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We consider the problem of a two-dimensional rectangular cavity in a PEC half plane covered
by layers of material with uniform thickness. The rectangular geometry allows for an application
of Fourier methods to solve the problem. The paper will also discuss how to compute the far field
scattering once the solution is found. The fast mode matching approximation technique developed
by Morgan and Schwering will be applied to this layered cavity problem setting. Numerical results
will show that using the Fourier solution on the layered problem combined with Morgan and
Schwering’s technique can produce good approximations while using much less computation time
than would be required for the entire solution.
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1. Introduction

The cavity problem has been extensively studied due to its importance in the computation
of radar cross section. A two-dimensional cavity can be used to model long seems or cracks
in metallic surfaces which can significantly contribute to the overall radar profile of large
objects. The cavity problem has been solved with a variety of methods including integral
equations, finite elements, and Fourier methods. These approaches are primarily applied to
a problem with a material filled cavity in a PEC ground place opening into an empty half
space.

A neglected aspect of the problem is when the cavity is buried beneath a layered
material. A two-dimensional cavity beneath a layered material can serve as model for seams
and cracks in metallic surfaces which are covered by paint or materials applied during a
manufacturing process. The material covering would mean that the cavities are invisible
to a visual inspection. However, they may be revealed by understanding the scattering
characteristics of the cavity when exposed to an electromagnetic field. The mathematical
model can serve as a predictor of the scattering characteristics for use in nondestructive
testing.
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Figure 1: Layered geometry.

We want to compute the fields in the finite cavity region shown in Figure 1. The
computation can be done with integral equation methods. The disadvantage of this approach
is that a layered Green’s function must be used which adds difficulty to the problem and
brings up convergence issues [1]. A finite element approach can also be used but would
require appropriate boundary conditions at the cavity opening [2]. A key contribution of this
manuscript is to provide the understanding of the Fourier approach in the overlayer setting
on which an appropriate boundary condition is based.

In addition, the Fourier approach has some unique advantages. It is the sensible and
natural approach for a rectangular geometry. Further, it is the only approach which can
employ Morgan and Schwering’s mode matching method and improved mode matching
methods to get very fast approximations for large cavities and high frequencies. Very
large problems with high wave numbers will become computationally cumbersome for
any technique. Using the fast mode matching approach opens the door to dealing with
very large problems which could not be dealt with by other conventional approaches
[3, 4].

2. Problem Setting

We consider a time harmonic plane wave with fixed frequency ω incident onto a ideal metal
or a perfect electrical conductor (PEC) half plane which is covered by a material layer(s)
of uniform thickness. Embedded in the PEC half space is a cavity with an opening to the
upper half space. As indicated in Figure 1, the region above the material layer is empty space
and will be denoted by region 0, the region inside the material layer will be denoted by
region 1, while the cavity will be called region 2. The opening of the cavity is the interval
[0, L] in the x-direction. The depth of the cavity is denoted by d and top opening of the
cavity is located at y = 0 while the bottom of the cavity is at y = −d. The cavity may
be filled with a uniform material. The electric permittivities and magnetic permeabilities
of the materials are denoted by εk and μk where k = 0, 1, 2 represents the region. Multiple
material layers can be considered for both the inside of the cavity as well as the material
covering the PEC half space. The paper will deal exclusively with a single material in both
cases. The generalization to multiple layered materials follows easily once a single material
is understood.
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We will solve for the electric and magnetic fields denoted by E and H which
satisfy Maxwell’s equations [5]. In the two-dimensional setting, Maxwell’s equations can
be separated into two fundamental polarizations [5]. In the transverse magnetic (TM)
polarization the electric field has only a z component which will be computed. We denote
the z component of E by u. The other polarization is the transverse electric (TE) where
the magnetic field H has only a z component which is denoted by v. In Sections 5 and
6, we will solve for the unknown functions u and v inside the cavity region. In both
cases u and v will satisfy a Helmholtz equation with appropriate boundary conditions.
Once the solutions are found in region 2 we will show how to compute far field
values.

Note that in regions 0 and 1 the solutions can be decomposed into a superpositions
of fields. We use a subscript to denote which region the field is contained. Thus uk

and vk for k = 0, 1, 2 are the solutions in each of the respective regions. In region
0, the fields u0 and v0 are expressed as a sum of an incoming plane waves ui

0 and
vi

0, outgoing plane waves ur
0 and vr

0, and a scattered fields us
0 and vs

0. The incoming
waves in region 0 are known and specified. The remaining fields will be computed in
following sections below. In region 1, the fields u1 and v1 also consist of incoming plane
waves ui

1 and vi
1, outgoing plane waves ur

1 and vr
1 and scattered fields us

1 and vs
0 all

of which are unknown. When appropriate we will combine the incoming and outgoing
plane waves into a single term uir

k
= ui

k
+ ur

k
and vir

k
= vi

k
+ vr

k
for k = 0, 1. Finally

the fields u2 and v2 in the cavity region 2 will not be decomposed but solved as single
fields.

