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1. Introduction

In the recent years, interest has increased in problems involving the joint optimization of
pricing and production decisions. Such problems may not have been very practical some
years ago since manufacturing firms have not traditionally been in close contact with the final
consumers, making it hard to predict demand as a function of price. However, nowadays new
sales channels such as the internet allow direct sales, making easy to observe end customer
behavior [1]. Under these conditions, joint price and production planning problems arise
in the manufacturing sector. According to Farnham [2], direct sales have grown 1% per year
faster than traditional retail sales for the last ten years and that direct sales reached $30 billion
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in 2003, making it a significant business sector. Manufacturing firms can now, due to direct
sales and the internet, maintain close contact with their customers as is currently done by the
airlines, and change prices more quickly and at a much lower cost. In addition, firms that
sell to a large number of small retailers can apply pricing models considering the numerous
retailers to be their final customers.

Joint pricing and production decisions problems are treated in literature; see, for
example, Elmaghraby and Keskinocak [3]. However, problems with both capacity and
inventory constraints are not common. A literature review is provided below. According to
our experience as consultants, the master planning linear programming models currently
in use at several large companies reveal that both capacity and inventory constraints are
commonly used in practice. The upper bounds on inventory result from either storage and/or
budget limitations or company policies. The inventory constraints are of two types, absolute
limits, which are considered in this paper, and days-of-cover requirements, which will be
addressed in a future paper.

Food and beverage producers may be able to apply the proposed model. Within
the Mexican market, these firms supply a very large number of small stores in addition
to large supermarkets. The large number of stores is the set of customers served directly
by the producers. The producer and many of the retailers are owned by the same parent
corporation, making the application of dynamic pricing to the end consumer feasible.
The food and beverage producers’ market exhibits a fairly stable demand with seasonal
variation and identifiable long-term trends. Due to specialized storage requirements and
expiration dates, inventory storage capacity cannot be easily expanded, making upper limits
on inventory especially useful. The model we study in this paper is based on the planning
models currently in use at such companies (cost minimizing linear programming models)
with the addition of the pricing decision, profit maximization, and a focus on a single-item
model in a multi period horizon. Furthermore, we do not require the demand pattern to
be seasonal, only that the behavior of demand as a function of the price to be known in
each period. We consider that a single-item model with multiple time periods is a reasonable
starting point that can be used as a base for further work involving more realistic multiitem
formulations.

In general, capacity constraints are uncommon in literature and inventory constraints
even more so. One notable paper that contains inventory limits but no capacity limits is
Cheng [4] who examines an EOQ model with pricing considerations and an inventory
constraint. Additionally, pricing problems at the aggregate, master planning level with
multiple discrete time periods were not considered before. Extending in this direction, we
formulate and solve a multi period horizon with a single-item problem in a joint price and
production master panning optimization subject to a capacity and inventory constrains.

Although we consider a deterministic model, it is to be noted that revenue
optimization (revenue management) with stochastic elements in the service sector has
received considerable attention by many researchers. For an overview see Bitran and
Caldentey [5] and Boyd and Bilegan [1]. The most notable examples are the applications
in the airline industry [6, 7]. Related techniques have also been applied in hotel [8],
restaurant [9, 10], and retail [11, 12] areas. Gallego and Van Ryzin [13] develop a model that
applies in the airline, hotel and retail settings. The inclusion of pricing decisions in revenue
management models is fairly recent. See Gallego and van Ryzin [14], Feng and Gallego [15],
and Bitran and Mondschein [16] for examples of the early work in pricing within a revenue
management context. More recently Chan et al. [17] study delayed production and delayed
pricing strategies for a multiperiod model.
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Our work differs from most of the works in literature review in that we consider both
capacity and inventory limits. We also address the problem at a master planning level rather
than at the faster paced lot scheduling level where rapid and frequent price changes may not
be feasible. It is important to point out that Chan et al. [17] study delayed production and
delayed pricing strategies rather than optimal simultaneous determination of both pricing
and production, placing their work in a separate category.

