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The main object of this paper is to study the weakly nonlinear hydrodynamic stability of the thin
Newtonian fluid flowing on a rotating circular disk. A long-wave perturbation method is used to
derive the nonlinear evolution equation for the film flow. The linear behaviors of the spreading
wave are investigated by normal mode approach, and its weakly nonlinear behaviors are explored
by the method of multiple scales. The Ginzburg-Landau equation is determined to discuss the
necessary condition for the existence of such flow pattern. The results indicate that the superctitical
instability region increases, and the subcritical stability region decreases with the increase of the
rotation number or the radius of circular disk. It is found that the rotation number and the radius
of circular disk not only play the significant roles in destabilizing the flow in the linear stability
analysis but also shrink the area of supercritical stability region at high Reynolds number in the
weakly nonlinear stability analysis.
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1. Introduction

The study of the hydrodynamic stability of a thin liquid film is important for a wide
range of situations, varying from engineering science and chemical science. Due to various
applications, attention is gradually focused on this subject. For instance, a process for coating
a surface on a spinning substrate, wherein a liquid coating material is dispensed radially from
the center to the edge or from the edge to the center above the surface, and after application
of the coating material the coating is cured. This process usually referred to as spin coating.
To control the uniform and stable thin film is an interesting subject in the technological
development for photolithography in wafer manufacturing [1, 2].

The linear stability theories for various film flows have been clearly presented by Lin
[3] and Chandrasekhar [4]. Kapitza [5] was the first one to study the stability of a film flow
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Figure 1: Schematic diagram of thin Newtonian liquid flow upon a rotating circular disk.

over inclined planes. Various stability behaviors of the layer flows were analyzed. Benney
[6] studied the nonlinear evolution equation for free surfaces of the film flows by using the
method of small parameters. The theory of Kapitza was later found not so compatible with
the nonlinear theory of Landau [7]. The same film flow stability problem was studied by Yih
[8] using a numerical approach. The transition mechanism from laminar flow to turbulent
flow was elegantly explained by the Landau equation. This study sheds a light later for
further development on the theory of nonlinear film stability. The Landau equation was
rederived by Stuart [9] using the disturbed energy balance equation and Reynolds stresses.
Pumir et al. [10] further included the effect of surface tension on the film flow model and
solved for the solitary wave solutions. Hwang and Weng [11] showed that the conditions
of both supercritical stability and subcritical instability are possible to occur for a film flow
system. Atherton and Homsy [12] discussed the derivation of complicated nonlinear partial
equations, evolution equations that describe the movement of a fluid-fluid interface. Ruyer-
Quil and Manneville [13-15] derived several models of the film flows down an inclined plane
by the numerical simulation. The results indicate that it allows to better capture the viscous
effects which are dominant at small Reynolds numbers. Amaouche et al. [16] showed an
accurate modeling of a wavy film flow down an inclined plane in the inertia-dominated
regimes by using the weighted residual technique. It is shown that the model follows quite
closely, for a suitable choice of a, the Orr-Sommerfeld equation for all Weber and Kapitza
numbers, in linear stability analysis. Samanta [17] derived the wave solution of a viscous film
flowing down on a vertical nonuniformly heated wall. The results indicate that supercritical
unstable region increases, and the subcritical stable region decreases with the increase of
Peclet number.