When the known incident plane waves ui
0 and vi

0 come in from region 0 they interact
with the material layer (region 1). The interaction produces reflected plane waves ur

0 and vr
0

as well as transmitted plane waves into region 1. The transmitted plane waves propagate
into region 1 which produces plane waves propagating in the positive y-direction (ur

1 and
vr

1) and in the negative y-direction (ur
1 and vr

1). While the plane waves ui
0 and vi

0 are given,
the remainder of the plane waves must be computed. They are computed assuming that the
cavity (region 2) is not present. Once the plane waves are completely known they are used
as a source field which interacts with the cavity to produce scattered fields us

k
and vs

k
with

k = 0, 1 in regions 0 and 1 as well as transmitted fields u2 and v2 in region 2.
Once the transmitted field in the cavity is computed we want to find far field values

based on this solution. The difficulty here is that the cavity does not open to an empty half
space. The upper half space is partially filled with material layer. The Fourier representations
will allow the solution of the transmitted field in the cavity to be transferred to the upper half
space and interpreted appropriately to allow far field computations.

3. Previous Work

There have been numerous techniques developed to account for the electromagnetic
scattering from a cavity aperture in a ground plane, including Fourier transform, finite
element, integral equations, cavity mode coupling and impedance boundary conditions.
The solution of the cavity problem when buried underneath uniform layers of material has
received much less attention.

The Fourier transform technique was utilized by Park and Eom to examine the TE
and TM scattering from an empty rectangular cavity embedded in an infinite ground plane
[6, 7]. The method allowed for a closed form solution to be developed by approximating
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a series solution for the scattered field. It analyzed the effect that filling the rectangular cavity
with a dielectric material has on the radar cross section. It did not account for material
outside of the cavity. Other techniques have dealt with the same situation by employing
Green’s functions, integral equations and impedance boundary conditions [8, 9]. Since these
methods tend to be computationally burdensome as the size of the cavity increases, Morgan
and Schwering approached this problem by implementing a mode coupling method, and
solved for a rapid approximation technique by extending the cavity walls using propagating
waveguide modes [4]. Morgan and Schwering’s approach was followed by an improved
mode matching technique which employed an asymptotic expansion which converges as the
frequency increases [3]. This paper presents a similar methodology to duplicate Morgan and
Schwering’s fast approximation technique for the cavity underneath the material layer.

The finite element method has the advantage of being able to model arbitrary
shaped cavities embedded in a ground plane. Analysis of the TM case of a material filled
arbitrarily shaped cavity was analyzed by Wood using a set of scalar integral equations,
where Howe’s masters thesis expanded this to look at the results of the TE cases [10, 11].
An alternate solution to this problem was presented by Van and Wood which coupled
the finite element method with Fourier transforms, expressing the results of both the TM
and TE case [2]. While these papers provide efficient solutions for an arbitrarily shaped
cavity, they are dependent on the ideal situation where the material layer is restricted to
the cavity space below the half plane. Wood was able to account for this problem, and
extended the research to consider the effect of over filling the cavity space with a dielectric
material. This was accomplished by creating an artificial boundary condition on a semicircle
inscribing the overfilled material region, and combining a hybrid finite element method with
Fourier transforms to solve for the far field scattering [12]. This methodology fails when the
entire surface is coated with a material since no semicircle can contain the entire material
layer.

The work proposed in this paper is an extension of previously published literature,
where we are considering an embedded rectangular cavity, in which the entire surface is
coated with a dielectric material. Understanding the problem with the restricted cavity shape
allows for the boundary conditions to be appropriately defined so that future research can
investigate the use of the finite element method to solve for the scattering based on any
arbitrary cavity.

4. Focus of the Paper

In this paper we focus on modifying the standard rectangular cavity model to accommodate
uniform material layers over the cavity opening. The modification of the Fourier approach
has intrinsic value as a computational model of a buried rectangular cavity but it also is
important since it can be applied to finite element formulation for electromagnetic scattering
by nonrectangular buried cavities in future work.

In addition to providing the layered modification to the standard Fourier approach
the paper will also demonstrate that the fast approximation method used by Morgan and
Schwering and extended by Bao and Zhang, works well with the modification [3, 4]. The
fast approximations are very important for electrically large cavities which take a lot of
computation time. Also, the fast approximation can be used for inverse and design problems
where solutions must be computed many times over as parameters are determined in order
optimize scattering characteristics.
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5. Overview

The two-dimensional cavity problem can be split into two fundamental polarizations. The
transverse magnetic (TM) polarization where E = (0, 0, u) and the transverse electric (TE)
polarization where H = (0, 0, v). In both cases we find the z-component of the field in
question as a solution. In general the fields satisfy Maxwell’s equations, but these can easily be
reduced to the scalar Helmholtz equation for both polarizations. The difference between the
two polarizations is the boundary conditions which will be clarified in the following sections.

Much of the calculations to follow rely on enforcing the continuity or boundary
conditions. The continuity conditions for electromagnetic fields state that the tangential
components of the electric and magnetic field are continuous at interfaces. Thus we have
that n × E0 = n × E1 and n × H0 = n × H1 where n is the normal vector. At the interfaces
between regions 0 and 1 and between regions 1 and 2 we will have n = (0, 1, 0). Note that E0

and E1 are the electric fields in regions 0 and 1 while H0 and H1 are the magnetic fields in
regions 0 and 1. The same continuity holds for the interface between regions 1 and 2 for the
fields E1, E2, H1 and H2.