The remainder of the paper is organized as follows. Section 2 describes themultiperiod
price-optimizing model. Section 3 shows how the multiperiod problem can be simplified
in the single-period case with known initial and ending inventories. Section 4 provides a
closed form solution of the single-period problem of Section 3, assuming a demand function
of the exponential form. Section 5 shows how the result of Section 4 can be used to solve
the multiperiod model using a dynamic programming approach. Numerical examples are
presented in Section 6 and conclusions are provided in Section 7.

2. Model Description

We formulate a single-item price-optimizing master planning problem. The problem is to
determine for each period of a discrete time, finite planning horizon, the optimal sales
price, production quantity, and sales amount for a single-item. In each period, a production
capacity, a variable cost of production, a fixed cost, a safety stock requirement, and a demand
function that returns demand as a function of price are considered. The production capacity,
variable cost, fixed cost, and safety stock requirement are allowed to vary in each time period.
The demand function is allowed to vary over time but is always of the same parametric form.
The following notation is defined:

pt: sales price in period t,

nt: production quantity in period t,

st: sales quantity in period t,

It: inventory in period t,

Vt: variable cost per unit produced in period t,

F: fixed cost per time period,

Ct: production capacity in period t,

Imin
t : safety stock requirement in period t,

Imax
t : maximum inventory limit in period t,

I0: given value of initial inventory,

Dt(pt): demand function in period t.

The demand function is assumed to be continuous, nonincreasing and asymptotically equal
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to zero. The general multiperiod model for T periods is the following:

max Z =
T∑

t=1

(
pt · st − Vt · nt

) − T · F, (2.1)

s.t.

st ≤ Dt

(
pt
) ∀t, (2.2)

nt ≤ Ct ∀t, (2.3)

It = It−1 + nt − st ∀t, (2.4)

It ≤ Imax
t ∀t, (2.5)

It ≥ Imin
t ∀t. (2.6)

In addition, all variables are assumed to be nonnegative. For simplicity the nonnegativity
constraints are not explicitly expressed. The objective function (2.1) is to maximize profit.
Notice that the fixed cost does not play a role in the optimization, it has been included only to
clarify that profit is to be maximized. Constraint (2.2) limits the sales amount to the demand.
Constraint (2.3) ensures that production will not exceed the available capacity. Constraint
(2.4) is an inventory balance equation. Constraints (2.5) and (2.6) keep the inventory between
specified maximum and minimum limits. In order to show how to solve the multiperiod
problem, we first provide a solution to a simplified problem with a single-period, assuming
that the initial and ending inventories, I0 and I1, are known and feasible with respect to (2.5)
and (2.6).

Notice that although an inventory holding cost parameter is not included in the
objective function (2.1), it is possible to model the financial opportunity costs of holding
inventory by multiplying the terms of (2.1) by the appropriate discount factors. The resulting
objective is then to maximize the present value (NPV) of the future cash flows. For examples
of this approach please see Hadley [18], Park and Sharp-Bette [19], Sun and Queyranne
[20], and Smith and Martı́nez-Flores [21]. In Smith and Martı́nez-Flores [21] it is shown
that the traditional approach and net present value (NPV) approach can yield different
optimal costs and inventory policies. It is important to mention that the papers listed
in Table 1 do not consider the NPV approach. The NPV model, assuming that all cash
flows occur at the end of a period and eliminating the constant terms in (2.1), is the
following:

T∑

t=1

(1 + r)−t · (pt · st − Vt · nt

)
, (2.7)

where r models the financial opportunity cost. Although an operational inventory holding
cost (cash cost) cannot be modeled in this way, in practice, the financial opportunity cost
tends to be by far the largest portion of the inventory holding cost [22], making this modeling
technique adequate for a wide range of applications.
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Table 1: Inventory models with price and production decisions.