Emslie et al. [18] were the pioneers who analyzed a Newtonian liquid flowing on
rotating disk. The flow is governed by a balance between the centrifugal force and the
viscous resisting force. It was shown that the nonuniform distribution in the initial film
profile tends to become uniform during spinning. This model has been widely employed in
the subsequent investigations. Higgins [19] analyzed the flow of a Newtonian liquid placed
on an impulsively started rotating disk. In this work, a uniform film thickness is assumed,
and the method of matched asymptotic expansions is adopted. It is showed that for films
that maintains a planar interface there exists a self-similar form for the velocity field that
allows the radial dependence to be factored out of the Navier-Stokes equations and boundary
conditions. Kitamura et al. [20] solved the unsteady thin liquid film flow of nonuniform
thickness on a rotating disk by asymptotic methods.
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In this paper the authors are interested in investigating the weakly nonlinear
hydrodynamic stability of the thin Newtonian liquid flowing on a rotating circular disk. It
is assumed that the disk radius is much larger than film thickness. Therefore, the peripheral
effects are neglected by comparing with total film area [20]. It is focused that the effects of
instability due to inertia and centrifugal forces were revealed in the region near the rotating
axis. The influence of the rotating motion and the disk size effect on the equilibrium finite
amplitude is studied and characterized mathematically. In an attempt to verify computational
results and to illustrate the effectiveness of the proposed modeling approach, several
numerical examples are also presented.

2. Mathematical Formulation

Consider a two-dimensional incompressible, viscous liquid film flowing on a rotating circular
disk which rotates with constant velocity Q* (see Figure 1). The variable with a superscript
“*" stands for a dimensional quantity. Here the cylindrical polar coordinate axes r*, 6*, and z*
are chosen as the radial direction, the circumferential direction, and the axial direction,
respectively. All associated physical properties and the rate of film flow are assumed to be
constant (i.e., time-invariant). Let #* and w* be the velocity components in the radial direction
r* and the axial direction z*. The governing equations of motion are

10(ru’) , 0w
re  or* oz*

ou* +u*6u* +w*au* _v? 1op LK 10 r*au* W o*u*
ot or* oz r*  por p\ror or* r2 9z )’ (2.1)

tw ow*  10op* Naas ) r*aw* +82w*
ot* or* o0zt poz g p \ r*or* or* 0z*2 )’

where v* is the tangential velocity, p is the constant fluid density, p* is the fluid pressure, g
is the acceleration due to gravity, and yu is the fluid dynamic viscosity. On the disk surface
z* = 0, the no-slip boundary conditions for the velocity fields are

=0,

(2.2)

On the free surface z* = h*, the boundary condition approximated by the vanishing of shear
stress is expressed as

ou*  ow* oh*\? ./ Ou*  Ow*\ /Ooh*
(a_a_><1<a_>>2<a_a_><a_>o 23
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The normal stress condition obtained by solving the balance equation in the direction normal
to the free surface is given as

- 1+<ah*>2 B 6h*<au*+6w*>_aw*_au*<ah*)2
poren or* or* \oz*  or* oz*  Or* \ or*
/2

Ok o\ .
+S ar*2 [1+ <W> ] =Par

where h* is the local film thickness, S* is surface tension, and p}, is the atmosphere pressure.
The kinematic condition that the flow does not travel across a free surface can be given as

(2.4)

oh* . oh*
ot*  or*

u* —w*=0. (2.5)

By introducing a stream function ¢*, the dimensional velocity components can be expressed
as

«_ 29 o . 2.6
u - w (2.6)

Now the following variables are used to form the dimensionless governing equations and
boundary conditions:

z* ar* at’uy h ay” P~ Pa
Z=00 = =0 h=0 9= —0,  pE—0
hy hy hy hy ughg? puyy’
2.7)
ughy hy * 27rhy
Re= 00, pr=50 52%/ a=—
v Uy puyhg A

where hj, a, uj, Re, v, Fr, and 1 are the average film thickness, perturbed wavelength, scale
of velocity, Reynolds number, the kinematic viscosity, Froude number, and dimensionless
wavenumber, respectively. For simplification, it is assumed that Newtonian liquid film
is very thin (h* <« r*). In consequence, it is reasonable to assume that the tangential
velocity is constant throughout the radial direction in the thin film, that is, v* = r*Q*. In
order to investigate the effect of angular velocity, Q*, on the stability of the flow field, the
dimensionless rotation number is introduced as follows:

Qg

Ro 9. (2.8)