Note that inside a PEC material we have E = 0. Therefore when enforcing the
continuity conditions we get that E × n = 0 at the boundary of any PEC material. For the
TM polarization this means u = 0 at the boundary of the PEC material. For the TE case we
have by applying Maxwell’s equations that (1/ε)(dv/dn) = 0. In both cases we will solve for
u2 and v2 in region 2. The appropriate boundary conditions at the walls of the cavity will be
enforced along with the continuity conditions at the interfaces between regions 0 and 1 and
regions 1 and 2.

For the TM case the continuity conditions of the electric field simply states that u0 = u1

at y = a and u1 = u2 at y = 0. The magnetic continuity condition reduces to (1/μ0)(∂u0/∂y) =
(1/μ1)(∂u1/∂y) at y = a and (1/μ1)(∂u1/∂y) = (1/μ2)(∂u2/∂y) at y = 0. For the TE case the
continuity conditions of the magnetic field simply states that v0 = v1 at y = a and v1 = v2 at
y = 0. The electric continuity condition reduces to (1/ε0)(∂v0/∂y) = (1/ε1)(∂v1/∂y) at y = a
and (1/ε1)(∂v1/∂y) = (1/ε2)(∂v2/∂y) at y = 0.

6. TM Case

The TM polarization has only a z-component for the electric field E = (0, 0, u). In region 0
u is denoted by u0 consists of the incident/reflected plane waves ui

0 and ur
0 as well as the

scattered field us
0. Thus we have u0 = ui

0 + ur
0 + us

0. In region 1, u is denoted by u1 and is
again a combination of an incoming and outgoing plane wave along with a scattered field.
Therefore u1 = ui

1 + ur
1 + us

1. The transmitted field in region 2, is denoted by u2 but it will not
be decomposed into a superposition of fields. It will be found in the cavity by appropriately
specifying the incoming and outgoing plane waves in the upper half space with the material
over layer (regions 0 and 1) and by using Fourier theory to represent the scattered and
transmitted fields in all three regions.

By enforcing continuity conditions at the interfaces along with the boundary
conditions at the cavity walls, the transmitted field u2 will be determined. At the PEC walls
we will have u2 = 0. At the opening to the upper half space we must enforce continuity with a
representation of the scattered field us combined with the incident and reflected fields which
captures the effect of the material layer in region 0. Once all of the boundary conditions are
enforced we will be able to determine the solution u2.
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The solution u2 satisfies the Helmholtz equation Δu2 + k2u2 = 0. The PEC boundary
condition u2 = 0 is enforced at x = 0, x = L and y = −d. At y = 0 the continuity conditions
are enforced which give the final boundary condition. Note that k is known as the “wave
number” and is given by k = ω2εμ.

The Helmholtz equation and all of the boundary conditions dictate the type of Fourier
representation we use for the various fields. Once we have the appropriate representation
and enforce the continuity conditions we can solve for the desired solution u2.

6.1. TM: Incoming and Outgoing Plane Waves

When dealing with a cavity problem without a material covering an incident plane wave is
introduced along with a reflected plane wave both of which are as if no cavity is present.
The reflected field is easily computed by enforcing the PEC boundary condition at y = 0. The
scattered field is then viewed as a perturbation of these fields when the cavity is included in
the geometry. In this paper, when dealing with a material coating, the incoming and reflected
waves increase in complexity because of the layer in region 1. There will be plane waves
propagating in both the positive and negative y directions inside region 0 and region 1. We
denote the superposition of these forward and backward propagating plane waves by uir

0
and uir

1 in regions 0 and 1 respectively. The incident plane wave ui
0 in region 0 is assumed to

be given. The remaining plane waves are calculated by enforcing the continuity conditions
at y = 0 and y = a. In region 0 we have uir

0 = ui
0(x, y) + ur

0(x, y) and in region 1 we have
uir

1 = ui
1(x, y) + ur

1(x, y):

ui
0

(
x, y
)
= eık

0
xx−ık0

yy,

ur
0

(
x, y
)
= A−

TMeık
0
xx+ık

0
yy,

ui
1

(
x, y
)
= B+

TMeık
1
xx−ık1

yy,

ur
1

(
x, y
)
= B−

TMeık
1
xx+ık

1
yy,

(6.1)

where k0
x and k0

y are related to the wavenumber of region 0 by (k0
x)

2 + (k0
y)

2 = k2
0. The same

relationship holds for k1
x and k1

y in region 1 where we have (k1
x)

2 + (k1
y)

2 = k2
1.

The PEC boundary condition states that uir
1 = 0 at y = 0. Enforcing this boundary

condition allows us to eliminate one of the unknown coefficients

uır
1 (x, 0) = 0,

ui
1(x, 0) + ur

1(x, 0) = 0,

B+
TMeık

1
xx = −B−

TMeık
1
xx,

B+
TM = −B−

TM.

(6.2)

In order to solve for the remaining unknown coefficients representing the incoming
and outgoing plane waves in regions 0 and 1, the boundary condition of the material interface
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at y = a must be enforced. Applying the electric field continuity condition yields

uir
0 (x, a) = uir

1 (x, a),

ui
0(x, a) + ur

0(x, a) = ui
1(x, a) + ur

1(x, a),

eık
0
xx−ik0

ya +A−
TMeık

0
xx+ık

0
ya = B+

TM

(
eık

1
xx−ık1

ya − eık
1
xx+ık

1
ya
)
.