Author(s) Year Inventory model Capacity
constrain

Inventory
constrain

Multiperiod
horizon

Whitin [23] 1955

It was linked the price policy and
inventory theory and determined the
combined policy that yield the
maximum profit

No No No

Thomas [24] 1970
Determines simultaneously the price
and production decision with a known
deterministic demand function

No No Yes

Kunreuther and
Richard [25]

1971
Determines the price and ordering
decision considering a stationary
demand curve

No No No

Cheng [4] 1990

An economic order quantity (EOQ)
model that integrates the product
pricing and order sizing decisions with
storage space and inventory
investment limitations

No Yes No

Harris and
Pinder [26]

1995 Determines optimal price and capacity
decision for a single-period No No No

Kim and Lee
[27]

1998

Determines the optimal price, lot size
and the capacity decision for a firm
with constant price-dependent
demands

Yes No No

Gilbert [28] 1999
Determines the optimal price and
production schedule for a product
with seasonal demand

No No Yes

Bhattacharjee
and Ramesh [29]

2000

Determines the optimal price and lot
size for a product with fixed life
perish-ability for a certain number of
periods

No No Yes

Gilbert [30] 2000

Determines the optimal price and
production schedule for a product
with seasonal price dependent
demand

Yes No Yes

Zhao and Wang
[31]

2002
Coordination of price and production
schedules in a decentralized supply
chain

No No Yes

Chen and
Simchi-Levi [32]

2003 Determines the price and productions
decisions No No Yes

Deng and Yano
[33]

2006

Setting prices and choosing
production quantities for a single
product over a finite horizon for a
capacity-constrained manufacturer
facing price-sensitive demands

Yes No Yes

Chan et al. [17] 2006

Study delayed production and delayed
pricing strategies for a multiple period
horizon under a general,
nonstationary stochastic demand
function with a discrete menu of prices

Yes No Yes

This paper This year

Determines the optimal pricing and
production master planning in a multi
period horizon considering capacity
and inventory constraints

Yes Yes Yes
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3. The Single-Period Problem with Known Initial
and Ending Inventories

The multiperiod model given by (2.1) to (2.6) can be simplified in the single-period case. The
single-period model without assuming I1 is given as

max Z = p1 · s1 − V1 · n1 − F (3.1)

s.t.

s1 ≤ D1
(
p1
)
, (3.2)

n1 ≤ C1, (3.3)

I1 = I0 + n1 − s1, (3.4)

I1 ≤ Imax
1 , (3.5)

I1 ≥ Imin
1 . (3.6)

As before, all variables are assumed to be nonnegative and the initial inventory (I0) is
assumed to be feasible with respect to (2.5) and (2.6). Now, the problem with given initial
and ending inventories, I0 and I1, respectively, that are feasible with respect to (2.5) and (2.6)
can be formulated as

max Z = p1 · s1 − V1 · n1 − F (3.7)

s.t.

s1 = D1
(
p1
)
, (3.8)

n1 ≤ C1, (3.9)

I1 = I0 + n1 − s1, (3.10)

n1 ≥ 0. (3.11)

Constraints (3.5) and (3.6) can be eliminated because I0 and I1 are assumed to be feasible.
A proof to justify the equality in (3.8) can be found in the appendix. Using (3.8) and (3.10),
formulations (3.7)–(3.11) can be simplified to

max Z =
(
p1 − V1

) ·D(
p1
)
+ V1 · (I0 − I1) − F (3.12)

s.t.