*
Uy
In terms of these nondimensional variables, the equations of motion become

7222 = -Re RO + aRe(py + 17 ppz + 7720020002 — 1202 = 17200,¢022) + O(a?), 09
p.=-Fr+a(- Reflr‘lgorzz) +0(a?). .
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Using the nondimensional variables, the boundary conditions at the surface of disk z = 0 are
reduced to

p=p, =@, = 0. (210)
And the boundary conditions at the free surface of disk z = h become

s = P [r g, — 12, + 2k, (1 - azhf)_l (2r g, —172¢.)], (2.11)
p = -Sa’h,, (1 + zxzhf)_3/2 +af-2Re”! (1 + aczhf)_1 (r'ge + 1 ¢2zh,)] +O(a?),  (212)

h + r‘lhr(pz + r‘l(p, =0. (2.13)

Hence the term a?S can be treated as a quantity of zeroth order [21]. Since the modes of long-
wavelength that give the smallest wave number are most likely to induce flow instability for
the film flow, this can be done by expanding the stream function and flow pressure in terms
of some small wave number (ax < 1) as

¢ = o +ayp; +O0(a?),
(2.14)
p=po+api+0(a?).

Following procedure described in [6], the complicated nonlinear system of (2.9) and
boundary conditions (2.10)—(2.13) is reduced to a single nonlinear evolution equation for the
film thickness h(r, t). After inserting the above two equations into the system of equations and
boundary conditions, the zeroth order (a’) terms in the governing equations can be expressed
as

r‘ltpOZZZ =-Re-r- R02,

(2.15)
poz = —Fr.
The boundary conditions associated with the equations of zeroth order are given as
z=0,
%o = oz =0,
z=h, (2.16)
r_l(POZZ = 0/
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The solutions of the zeroth-order equations are

o = 11’2 -Re-Ro*(3h - z)Z?,
6 (2.17)

po =Fr(h-z) - Sa’h,,.

After considering all terms of first order (a!) from the system of equations and boundary
conditions, the first-order equations can be achieved as

r_l(/’lzzz =Re (pOr + r_l(POtz + T_Z(POZ(POT‘Z - 7_3(P%z - T_2(P0r(/’0zz)/ (2 18)
Piz = _Re_lr_l(POTZZI

and boundary conditions can be achieved as

z=0,
p1=¢1:=0,

z=h, (2.19)
9122 =0,

Pl = —2Re4 (T_lfp()rz + T_l(POZZhr)-

The solutions of the first-order equations are given as

1= —lr -Re - z*(z - 3h) (rRo* - Fr - h, + a*Sh,,,),
6 (2.20)

p1=Ro*(3z* =6z -h+h? —r(z + h))h,.

By substituting the solutions of the zeroth-order and first-order equations into the
dimensionless-free surface kinematic equation of (2.13), the nonlinear evolution equation is
derived and expressed as

hy + A(W)hy + B()hyy + C(h)hyry + D(R)hyyry + E(R)R2 + F(W)hyhyry = 0, (2.21)
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where

h?-Re( - 60Fr-h-a+r?-Ro*(180 + 136h* - Re* - Ro? - a + 73h° - Re? - Ro? - a))

Alh) = 180r

B(h):%(_5&%3-Re-a+2h6-r2-Re3-Ro4~a),
1 ad
W ==-Re-S-= -}
C(h) 3 Re S . ,
1

D(h):g-Re-S-aS-h3,

4
E(h)=—Re-Pr-a-h2+§h5.72.R83,R04'a,

F(h)=Re-S-a®- K.
(2.22)

3. Stability Analysis

The dimensionless film thickness when expressed in perturbed state can be given as
h(r,t) =1+n(r,t), (3.1)

where 7 is a perturbed quantity to the stationary film thickness. Substituting the value of
h(r,t) into the evolution equation (2.21) and all terms up to the order of 7> are collected, the
evolution equation of 77 becomes

1t + Aty + Bjyr + Ctlpyy + Difpryr + ET + Fily 1]y,
, AII , B// , C// , DI/
= (A n+ 7112>11r + <B n+ 7112)11,r + <C n+ 7’12>’1rrr + (D n+ 7112>11rm

+ (E+Em)m; + (F+ F')nyner] + O (),
(32)

where the values ofA, B, C, D, E, F, and their derivatives are all evaluated at the
dimensionless height of the film h = 1.