(6.3)

Enforcing the magnetic field continuity condition gives

1
μ0

∂uir
0

∂y
(x, a) =

1
μ1

∂uir
1

∂y
(x, a),

μ1
∂ui

0

∂y
(x, a) + μ1

∂ur
0

∂y
(x, a) = μ0

∂ui
1

∂y
(x, a) + μ0

∂ur
1

∂y
(x, a),

−ık0
yμ1e

ık0
xx−ık0

ya + ık0
yμ1A

−
TMeık

0
xx+ık

0
ya = −ık1

yμ0B
+
TM

(
eık

1
xx−ık1

ya + eık
1
xx+ık

1
ya
)
.

(6.4)

Combining the above equations gives a system of which can easily be solved by using
Cramer’s rule:

A−
TM =

e−2ık0
ya
(
k0
yμr1

(
e−ık

1
ya − eık

1
ya
)
− k1

y

(
e−ık

1
ya + eık

1
ya
))

k1
y

(
e−ık

1
ya + eık

1
ya
)
+ k0

yμr1

(
e−ık

1
ya − eık

1
ya
) ,

B+
TM =

2k0
yμr1e

−ık0
ya

k1
y

(
e−ık

1
ya + eık

1
ya
)
+ k0

yμr1

(
e−ık

1
ya − eık

1
ya
) .

(6.5)

Note that for multiple layers the same approach works in principle but the system of
equations will be larger. Each layer will have a set of unknown coefficients and the continuity
conditions would be enforced at each interface.

6.2. TM: Scattered and Transmitted Fields

We now consider the incoming and outgoing plane waves described above as a source field
impinging on the rectangular cavity in region 2 embedded in an infinite PEC ground plane
that has been entirely coated with a dielectric material in region 1. These plane waves already
satisfy the Helmholtz equation. We can add in the scattered fields to these plane waves by
the superposition principle. The scattered fields are produced by the interaction of the plane
waves with the cavity opening. The interaction produces scattered fields in regions 1 and
0 and a transmitted field in region 2. The scattered and transmitted fields will satisfy the
Helmholtz equation as well as the same electric and magnetic continuity conditions.
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Since the scattered field in region 0 is not bounded above in the y-direction, it consists
of only an outgoing field. Therefore, the Fourier representation is

us
0

(
x, y
)
=
∫∞

−∞
DTM(λ)e−α0ye2πıλxdλ, (6.6)

where α0 =
√
(2πλ)2 − k2

0.
Since region 1 is bounded both above and below, the scattered field can propagate in

both the positive and negative y-directions. The representation of the scattered field in region
1 is given by

us
1

(
x, y
)
=
∫∞

−∞

(
GTM(λ)e−α1y +HTM(λ)eα1y

)
e2πıλxdλ, (6.7)

where α1 =
√
(2πλ)2 − k2

1. Note that both representations are solutions to the Helmholtz
equation but that the unknown Fourier transforms DTM(λ), GTM(λ) and HTM(λ) have not
been specified.

The transmitted field in region 2 has compact support and must satisfy the PEC
boundary conditions at the cavity walls. Thus, the Fourier representation of the transmitted
field is given by

u2
(
x, y
)
=

∞∑

n=1

ATM
n sin

(nπ
L

x
)

sinh
(
γ2
(
y + d

))
, (6.8)

where γ2 =
√
(nπ/L)2 − k2

2. The unknown Fourier coefficients An will be found approxi-
mately. In order to solve for the coefficients the unknown functions DTM(λ), GTM(λ) and
HTM(λ) must be eliminated by using the continuity conditions at y = 0 and y = a. We must
enforce the continuity conditions at y = 0 and at y = a. Once the conditions are enforced we
can reduce the problem to a system of equations for the unknown Fourier coefficients An’s.

6.3. Boundary y = a

By first applying the electric field continuity we are able to solve for the transform DTM(λ):

u0(x, a) = u1(x, a),

uir
0 (x, a) + us

0(x, a) = uir
1 (x, a) + us

1(x, a).
(6.9)

Since uir already satisfies the continuity conditions we have us
0(x, a) = us

1(x, a).
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Now going to the Fourier representations of the scattered field in regions 0 and 1 we
have

∫∞

−∞
DTM(λ)e−α0ae2πλxdλ =

∫∞

−∞

(
GTM(λ)e−α1a +HTM(λ)eα1a

)
e2πıλxdλ,

F−1(DTM(λ)e−α0a
)
= F−1(GTM(λ)e−α1a +HTM(λ)eα1a

)
,

DTM(λ)e−α0a = GTM(λ)e−α1a +HTM(λ)eα1a.

(6.10)

Next, applying the boundary constraints controlling for the continuity of the magnetic field
at y = a also yields a solution for the coefficient DTM(λ):

μ1
∂uir

0

∂y
(x, a) + μ1

∂us
0

∂y
(x, a) = μ0

∂uir
1

∂y
(x, a) + μ0

∂us
1

∂y
(x, a). (6.11)

Again, knowing that uir already satisfies the magnetic continuity conditions we have

μ1
∂us

0

∂y
(x, a) = μ0

∂us
1

∂y
(x, a). (6.12)

Returning to the Fourier representations we have that

−μ1

∫∞

−∞
DTM(λ)α0e

−α0ae2πıλxdλ = μ0

∫∞

−∞
α1
(
HTM(λ)eα1a −GTM(λ)e−α1a

)
e2πıλxdλ,

−μ1F−1(α0DTM(λ)e−α0a
)
= μ0F−1(α1

(
HTM(λ)eα1a −GTM(λ)e−α1a

))
,

−μ1α0DTM(λ)e−α0a = μ0α1HTM(λ)eα1a − μ0α1GTM(λ)e−α1a.

