A−1e−Aτ z̃0(0)

= −A−1e−Aτ
[

s +A−1f(α)
]

,

z̃0(τ) = e−Aτ z̃0(0).

(3.6)

4. Boundary Value Problems

Consider the boundary value problem:

ε
d2x

dt2
+A

dx

dt
+ f(x) = 0, x(0) = α, x(1) = β. (4.1)

The boundary value problem (4.1) can be converted to the initial value problem (1.1)
by dropping the second boundary condition x(1) = β and replacing it by the initial condition
x′(0) = s. Hence, f(x) and A are assumed to have similar conditions to that considered in
Section 2 on [0, 1].

The initial-value problem has a uniquely determined solution x(t) = x(t, s) which
depends on the choice of the initial value s for x′(0). To determine the value of s consistent
with the right-hand boundary condition we must find a zero s = s of the function F(s) =
x(1, s) − β. Assuming that F(s) ∈ C2(0, 1), one can use Newton’s method to determine
s. Starting with an initial approximation s0, one then has to iteratively compute values si

according to

si+1 = si −
[

F ′
(

si
)]−1

F
(

si
)

, (4.2)

where for n = 1, F ′(si) is approximated by the forward difference formula:

F
(

si + h
)

− F
(

si
)

h
, (4.3)
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with h � |si|. For the case n > 1, the matrix F ′(si) is determined by the following useful
technique. The kth column of F ′(si) is approximated by

F
(

si + hek
)

− F
(

si
)

h
, (4.4)

where ek is the standard unit vector in R
n with unity in the kth position. Then, x(1, si) is

determined by solving an initial-value problem:

ε
d2x

dt2
+A

dx

dt
+ f(x) = 0, x(0) = α, x′(0) = si (4.5)

up to t = 1.
In this paper instead of applying the shooting method to the stiff second-order system

of equations (4.1) we first apply the first-order asymptotic procedure to the system and then
adapt the shooting method to the resulting nonstiff first-order system. Now taking t = 1 in
(2.1) and (2.18) it can be shown that

w(1) := w(1, s) = β + εA−1e−A/ε
[

s +A−1f(w(0, s))
]

. (4.6)

Solve the first-order system (2.14) with estimate (2.25) for w(0) = w(0, s) numerically and
denote the solution at t = 1 by ŵ(1, s). It remains to determine s so that ŵ(1, s) agrees with
w(1, s) from (4.6). Thus we define F(s) = ŵ(1, s)−w(1, s) and iteratively obtain a zero of F(s)
using (4.2). A convenient starting value for the iteration is obtained by setting ε = 0 and t = 0
in (4.1) to yield s0 = −A−1f(α). Essentially, we are trying to find an optimal s such that both
w(0, s) and w(1, s) lie on the solution curve w(t) of (2.14).

5. Numerical Examples

Example 5.1. Here we choose n = 1, A = 1, f(x) = x2 with α = s = 2 in (1.1). Hence, (3.3)–(3.5)
reduce to the ODEs:

dx0

dt
= −x2

0, x(0) = 2,

dx1

dt
= −2x0x1 − 2x3

0, x1(0) = 6,

(5.1)

to be solved for the bulk approximation x(t) = x0(t) + εx1(t) according to the standard
approach. The first-order asymptotic solution to (1.1) using the standard approach is given
by

x(t) =
β

1 + βt
+ ε

[

−2β2

(

1 + βt
)2

ln
(

1 + βt
)

+
β + α2

(

1 + βt
)2

]

. (5.2)
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Figure 1: Red (dashed): x (direct numerical solution of (1.1)), Green (dashed-dotted): x(1) (solution of
(5.3) using (5.4)), Blue (solid): x(2) (solution of (5.3) using (5.5)), Black (dotted): x(0) (standard first-order
solution (5.2)).

According to the new approach we solve (2.14) which reduces to

dw

dt
= −(1 + ε2w)w2. (5.3)

From (2.21) we obtain

w(0) = 2 + 6ε, (5.4)

and using (2.25) we obtain the improved initial condition:

w(0) = 2 + 6ε + 24ε2. (5.5)

The graphical solutions depicted in Figure 1 are for ε = 0.1. The direct numerical
solution of (1.1) is denoted by x and the first-order solution corresponding to (5.2) with the
initial layer incorporated is denoted by x(0). When (5.3) is solved using the initial condition
(5.4), the solution from (2.1) is denoted by x(1); likewise when (5.3) is solved using the initial
condition (5.5) the solution from (2.1) is denoted by x(2).

Figure 2 shows how the error varies as a function of ε for t = 0.175. It is clear that the
present algorithm, incorporating the new initial condition (2.25), gives superior results, even
for large ε.
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Figure 2: Comparison of Error as a function of ε. Red (dashed): new initial condition (2.25) and Blue
(solid): old initial condition (2.21).

Example 5.2. Since this paper is concerned with systems of ODEs, the following example is
directed to such a case. The technique is illustrated for a system of coupled ODEs by choosing
n = 21 and A = I:

fi(x) = x3
i + x

3
i+1, i = 1, 2, . . . , n − 1,

fn(x) = x3
n + x

3
1,

αi = sin
(

π(i − 1)
n − 1

)

, βi = π cos
(

π(i − 1)
n − 1

)

, i = 1, 2, . . . , n

(5.6)

in (1.1). Solve (2.14) using an explicit Runge-Kutta method of order 2 (RK2) with fixed step
size equal to 0.01 subject to the initial conditions (2.21) and (2.25) and designate the solutions
by w(1) and w(2), respectively. The corresponding solutions in (2.1) are denoted by x(1) and
x(2) respectively. Let x denote a highly accurate solution of (1.1) obtained using Mathematica
6.0 which will be treated as an exact solution for comparison purposes. Equation (1.1) is
solved using the implicit Euler method with fixed step size equal to 0.01 and the solution is
denoted by x(0). Table 1 shows the errors ‖x −w(1)‖∞ and ‖x −w(2)‖∞, respectively. The CPU
time for computing x(0) was 0.17 second as compared to 0.02 second for computing both x(1)

and x(2) which amounts to a significant saving in computational effort.