3.1. Linear Stability Analysis

As the nonlinear terms of (3.2) are neglected, the linearized equation is given as

1t + Aty + Bty + CHprr + DHyprr = 0. (3.3)
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In order to use the normal mode analysis, we assume that
n = aexpli(r - dt)] +cc., (3.4)

where a is the perturbation amplitude, and c.c. is the complex conjugate counterpart. The
complex wave celerity, d, is given as

d=d,+id;=(A-C)+i(B-D), (3.5)

where d, and d; are regarded as the linear wave speed and linear growth rate of the
disturbance, respectively. The solution of the disturbance about h(r,t) = 1 is asymptotically
stable or unstable according to d; < 0 or d; > 0. This is equivalent to the inequality of B < D
or B> D.

3.2. Weakly Nonlinear Stability Analysis

Nonlinear effects, when they are weak enough, do not fundamentally alter the nature of the
motion. A weakly nonlinear solution can still be usefully expressed as a superposition of
plane waves, but the amplitudes of these waves do not remain constant; they are modulated
by nonlinear interactions. In order to characterize the weakly nonlinear behaviors of thin film
flows, the method of multiple scales [22] is employed here, and the resulting Ginburg-Landau
equation [23] can be derived as

da 0%a
— +D1— —¢2dia+ (Ey +iF1)a*a =0, 3.6
atz 181’12 ( 1 1) ( )

where

D, = [(B-6D)+i(3C)],

3., 3
Ey = (5B +17D' +4E - 10F)e, - (A' - 7C’)e; + ( ~5B'+ D" +E - F’>,

Fy = (=5B +17D' + 4E -~ 10F)e; + (A’ = 7C')e, + %(A” -, 57)
(B - D'+ E—F)(16D - 4B) + 6C(A' - C')
(16D — 4B)? + 36C?

e=e, +ie; =

6C(B' ~D'+E~F) - (A -C)(16D - 4B)
+1 .
(16D - 4B)? + 36C?

Equation (3.6) can be used to investigate the weak nonlinear behavior of the fluid film flow.
In order to solve for (3.6), solution is taken for a filtered wave in which spatial modulation
does not exist. So for a filtered wave a can be given as

a = agexp | —ib(t2)t2]. (3.8)
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Table 1: Various states of Landau equation.

1/2
Subcritical instabilit = 0 Conditional stabilit
Linearly stable (subcritical E11,1<Cé'1 1Cal Instapill y egap < <E1 > apg — onaitional stabill y

region) d; <0 d; 1/2 Subcritical explosive
e >\ g ao] state
1
Subc.r'ltlcal (absolute) a— 0
stability E; > 0
Supercritical explosive ay]
Linearly unstable state E; <0
(supercritical region) d; > 0 . . d;i \V?
Supercritical stability €ao — \ -
1
E{>0 F,

Ne, — dp+di( =
¢ — dy + <El

After substituting (3.8) into (3.6), one can obtain

% = (e’zdi -E aé)ao, (39)
oty
o|b(t)t
o[b(t2)tz] = Fal. (3.10)
oty

The threshold amplitude ay in the supercritical stable region is given as

d;
=1/= 11
eap El ’ (3 )
and the nonlinear wave speed N, is given as
Nc, =dr+di<ﬂ>. (3.12)
Eq