D1
(
p1
) ≤ C1 + I0 − I1, (3.13)

D1
(
p1
) ≥ I0 − I1. (3.14)

In the next section a closed form solution to (3.7)–(3.11), assuming a specific parametric form
of the demand function, is derived. We drop the subscripts for simplicity.
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4. Closed Form Solution with an Exponential Demand Function

We now present an analytic solution assuming an exponential demand function given by

D
(
p
)
= M exp

(
−p
k

)
, (4.1)

where M is the y-intercept (demand) with a price equal to zero and k > 0 is a price scaling
constant. See Ladany [34] and Smith andAchabal [35] for previous examples of the use of this
function to model demand as a function of price. Notice that with the exponential demand
function given above, problem (3.12)–(3.14) is infeasible when I0 − I1 > M, since M is the
absolute upper bound on demand and when I1 − I0 > C, since C is the absolute upper bound
on production. The following proposition gives the optimal closed form solution.

Proposition 4.1. The optimal values of sales price, sales quantity, and production quantity for
problem (3.7)–(3.11) with D(p) = M exp(−p/k) with I0 − I1 ≤ M and I1 − I0 ≤ C are given
by

p∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min{max{V + k, k[ln(M) − ln(C + I0 − I1)]},
k[ln(M) − ln(I0 − I1)]}, if I1 − I0 < 0,

max{V + k, k[ln(M) − ln(C + I0 − I1)]}, if 0 ≤ I1 − I0 < C,

∞ if I1 − I0 = C,

(4.2)

s∗ = D
(
p∗
)
, (4.3)

n∗ = s∗ − I0 + I1. (4.4)

Proof. The unconstrained version of problem (3.12)–(3.14) using the exponential demand
function is given by

max Z =
(
p − V

)
M exp

(
−p
k

)
+ V (I0 − I1) − F. (4.5)

Problem (4.5) is solved by setting the derivative with respect to p equal to zero,

d

dp

[(
p − V

) ·M · exp
(
−p
k

)]
= 0,

M

[
exp

(
−p
k

)
+
(
p − V

) ·
(
− 1
k

)
· exp

(
−p
k

)]
= 0,

M

[(
V − p + k

) · exp
(
−p
k

)]
= 0.

(4.6)
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One solution is p = V + k (the other is at infinity). The solution p = V + k can be shown to
be a maximum by verifying that the second derivative is negative at that point. The second
derivative is given by

d2

dp

[(
p − V

) ·M · exp
(
−p
k

)]
=

M

k2

(
p − V

)
exp

(
−p
k

)
− 2M

k
exp

(
−p
k

)
. (4.7)

With p = V + k, we obtain

−M
k

exp
(
−V + k

k

)
, (4.8)

which can be seen to be negative by inspection. Problem (4.5) thus has a maximum at p =
V + k, is strictly decreasing for p > V + k and strictly increasing for p < V + k. This result will
be used later.

For ease of reference, we define

L1 = D−1(C + I0 − I1),

L2 =

⎧
⎨

⎩
D−1(I0 − I1), if I0 − I1 > 0,

∞, if I0 − I1 ≤ 0.

(4.9)

Notice that these quantities are related to the right-hand sides of (3.13) and (3.14). The
relationship L1 ≤ L2 can be seen to be true by inspection. Constraints (3.13) and (3.14) can be
solved for p to obtain

p ≥ L1, (4.10)

p ≤ L2, (4.11)

respectively. Since L1 ≤ L2, three cases are possible.

Case 1. V + k ≤ L1 ≤ L2.

Case 2. L1 ≤ V + k ≤ L2.

Case 3. L1 ≤ L2 ≤ V + k.

In Case 1 the prices given by (4.10) and (4.11) at equality are both to the right of the
unconstrained maximum at V + k. Therefore (4.10) is the binding constraint that determines
the solution to the problem. In Case 2 the unconstrained solution at V + k is between the
prices given by (4.10) and (4.11). Neither constraint is binding so the solution is at V + k. In
Case 3 the prices given by (4.10) and (5.1) are both to the left of the unconstrained maximum
at V + k. Therefore (4.11) is the binding constraint that determines the optimal price. It can
be easily verified that (4.2) provides the correct answer in each case. Expression (4.3) follows
from the proof of (3.8) given in the appendix and (4.4) follows from (3.10).
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5. Solving the Multiperiod Problem