(6.13)

The results from the boundary condition at y = a then provide a system of equations
that can be solved using Cramer’s rule. In general, if there were multiple layers the system of
equations would be larger and the continuity conditions would be enforced at each material
interface. We solve the system to get the unknown functions GTM(λ) and HTM(λ) written in
terms of DTM(λ):

GTM(λ) = DTM(λ)e−α0a

(
eα1a
(
μ0α1 + μ1α0

)

2μ0α1

)

,

HTM(λ) = DTM(λ)e−α0a

(
e−α1a

(
μ0α1 − μ1α0

)

2μ0α1

)

.

(6.14)

We now want to eliminate DTM(λ) from the problem to be left with only the Fourier
coefficients An’s of the transmitted field u2 as unknowns. Further, these coefficients will be
the solution to a system of equations which we will solve to get our approximate solution.
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6.4. Boundary y = 0

We use the continuity conditions once again for u1 and u2 at the interface between regions 1
and 2. First the electric field continuity gives

u1(x, 0) = u2(x, 0),

uir
1 (x, 0) + us

1(x, 0) = u2(x, 0).
(6.15)

Since uir = 0 at y = 0 we have

us
1(x, 0) = u2(x, 0). (6.16)

Using the Fourier representations we have

∫∞

−∞
(GTM(λ) +HTM(λ))e2πıλxdλ =

∞∑

n=1

ATM
n sin

(nπ
L

x
)

sinh
(
γ2d
)
,

F−1(GTM(λ) +HTM(λ)) =
∞∑

n=1

ATM
n sin

(nπ
L

x
)
,

GTM(λ) +HTM(λ) =
∞∑

n=1

ATM
n F

(
sin
(nπ

L
x
))

.

(6.17)

Substitute in the solution for GTM(λ) and HTM(λ), into the equation to get

DTM(λ)e−α0a

(
QTM

A

2μ0α1

)

=
∞∑

n=1

ATM
n F

(
sin
(nπ

L
x
))

(6.18)

and solving for DTM(λ) yields:

DTM(λ)e−α0a =
2μ0α1

∑∞
n=1 A

TM
n F(sin((nπ/L)x))

QTM
A

, (6.19)

where

QTM
A = e−α1a

(
μ0α1 − μ1α0

)
+ eα1a

(
μ0α1 + μ1α0

)
. (6.20)

Next, the continuity of the magnetic field across the cavity opening at y = 0 gives

−1
ıwμ1

∂u1

∂y
(x, 0) =

−1
ıwμ2

∂u2

∂y
(x, 0),

μ2
∂uir

1

∂y
(x, 0) + μ2

∂us
1

∂y
(x, 0) = μ1

∂u2

∂y
(x, 0).

(6.21)
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Using the Fourier representations we have

− 2ıkk1
yμ2B

+
TMeık

1
xx + μ2

∫∞

−∞
α1(HTM(λ) −GTM(λ))e2πıλxdλ

= μ1

∞∑

n=1

ATM
n γ2 sin

(nπ
L

x
)

cosh
(
γ2d
)
,

− 2ık1
yμ2B

+
TMeık

1
xx + μ2F−1(α1(HTM(λ) −GTM(λ)))

= μ1

∞∑

n=1

ATM
n γ2 sin

(nπ
L

x
)

coth
(
γ2d
)
.

(6.22)

Again, substitute in for GTM(λ) and HTM(λ) resulting in

− 2ık1
yμ2B

+
TMeık

1
xx + μ2F−1

(

α1

(

DTM(λ)e−α0a
QTM

B

2μ0α1

))

= μ1

∞∑

n=1

ATM
n γ2 sin

(nπ
L

x
)

coth
(
γ2d
)
,

(6.23)

where

QTM
B = e−α1a

(
μ0α1 − μ1α0

)
− eα1a

(
μ0α1 + μ1α0

)
. (6.24)

Using the orthogonality of the sine terms this equation can be reduced to.

− 2ık1
yμ2B

+
TM

∫L

0
eık

1
xx sin

(mπ

L
x
)
dx

+ μ2
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(
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2μ0
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(mπ

L
x
)
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L

2
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m γ2m coth
(
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)
.

(6.25)

Then by performing integration and utilizing Parseval’s Theorem, our results show.

− k1
yμ2B

+
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(
eık

1
x+ımπ − 1

ık1
x + (ımπ/L)

+
1 − eık

1
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ık1
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(mπ
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dλ = μ1
L

2
ATM

m γ2m coth
(
γ2md

)
.