The detail derivation of the earlier mentioned equations can refer to Cheng and Lai [24].
If E; = 0, (3.9) is reduced to a linear equation. The second term on the right-hand side of
(3.9) is due to the nonlinearity and may moderate or accelerate the exponential growth of
the linear disturbance according to the signs of d; and E;. Equation (3.10) is used to modify
the perturbed wave speed caused by infinitesimal disturbances appearing in the nonlinear
system. The condition for the film flow to present the behavior of subcritical instability in
the linearly stable region (d; < 0) is given as E; < 0, and the threshold amplitude of the
wave is given as £ay. The subcritical stable region can only be found as E; > 0. The neutral
stability curve can only be derived and plotted for the condition of E; = 0. On the basis of
earlier mentioned discussion, it is obvious that the Ginzburg-Landau equation can be used to
characterize various flow states. The Landau equation can be summarized and presented in
Table 1.
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Figure 2: (a) Linear neutral stability curves for three different Ro values at r = 50. (b) Linear neutral
stability curves for three different r values at Ro = 0.1.

4. Numerical Examples

Based on modeling results, the condition for the stability behaviors of a thin film flow can
be expressed as a function of Reynolds number, Re, rotation number, Ro, dimensionless
perturbation wave number, a, and dimensionless radius of disk, r, respectively. In order
to study the effects of dimensionless radius and rotation number on the stability of a thin
flow, we select randomly but within specified ranges physical parameters for numerical
experiment. Physical parameters that are selected for study include (1) Reynolds numbers
ranging from 0 to 15, (2) the dimensionless perturbation wave numbers ranging from 0 to
0.12, (3) rotation number including 0.1, 0.12, and 0.15, and (4) the values of dimensionless
radius including 50, 75, and 100. The ranges for these above parameters are based on
published reasonable ranges for these parameters [25]. Other of our parameters are treated
as constants for all numerical computations since we are considering practical spin coating
systems in which these variables are not expected to undergo significant variation. In practice,
the parameter S is a large value. Further, for simplification analysis, Re and Fr are taken to
be of the same order (O (1)) [21, 25, 26], so the values of some dimensionless parameters are
taken as, a constant dimensionless surface tension S = 6173.5 and Fr = 9.8.

4.1. Linear Stability Analysis

The neutral stability curve is obtained by substituting d; = 0 from (3.5). The a-Re plane is
divided into two different characteristic regions by the neutral stability curve. One is the
linearly stable region where small disturbances decay with time, and the other is the linearly
unstable region where small perturbations grow as time increases. Figure 2(a) shows that
the stable region decreases and unstable region increases with an increase of the rotation
number. Figure 2(b) shows that the stable region decreases and unstable region increases with
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Figure 3: (a) Neutral stability curves of Newtonian film flows for Ro = 0.1 and r = 50. (b) Neutral stability
curves of Newtonian film flows for Ro = 0.15 and r = 50. (c) Neutral stability curves of Newtonian film
flows for Ro = 0.1 and r = 100.

an increase of the radius of circular disk. Hence one can say that in linear stability analysis
rotation number and the radius of circular disk give the same destabilizing effects.

4.2. Weakly Nonlinear Stability Analysis

The main purpose of the nonlinear stability analysis is to study the weakly nonlinear
analysis of the evolution equation. Figures 3(a) to 3(c) indicates that the area of shaded
subcritical instability region and subcritical stability region decreases, and the area of shaded
supercritical instability region increases with an increase of rotation number or the radius of
circular disk. Also, from these figures, it is interesting to find, in high Reynolds regime, that
the area of supercritical stability region decreases with an increase of rotation number or an
increase of circular disk radius. It is found that the rotation number and the radius of circular
disk not only play the significant roles in destabilizing the flow in the linear stability analysis
but also decrease the ranges of supercritical stability region at large Reynolds number in
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Figure 4: (a) Threshold amplitude in subcritical instability region for three different Ro values at Re = 6
and r = 50. (b) Threshold amplitude in subcritical instability region for three different r values at Re = 6
and Ro =0.1.

the weakly nonlinear stability analysis. The reason for this phenomenon is the existence of
the centrifugal force term, which is a radius-related force in the governing equation. As the
size of radius and Reynolds number gradually increased, the centrifugal force is enhanced
significantly. Due to inertia forces, that may accelerate the growth of the linear disturbance,
the trend of instability for the flow with larger radius and larger Reynolds number is higher
than those with smaller ones.