To solve the multiperiod model a dynamic programming solution approach employing the
result of Proposition 4.1 is developed in this section. In order to simplify the procedure for
dynamic programming, we allow only integer inventory quantities. This is well justified
because the inventory quantities would be integer values in a real application. Letting
trepresent the time period, the recursive relationship for backward induction is

f∗
t (It−1) = max

It=Imin
t ,...,Imax

t

ft(It−1, It), (5.1)

with

ft(It−1, It) = pt · st − Vt · nt + f∗
t+1(It), (5.2)

where ft(It−1, It) is the contribution of periods from time t until the end of the horizon given
period t begins with It−1 inventory, ends with It inventory and optimal decisions are made
thereafter. The value of f∗

T+1(IT ) is by definition equal to zero and pt, st, and nt are defined as
follows:

pt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{max{Vt + kt, kt[ln(Mt) − ln(Ct + It−1 − It)]},

kt[ln(Mt) − ln(It−1 − It)]}, if It − It−1 < 0,

max{Vt + kt, kt[ln(Mt) − ln(Ct + It−1 − It)]}, if 0 ≤ It − It−1 < Ct,

∞, if It − It−1 = Ct,

(5.3)

st = Dt

(
pt
)
, (5.4)

nt = st − It−1 + It. (5.5)

When a discounted cash flow approach is used, (5.2) becomes

ft(It−1, It) = (1 + r)−t · (pt · st − Vt · nt

)
+ f∗

t+1(It). (5.6)

In the implementation of the method, when st = 0, which can occur when the ending
inventory is greater than the initial inventory by an amount exactly equal to the available
capacity, the price is not relevant and is set equal to any positive constant in order to
correctly evaluate the objective function. When It−1 − It > Mt, which makes the problem
infeasible, the objective function is set to a negative number, effectively eliminating such a
combination from further consideration. The problem is also infeasible when It − It−1 > Ct

since Ct is the absolute upper bound on production. These cases are explicitly excluded from
consideration.
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Table 2: For t = 3.

I2
I3

0 1 2 3 f∗
3 (I2) I∗3

0 33.288 29.726 23.526 13.263 33.288 0
1 35.311 33.288 29.726 23.526 35.311 0
2 37.252 35.311 33.288 29.726 37.252 0
3 39.193 37.252 35.311 33.288 39.193 0

Table 3: For t = 2.

I1
I2

0 1 2 3 f∗
2 (I1) I∗2

0 36.472 36.534 36.515 36.223 36.534 1
1 38.433 38.495 38.475 38.456 38.495 1
2 40.314 40.456 40.436 40.416 40.456 1
3 41.442 42.337 42.397 42.377 42.397 2

Table 4: For t = 1.

I0
I1

0 1 2 3 f∗
1 (I1) I∗1

1 44.124 44.105 44.086 44.047 44.124 0

6. Numerical Examples

In this section, some numerical examples will be presented to illustrate the dynamic
programming solution approach on a small three-period problem. Let, r = 0.01, I0 = 1,
M1 = 10, M2 = 12, M3 = 15, k1 = 3, k2 = 2, k3 = 8, and Ct = 4, Vt = 2, Imin

t = 0, Imax
t = 3 for

all t. Table 2 for t = 3 is populated using (5.1)–(5.5). The value of f∗
4 (·) is by definition equal

to zero.
Table 3 for t = 2 is populated similarly.
Table 4 for t = 1 is populated similarly.
The optimal solution is shown in Table 5. The optimal sales prices, sales quantities,

and production quantities can be found using (5.3), (5.4), and (5.5), respectively. Notice
that the sales and production quantities are not integer values. In practical master planning
applications that are solved using linear programming, noninteger values are acceptable
approximations due to the aggregate nature of the products, the medium to long-term time
horizons involved, and the typically large quantities planned to be produced.