(6.26)
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Lastly, the values for DTM(λ) can be substituted in, and rearranging the equation results in:

∞∑

n=1

ATM
n Km,n −

μ1

μ2

L

2
ATM

m γ2m coth
(
γ2md

)

= k1
yB

+
TM

(
eık

1
x+ımπ − 1

ık1
x + ımπ/L

+
1 − eık

1
x−ımπ

ık1
x − ımπ/L

)

,

(6.27)

where

Km,n =
∫∞

−∞
α1

QTM
B

QTM
A

F
(

sin
(nπ

L
x
))

F
(

sin
(mπ

L
x
))

dλ (6.28)

The Fourier coefficients, ATM
n , satisfy an infinite system of linear equations. The solution can

be approximated computationally by truncating the infinite sum to a finite number of terms.
Typically, the number of terms should be at least large enough to include all of the “guided
modes.” The convergence issues around truncating such an infinite systems of equations are
not well understood but a partial discussion is given in [13]. This solution of the finite system
is used as an approximate set of Fourier coefficients for the representation of u2 in the cavity.

7. TE Case

We now look at the transverse electric case where assume H = (0, 0, v). The approach is
much the same as the TM case. The unknown function will satisfy the Helmholtz equation
Δv + k2v = 0. The primary difference is the enforcement of the PEC boundary condition.
Since we are now solving for the z component of the magnetic field we must account for how
the PEC boundary condition is represented. If we have H = (0, 0, v) we can apply Maxwell’s
equations to produce E. We can then compute the tangential component of E and set it equal
to zero. Doing so for the TE case gives us that (1/ε)(dv/dn) = 0. That is the normal derivative
of v will be equal to zero. This condition must be enforced in region 1 when we compute the
incident and reflected field and also in region 2 when we represent the transmitted field in
the cavity.

7.1. TE: Incoming and Outgoing Plane Waves

For the TE case we are assuming that we have a TE-polarized incident magnetic field. The
reflections and transmissions at the material interface and at the PEC boundary will produce
forward and backward propagating plane waves in both regions. We can solve for the these
fields vir

0 and vir
1 in regions 0 and 1 just as we did in the TM case. The only difference in
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the PEC boundary condition at y = 0 now is applied to the normal derivative of v instead of
v itself. We have the following:

vi,0(x, y
)
= eık

0
xx−ık0

yy,

vr,0(x, y
)
= A−

TEe
ık0

xx+ık
0
yy,

vi,1(x, y
)
= B+

TEe
ık1

xx−ık1
yy,

vr,1(x, y
)
= B−

TEe
ık1

xx+ık
1
yy.

(7.1)

These results provide us a system of equations in two unknowns that can be solved using
Cramer’s rule to give

A−
TE =

e−2ık0
ya
(
−k1

y

(
eık

1
ya − e−ık

1
ya
)
− k0

yεr1

(
e−ık

1
ya + eık

1
ya
))

k1
y

(
eık

1
ya − e−ık

1
ya
)
− k0

yεr1

(
e−ık

1
ya + eık

1
ya
) ,

B+
TE =

−2k0
yεr1e

−ık0
ya

k1
y

(
eık

1
ya − e−ık

1
ya
)
− k0

yεr1

(
e−ık

1
ya + eık

1
ya
) .

(7.2)

As in the TM case, these incoming and outgoing plane waves in regions 0 and 1 are used as a
source field. The plane waves impinge on the cavity in region 2 and produce scattered fields
in regions 0 and 1 along with a transmitted field inside region 2.

7.2. TE: Scattered and Transmitted Fields

We now consider the TE case when an incident plane wave impinges on a rectangular
cavity embedded in an infinite ground plane that has been entirely coated with a dielectric
material. The incoming and outgoing plane waves of regions 0 and 1 were found above. Now
the embedded cavity requires representations for the transmitted and scattered fields. The
representation of the scattered field in region 0 is

vs
0

(
x, y
)
=
∫∞

−∞
DTE(λ)e−α0ye2πıλxdλ. (7.3)

Since region 1 is bounded both above and below, and the scattered filed propagates in both
the positive and negative y direction, we must account for this using the following Fourier
representation:

vs
1

(
x, y
)
=
∫∞

−∞

(
GTE(λ)e−α1y +HTE(λ)eα1y

)
e2πıλxdλ. (7.4)
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Lastly, the representation of the transmitted field is

v2
(
x, y
)
=

∞∑

n=0

ATE
n cos

(nπ
L

x
)

cosh
(
γ2
(
y + d

))
. (7.5)

Note that this Fourier representation is chosen to satisfy the PEC boundary condition when
it is enforced on the normal derivative.

The continuity conditions will again be used at y = a to solve for the unknown
functions GTE(λ) and HTE(λ) in terms of DTE(λ). Once this is done the continuity conditions
are enforced at y = 0 to eliminate DTE(λ) from the problem and to be left with only
the unknown Fourier coefficients for v2. Using orthogonality and Parseval’s theorem these
coefficients are shown to satisfy an infinite system of equations:

B+
TE

(
eık

1
xL+ımπ − 1

ık1
x + ımπ/L

+
eık

1
xL−ımπ − 1

ık1
x − ımπ/L

)

= −ε1

ε2

∞∑

n=0

ATE
n γ2Lm,n +

⎧
⎪⎨

⎪⎩

ATE
m L coth

(
γ2md

)
if m = n = 0,

ATE
m

L

2
coth

(
γ2md

)
if m = n > 0,

(7.6)

where

Lm,n =
∫∞

−∞

1
α1

F
(

cos
(nπ

L
x
))

F
(

cos
(mπ

L
x
))QTE

B

QTE
A

dλ,

QTE
A = e−α1a(ε0α1 − ε1α0) − eα1a(ε0α1 + ε1α0),

QTE
B = e−α1a(ε0α1 − ε1α0) + eα1a(ε0α1 + ε1α0).