Figure 4(a) shows the threshold amplitude in subcritical instability region for various
wave numbers with different Ro values at Re = 6 and r = 50. The results indicate that
the threshold amplitude eap becomes smaller as the value of rotation number increases.
Figure 4(b) shows the threshold amplitude in subcritical instability region for various wave
numbers with different r values at Re = 6 and Ro = 0.1. The results indicate that the threshold
amplitude eag becomes smaller as the value of the radius increases. In such situations, the film
flow which holds the higher threshold amplitude value will become more stable than that
which holds smaller one. If the initial finite amplitude disturbance is less than the threshold
amplitude, the system will become conditionally stable.

Figure 5(a) shows the threshold amplitude in the supercritical stability region for
various wave numbers with different Ro values at Re = 6 and r = 50. Figure 5(b) shows
the threshold amplitude in the supercritical stability region for various wave numbers with
different r values at Re = 6 and Ro = 0.1. It is found that the decrease of rotation number
or the radius of circular disk will lower the threshold amplitude, and the flow will become
relatively more stable.

The wave speed of (3.5) predicted by using the linear theory is a constant value for all
wave number and rotation number. However, the wave speed of (3.12) predicted by using
nonlinear theory is no longer a constant. It is actually a function of wave number, Reynolds
number, rotation number, and the radius of disk. Figure 6(a) shows the nonlinear wave speed
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Figure 5: (a) Threshold amplitude in supercritical stability region for two different Ro values at Re = 6 and
r = 50. (b) Threshold amplitude in supercritical stability region for two different r values at Re = 6 and
Ro =0.1.
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Figure 6: (a) Nonlinear wave speed in supercritical stability region for two different Ro values at Re = 6
and r = 50. (b) Nonlinear wave speed in supercritical stability region for two different  values at Re = 6
and Ro =0.1.

in the supercritical region for various perturbed wave numbers and different Ro values at
Re = 6 and r = 50. Figure 6(b) shows the nonlinear wave speed in the supercritical stable
region for various perturbed wave numbers and different r values at Re = 6 and Ro = 0.1.
It is found that the nonlinear wave speed increases as the value of rotation number or the
radius of circular disk increases.
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5. Concluding Remarks

The stability of thin Newtonian fluid flowing on a rotating circular disk is thoroughly
investigated by using the method of long-wave perturbation. Based on the results of
numerical modeling, several conclusions are given as follows.

(1) In the linear stability analysis, the rotation number and the radius of circular disk
give the same destabilizing effects in the thin film flow. Because of the different
order effects, an increase of rotation number is more rapidly unstable than an
increase the radius of circular disk.

(2) In the weakly linear stability analysis, it is noted that the area of shaded subcritical
instability region and subcritical stability region decreases, and the area of shaded
supercritical instability region increases with an increase of rotation number or the
radius of circular disk. It is also noted that the threshold amplitude in the subcritical
instability region decreases as the value of rotation number or the radius of circular
disk increases. If the initial finite amplitude disturbance is less than the threshold
amplitude, the system will become conditionally stable.

(3) Due to inertia forces, that may accelerate the growth of the linear disturbance, the
trend of instability for the flow with larger radius and larger Reynolds number is
higher than that with smaller ones. In weakly nonlinear stability analysis, we also
find that high Reynolds number will shrink the area of supercritical stability region.
In other words, high Reynolds number plays a detrimental role to the rotating
coating process described in this paper.
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