Example 5.3. One has

ε
d2x

dt2
+ 2

dx

dt
− ex = 0,

x(0) = 0,

x(1) = 0.

(5.7)
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Table 1: Errors in w(1) and w(2).

time (t) ‖x −w(1)‖∞ ‖x −w(2)‖∞
0 0.0314542 0.032153
0.1 0.00204799 0.00114647
0.2 0.00117361 0.000581596
0.3 0.000824138 0.00039628
0.4 0.000641871 0.000314008
0.5 0.000528344 0.00258675
0.6 0.000455311 0.000219198
0.7 0.000399195 0.000195812
0.8 0.000354785 0.000177036
0.9 0.000318802 0.00016153
1 0.000289081 0.0001485

Choose ε = 0.01. Figures 3, 4, and 5 show a plot of the solution profiles x(t) (numerical
solution) and w(t) (asymptotic bulk solution), corresponding to s0, s1, and s2 used in (4.3)
respectively. It is seen that the solution profiles are almost identical (in the bulk region) after
the second iteration.

Example 5.4. We consider the following boundary layer problem from fluid mechanics:

εΔu + γ · ∇u = 1 on Ω,

u = 0 on ∂Ω,
(5.8)

where u = u(x, y), γ is a constant, and ∂Ω is the boundary of the square Ω = (0, 1) × (0, 1).
To apply the present algorithm we replace the variable y by t and divide the spatial domain
(x ∈ (0, 1)) into n + 2 equally spaced points with spacing h = 1/(n + 1). Letting Xi = u(xi, t)
and using the method of lines to discretize the above equation result in the system of ODEs:

ε
d2Xi

dt2
+ γ

dXi

dt
+ γ

[

Xi+1 −Xi−1

2h

]

+
ε

h2 [Xi+1 − 2Xi +Xi−1] − 1 = 0, (5.9)

i = 1, 2, . . . , n. If we let X = [X1, X2, . . . , Xn]
t and f(X) = [f1, f2, . . . , fn]

t, where

fi = γ
[

Xi+1 −Xi−1

2h

]

+
ε

h2 [Xi+1 − 2Xi +Xi−1] − 1, (5.10)

then the system of ODEs can be written as

ε
d2X

dt2
+ γ

dX

dt
+ f(X) = 0, (5.11)

X(0) = 0, X(1) = 0, and n = 10.
Choose ε = 0.01 and γ = 1. Figure 6 shows a plot of the solution profiles X5(t) and

w5(t) (asymptotic solution) after the first iteration in s. It is seen that the solution profiles are
almost identical (in the bulk region).
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Figure 3: Numerical solution x(t) (dotted) versus first-order asymptotic solution w(t) (solid) (s = s0).
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Figure 4: Numerical solution x(t) (dotted) versus first-order asymptotic solution w(t) (solid) after first
Newton iteration (s = s1).

Example 5.5. Consider the singularly perturbed telegraph equation:

ε
∂2u

∂t2
+ γ

∂u

∂t
= μ

∂2u

∂x2
− σ(t), (5.12)

where u = u(x, t), γ and μ are constants, and σ is an arbitrary function of t. Consider normal
boundary conditions:

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0 (5.13)
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Figure 5: Numerical solution x(t) (dotted) versus first-order asymptotic solution w(t) (solid) after second
Newton iteration (s = s2).
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Figure 6: Numerical solution X5(t) (dotted) versus first-order asymptotic solution w5(t) (solid) after first
Newton iteration (s = s1).

with initial conditions

u(x, 0) = sinπx,

∂u

∂t
(x, 0) = π cosπx.

(5.14)

As in the previous example we used the method of lines to obtain the discretized
system of ODEs:

ε
d2X

dt2
+ γ

dX

dt
+ f(X) = 0, (5.15)
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Figure 7: Errors for various solution components: red (dotted) using (2.21) and blue (solid) using (2.25).

where X = [X0, X1, . . . , XN+1]
t, f(X) = [f0, f1, . . . , fN+1]

t, fi = (−u/h2)[Xi+1−2Xi+Xi−1]+σXi,
i = 0, 1, . . . , n + 1, with X−1 = X1 and XN+2 = XN . The initial conditions are Xi(0) = sinπxi,
X′i(0) = π cosπxi, i = 0, 1, . . . , n + 1, and n = 51. Choose ε = 0.01, γ = 1 and σ = 1. Figure 7
shows the error in the various solution components. For example, e(1)6 corresponds to the
error in the sixth solution component using (2.21) and e

(2)
6 corresponds to the error in the

sixth solution component using (2.25), respectively. It is evident that using the new algorithm
proposed in this paper gives superior numerical results.
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6. Conclusion

The numerical solution of singularly perturbed second-order ODEs of the form (1.1)
involving a single variable and a linear function f(x) is well established. On the other hand,
the solution of the system (1.1) with a nonlinear function presents a formidable numerical
challenge. The procedure presented in this paper gives an efficient algorithm for solving
such systems. The improved algorithm is capable of handling a wider class of problems
and at the same time produces a uniform solution over the entire time domain of interest.
Furthermore, the numerical examples selected are representative of typical application areas
including problems exhibiting multiple boundary layers.
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