(7.7)

The Fourier coefficients, ATE
n , form a system of equations that can be solved for computation-

ally by truncating the infinite system to a suitably large finite system.

8. Use in Finite Element Methods

The Fourier approach in the previous sections clearly only works when dealing with
rectangular cavities. For cavities with arbitrary shape other methods such as the finite element
method must be employed [2]. Application of the finite element method finds a solution
within a space of functions for the weak form of the Helmholtz equation. Typically the cavity
region is approximated by triangular grid and linear tetrahedral functions defined on the grid
for a basis for a space of piecewise linear functions. Boundary conditions must be provided
in order to solve the problem on a finite region. Therefore, a transparent boundary condition
at the cavity opening must be used to properly represent the transmitted field’s continuity
with the total fields in the regions above it.
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Equations (6.27) and (7.6) can be used to represent such a boundary condition for each
of the respective polarizations. Equation (6.27) from the TM case can be viewed as a solution
of

∂u2

∂y
=

μ2

μ1
F−1

(
QTM

B

QTM
A

F(u2)

)

+
μ2

μ1

∂uir

∂y
(8.1)

at y = 0. Such an expression is known as a Dirichlet to Neumann map. It connects the
derivative values of u2 with the function values. In the Fourier case presented here, the
equation is solved by substituting in the Fourier representation of u2 and using orthogonality
to produce a system of equations. However, (8.1) can be plugged directly into the boundary
term of the weak form of the Helmholtz equation. On the other hand, (7.6) from the TE case
can be written as

v2 = F
(

QTE
B

QTE
A

F−1
(
ε2

ε1

∂v2

∂y

))

+ vir (8.2)

at y = 0. In this case, the expression is a Neumann to Dirichlet map. Again, in the Fourier
case, (8.2) is solved by inserting the Fourier representation of v2 and using orthogonality to
produce a system of equations. For finite elements in the TE case (8.2) cannot be plugged
directly into the weak form of the Helmholtz equation. However, it can be used as auxiliary
equation for a mixed finite element method approach.

9. Far Field Computation

Computation of far field or radar cross section (RCS) quantities is a postprocessing step. We
will use the computed transmitted fields u2 and v2 above to compute the strength of the
scattered fields at distance far from the cavity opening. The trick is that to use the standard
formula for far field values, we need to have the scattered field at the interface with free space.
That is we need to know the values of us

0 and vs
0 at y = a. The far field formulas are [14]

σTM

(
φ, φi

)
=

k0

2

∣∣∣∣

∫∞

−∞
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0(x
′, a) sinφeık0(x′ cosφ+a sinφ)dx′

∣∣∣∣

2

,
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(
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2

∣∣∣∣
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−∞

i

ηεω

∂vs
0
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(x′, a)eık0(x′ cosφ+a sinφ)dx′

∣∣∣∣

2

.

(9.1)

The computation of these integrals can potentially be difficult since they are over the
entire real line. However, if we relate the scattered fields back to the transmitted fields u2 and
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v2 in the cavity we can avoid evaluating such an improper integral. If we rewrite above we
see that
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2
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∣
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∣
∣

2
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(9.2)

We can now see that the integrals are actually Fourier transforms of us
0 and ∂vs

0/∂y.
In Sections 5 and 6, these Fourier transforms are also expressed as DTM(λ)e−α0a and
−α0DTE(λ)e−α0a:

σTM

(
φ, φi

)
=

k0

2

∣∣∣sinφeık0(asinφ)DTM(λ)e−α0a
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2
,
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2
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ηεω
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∣∣∣∣

2

.

(9.3)

Recall from (6.19) that we have from the TM case that

DTM(λ)e−α0a =
2μ0α1

∑∞
n=1 A

TM
n F(sin((nπ/L)x))

QTM
A

(9.4)

and a similar calculation in the TE case will give

α0DTE(λ)e−α0a =
2ε0ε1

∑∞
n=1 γ2A

TE
n F(sin((nπ/L)x))

QTE
A

(9.5)

These equations can be substituted into (9.3). Hence, the RCS can be evaluated using
the computed solutions u2 and v2 from inside the cavity.

10. Fast RCS Approximation

Morgan and Schwering presented a simple method for rapidly producing approximations
of the RCS for filled rectangular cavities. A mode matching technique replaces the open half
space above the cavity with a vertical channel containing outgoing waveguide modes. The
coefficients are computed directly without building and solving a linear system by matching
the cavity modes with the outgoing waveguide modes [4]. The approach yields surprisingly
good agreement with the true solutions when used for RCS computations. Bao and Zhang
attempted to refine the mode matching approach by improving the approximation using an
asymptotic argument [3]. The “impoved” mode matching solution converges to the exact
solution as the frequency increases.



Mathematical Problems in Engineering 17

−60

−50

−40

−30

−20

−10

0

10

20

M
on

os
ta

ti
c

R
C

S
(d

B
)

0 10 20 30 40 50 60 70 80 90

θ (degrees)

RCS no layer
RCS with layer

Figure 2: Thin layer perturbation for the TM case.