Three additional illustrative examples will be presented to highlight some of the
behavior of the model. The following example illustrates how it is possible to have an optimal
solution in which, although it is feasible to produce and sell the optimal quantity in one
period when that period is considered in isolation, the sale in that period will be limited to
allow greater sales in a later more profitable period. Let r = 0.01, I0 = 0, M1 = 100, M2 = 100,
M3 = 610, k1 = 5.1, k2 = 5.1, k3 = 8, and Ct = 21, Vt = 10, Imin

t = 0, Imax
t = 40 for all t. The

optimal solution is shown in Table 6. Notice how although it is feasible to sell 5.18 units in
periods 1 and 2 (which would be optimal for those periods taken in isolation), the optimal
solution is to limit sales in the first two periods to allow greater sales in the last period.
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Table 5: Optimal solution for example 1.

T It st pt nt

1 0 1.89 5.0 0.89
2 1 1.62 4.0 2.62
3 0 4.30 10.0 3.30

Table 6: Optimal solution for example 2.

T It st pt nt

1 17 4.0 16.42 21.0
2 34 4.0 16.42 21.0
3 0 55.0 19.25 21.0

Table 7: Optimal solution for example 3.

T It st pt nt

1 0 5.18 15.10 5.18
2 28 5.18 15.10 33.18
3 0 63.00 18.16 35.00

Table 8: Optimal solution for example 4.

T It st pt nt

1 16 5.00 15.28 21.00
2 28 5.18 15.10 17.18
3 0 63.00 18.16 35.00

Our next example illustrates what we call horizon decoupling which can help solve
problems with many time periods when production costs are constant or decrease over time.
It is worth noticing that the horizon decoupling is an example of a regeneration point, which is
a fundamental construct of planning horizon theory. See, for instance, Chand et al. [36] for a
review of literature on planning horizon theory. This example is identical to the previous one
with the exception thatC2 = C3 = 35. The optimal solution is shown in Table 7. Notice that the
capacity in the last period is not enough to produce its optimal (when considered in isolation
with infinite capacity) sales amount of 64.30 units. It, therefore, remains coupled to previous
periods. Further notice that the two last periods do have between them enough capacity to
produce their optimal (when each period is considered in isolation with infinite capacity)
sales amounts of (64.30 + 5.18 = 69.48). They, therefore, decouple from previous periods
and can be solved independently of any previous periods. This property of the problem
may allow problems with long planning horizons to be split into several smaller problems
with shorter planning horizons that can be solved more easily. Notice, however, that if we let
V1 = 9, the optimal solution calls for inventory to be accumulated at the end of period 1 to
take advantage of the lower production cost. The optimal solution with V1 = 9 is shown in
Table 8. Thus, it cannot be assumed that the planning horizon will decouple when production
costs are increasing over time. It is important to note that if the setup costs are included, the
planning horizon results would change.
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Table 9: Optimal solution for example 5.

T It st pt nt

1 1 4.0 16.09 5.0
2 3 3.0 17.53 5.0
3 0 8.0 24.37 5.0

Table 10: Projected plan assuming aggregate capacity.

T It st pt nt

1 0 2.52 18.4 2.52
2 0 2.52 18.4 2.52
3 0 9.96 22.4 9.96

The last example we present illustrates the value of solving a joint pricing and
production problem taking into account capacity and inventory constraints. The parameters
of the problem are the following: r = 0.01, I0 = 0, M1 = 100, M2 = 100, M3 = 110, k1 = 5,
k2 = 5, k3 = 7, and Ct = 5, Vt = 10, Imin