The fast mode matching approximation of Morgan and Schwering extends the cavity
walls into the upper half space and uses a mode matching solution as an approximation
[4]. If the same mode matching approach is applied to an overlayer problem, it would be
performed at the interface from the cavity material to the overlayer material and then again
from the overlayer material to free space parameters. It is the author’s observation based on
comparison with [4] that this is essentially equivalent to using only the diagonal terms of
(6.27) and (7.6) in the full Fourier derivation and solving the corresponding diagonal system.
Although this equivalence is not formally investigated here, it can be seen below that the
solution of the diagonal system yields solid results. It is possible that this equivalence is the
path to a future formal Mathematical analysis of the convergence properties of the mode
matching approach.

11. Numerical Results

The following results demonstrate that the derivations are sound and show the efficacy of
the method. As was done in [4], the parameters are chosen arbitrarily for demonstration
purposes.

11.1. Basic Computations

Figures 2, 3, 4, 5, 6, 7, 8 and 9 show the solutions obtained by solving (6.27) for the TM
case and 19 for the TE case. Since there are no results to compare with directly, the output is
validated by physical interpretation. First, a cavity underneath a very thin layer of dielectric
material is compared to the same cavity with no dielectric overlayer. Note that the layered
problem results in a small perturbation of the solution of the nonlayered problem as one
would expect. The cavity geometry is given by L = 1 and d = 10. The material parameters are
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Figure 3: Thin layer perturbation for the TE case.
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Figure 4: Thick layer perturbation for the TM case.

given by ε1 = 2, μ1 = 3, ε2 = 2 and μ2 = 1 and the frequency is 14π . The layer has thicknes
a = .1. The computation of a monostatic radar cross section is given for both the TE and TM
cases.

Note that for angles near 90 degrees we may expect more prominent disagreement.
The deviation is due to the fact that the fields will travel through much more material at
angles near grazing incidence. The deviation is much more prominent in the TE example for
Figure 3 due to the presence of surface waves traveling in the overlayer dielectric medium.
In the TM case, far fields tend to zero near grazing incidence which explains the better
agreement for Figure 2 [15].
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Figure 5: Thick layer perturbation for the TE case.
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Figure 6: Increasing layer of conducting material.

A second example deals with an thicker overlayer but with a only a small change in the
dielectric materials. Again, as one would expect only a small perturbation of the solution is
seen. A similar explanation as given above regarding Figure 3 explains the deviations found
near 90 degrees. The cavity geometry is the same as above but the material parameters are
given by ε1 = 1.01, μ1 = 1.01, ε2 = 2, and μ2 = 1. The thickness of the overlayer material is
a = 1. The frequency is also the same as above. Note that the material parameters in the layer
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Figure 7: Increasing layer of conducting material.
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Figure 8: Comparison of full solution with Morgan and Schwering mode matching method for the TM
case.

only slightly differ from that of free space. Again the monostatic radar cross section is
computed for both the TE and TM cases.

Finally, a computation of bistatic radar cross sections is performed for which the
thickness of the layer is increased. The layer material is a conductor which means that as
the thickness of the layer increases there is a corresponding decrease in the strength of
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Figure 9: Comparison of full solution with Morgan and Schwering mode matching method for the TE case.

the far field. In this example the geometry is given by L = 1.25 and d = .0625. The material
parameters are ε1 = 16 − 5ı, μ1 = 4 − 1.25ı, ε2 = 1 and μ2 = 1. The frequency is 2π . Again the
results agree with the expected physical interpretation.

11.2. Fast Approximations

Here the mode matching approximation of Morgan and Schwering as applied to the layered
problem is demonstrated. The comparisons between the mode matching approximation
and the full solution agree well. Although it has not been explained mathematically, the
numerical experiments show that the mode matching method appears to work effectively
with electrically large deep cavities. Some mathematical explanation is given by Bao and
Zhang [3]. The geometry used here is again L = 1 and d = 10. The material parameters are
ε1 = 2, μ1 = 3, ε2 = 2 and μ2 = 1. The frequency is 14π .

The agreement between the full and mode matching solutions is remarkable given the
time savings. The full problem requires a full N ×N matrix to be built and the corresponding
system to be solved. The mode matching approximation used only the diagonal terms of
the system and hence needs only to compute N matrix entries and solve a diagonal system.
The time saved is obviously quite dramatic. For example, the computation of the results in
Figures 8 and 9 took nearly 3000 seconds with the full solution while the mode matching
approximation took less than 40 seconds.

12. Conclusion

A complete Fourier solution has been provided for the problem of electromagnetic scattering
by a recatangular buried cavity beneath a uniform material layer. It has been demonstrated
that the method gives solutions that agree with physical interpretations. Also, the mode
matching method described by Morgan and Schwering has been extended to the buried
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cavity problem. The mode matching technique works very well in this context and provides
enormous speed up in terms of computation.

The technique can be extended to rectangular cavities buried under multiple uniform
material layers. It will also be applied in finite element techniques as a transparent boundary
condition for similar problems involving nonrectangular cavities. In the future, it would
be very useful to extend the approach to three dimensional cavities. Also, a thorough
mathematical investigation of the convergence properties of the mode matching technique
would be desirable.
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