t = 0, Imax
t = 2 for all t. The optimal solution is shown

in Table 10. The optimal objective value is $161.96. Now assume the marketing department
sets prices using the same data but assuming that the aggregate capacity over the next three
periods is equal to 15. That is, an aggregate capacity limit is imposed rather than a period by
period limit. The projected plan under these assumptions is shown in Table 9. The projected
objective value would be $165.87. Now assuming that the marketing department executed to
the planned prices, but production is now constrained by the real inventory and capacity
limits, the greatest possible profit is only $97.96, well below both the projected plan and
the optimal plan. Now suppose that marketing creates a pricing plan taking into account
the period by period capacity limits but fails to consider the inventory limits. The projected
plan is shown in Table 11. The projected objective value would be $165.36. Now assuming
that marketing executes to the planned prices, but production is now constrained by the real
inventory and capacity limits, the greatest possible profit is only $97.44, also well below both
the projected plan and the optimal plan. These examples show that neglecting to consider
capacity and/or inventory constraints can have very significant detrimental effects on the
profitability of the firm.

7. Conclusions and Recommendations for Further Research

In conclusion, we derive an exact solution to the single-period price-optimizing master
planning problem with deterministic demand and inventory and capacity constraints for
the case with known initial and ending inventories. In addition, we show how to solve the
multiperiod version of the problem using a dynamic programming approach. Our direct
observation of the planning models in use at a variety of industries shows that the types
of constraints we consider are commonly used in practice but largely missing in literature.
We also show that inventory holding costs can be included in the model by discounting
the terms of the objective function. The numerical examples presented serve to highlight
the importance of taking into account capacity and inventory constraints when generating a
pricing and production plan. The implication for practitioners is that potentially significantly
higher profits can be obtained through price optimization, making sure to consider the firms
capacity and inventory constraints.
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Table 11: Projected plan assuming no constraints on inventory.

T It st pt nt

1 2 3.0 17.53 5.0
2 5 2.0 19.56 5.0
3 0 10.0 22.36 5.0

It is worth noting that our proposed model has three main advantages. First, our
model considers both capacity and inventory limits. Our consulting experience shows that
firms take both types of constraints into account, making their inclusion desirable. Second,
we address the problem at a master planning level, where setups are usually not considered.
The previously published works address similar problems at a lot scheduling level despite
the fact the price changes (with the exception of discounts) are often not feasible in the short
term. Third, our model considers the net present value approach instead of the traditional
approach.

The research presented in this paper may be extended in several ways. One extension
is to solve the model with an upper bound on the price or, alternatively, on the allowable
change in price between periods, which is a realistic market scenario. In addition, solution
approaches could be developed for multiitem and stochastic versions of the problem. Models
with days-of-cover constraints would also be relevant research topics as would be the
inclusion of setup costs in a mixed integer formulation. An additional recommendation is to
investigate a dynamic control version of the problem, which would recast the problem from
a planning level to an operational level. Additional possible extensions are to reformulate
the model to include demand learning effects [37], and to model the supply chain with a
supplier-buyer relationship as two-player nonzero sum differential game [38].

Appendix

Justification of the Equality in Constraint (3.8)

Claim 1. For problem (3.7)–(3.11), with (3.8) rewritten as s1 ≤ D(p1) and assuming that D(p)
is a demand function that is continuous, nonincreasing and asymptotically equal to zero, if
p∗, s∗, and n∗ are optimal, then s∗ = D(p∗).

Proof. Assume that s∗ /=D(p∗). This yields two cases. The first is that s∗ > D(p∗). This case
can be ignored since it is impossible for sales to exceed demand. The remaining case is that
s∗ < D(p∗). For optimality we require that s∗p∗ − Vn∗ ≥ sp − Vn for any feasible choice of
s, p, and n (notice that p is not bounded from above by (3.8)–(3.11)). However, if s∗ < D(p∗),
given that D(p) is continuous, nonincreasing and asymptotically equal to zero, there exists
a feasible ps > p∗ such that s∗ = D(ps). This implies that s∗p∗ − Vn∗ < s∗ps − Vn∗, which
contradicts the optimality of p∗.
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