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1. Introduction

The works of Golubitsky et al. [1, Chapter XVIII] have shown that rings of identical cells can
lead to many interesting patterns of oscillation, which are predictable based on the theory of
equivariant bifurcations. In a series of papers, Wu et al. [2–4] have extended the theory of
equivariant Hopf bifurcation to delay differential equations. Recently, there has been interest
in applying these results to neural networks, primarily to models related to the Hopfield-
Cohen-Grossberg neural networks with time delays [5–9]. In a series of papers [10–23], the
authors studied the Hopf bifurcation to a network with one or two delays. Particularly, Wu et
al. [24] have investigated the synchronization and stable phase-locking in a delayed network
with three identical neurons:

ẋi(t) = −xi(t) + αf(xi(t − τ)) + β
[
f(xi−1(t − τ)) + f(xi+1(t − τ))

]
, i(mod3) (1.1)

where f : R → R is a sufficiently smooth sigmoid amplification function, normalized so
that f(0) = 0 and f ′(0) = 1, α, β, and τ are regarded as parameters. They have shown
that in the region Aas = {(α, β) : |α − β| < 1} of the normalized parameters, system (4.1)
is absolutely synchronous in the sense that every solution is convergent to the set of all
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synchronized phase states independent of the size of the time delay. The ω-limit set of a
given orbit can be either a synchronized equilibrium or a synchronized periodic solution,
depending on the connection topology of the network, the strength of the self-connection
and the neighborhood-interaction, and the size of the delay. On the other hand, they have
shown that, in the region α − β < −1, there exists a continuous surface τ = τ(α, β) where
Hopf bifurcation of either a stable synchronized periodic solution or two stable phase-locked
periodic solutions and six unstable periodic waves take place (more precisely, three mirror-
reflecting waves and three standing waves). A question of mathematical and biological
interest is whether the dynamics of (4.1) are possible for the following neural network model
with n elements:

ẋi(t) = −xi(t) + αf(xi(t − τ)) + β
[
f(xi−1(t − τ)) + f(xi+1(t − τ))

]
, i(mod n). (1.2)

The purpose of the paper is to provide a detailed analysis of this question in the case that n
is an odd number. More precisely, we shall extend the main results of Wu et al. [24] to the
system (1.2) with n being an odd number. We are going to regard the delay τ as a parameter
to investigate the dynamics of (1.2). According to the properties of the function tanhx, we
assume that the transfer function f is adequately smooth, for example, f ∈ C3, and satisfies
the following normalization, monotonicity, concavity, and boundedness conditions:

(C1) f(0) = 0, f ′(0) = 1, and f ′(x) > 0 for all x ∈ R;

(C2) f ′′(0) = 0, and xf ′′(x) < 0 for all x /= 0;

(C3) −∞ < limx→±∞f(x) <∞;

(C4) f ′′′(0) < 0.

At first, by analyzing the distribution of the eigenvalues, we give a bifurcation set in an
appropriate parameter space to describe the stability of the equilibrium of the system (1.2) of
how to change as the parameters change. Meanwhile, the equivariant Hopf bifurcations are
found. Then, by employing the center manifold and normal form theory, the direction of the
bifurcation and the stability of the bifurcating periodic solutions are determined.

The rest of this paper is organized as follows. In Section 2, the characteristic equation of
the linearization of system (1.2) at the zero equilibrium is derived. In Section 3, by analyzing
the distribution of the eigenvalues, a bifurcation set is given in the (α, β)-plane. Then by using
the theory of equivariant Hopf bifurcation to ordinary and delay differential equations due
to Golubitsky et al. [1] and Wu [4], respectively, the local equivariant Hopf bifurcation of the
trivial solution is completely analyzed. The appendix contain the detailed calculations of the
normal forms on center manifolds of system (1.2) near Hopf bifurcation points.

We would like to mention that there are several articles on the bifurcation for n-
dimensional neural network models with delays; we refer the reader to [16, 17, 22] and
references therein.

2. The Characteristic Equations

From conditions (C1)–(C4), we know that the linearization of system (1.2) at an equilibrium
(0, 0, . . . , 0)T is given by

ẋi(t) = −xi(t) + αxi(t − τ) + β[xi−1(t − τ) + xi+1(t − τ)], i(mod n). (2.1)
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The characteristic matrix is

Mn(0, λ) = (λ + 1)Id − αe−λτ Id − βe−λτδ, (2.2)

where Id is n × n identity matrix and

δ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 · · · 0 1

1 0 1 0 · · · 0 0

0 1 0 1 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0

...
...

...
... · · ·

...
...

1 0 0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

n×n

. (2.3)

Using a computation process similar to that of Wu et al. [24], Yuan and Campbell [25],
we can obtain the following results.

Let

χ = e2πi/n, vj =
(

1, χj , χ2j , . . . , χ(n−1)j
)T (

j = 0, 1, . . . , n − 1
)
. (2.4)

From

χnj = 1, χ(n−1)j = χ−j , χ(n−2)j = χ−2j , . . . , . . . , (2.5)

it follows that

δvj =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

χj + χ(n−1)j

1 + χ2j

χj + χ3j

...
...

...

1 + χ(n−2)j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=
(
χj + χ−j

)
vj = 2 cos

(
2πj
n

)
vj . (2.6)

Hence,

Mn(0, λ)vj =
[
λ + 1 −

(
α + β

(
χj + χ−j

))
e−λτ
]
vj

=
[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]
vj ,

(2.7)
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and the characteristic equation is

detMn(0, λ) =
n−1∏

j=0

[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]

= Δ0(λ) ×
n−1∏

j=1

Δj(λ)

= 0,

(2.8)

where

Δj(λ) = λ + 1 −
(
α + 2β cos

2πj
n

)
e−λτ ,

(
j = 0, 1, 2, . . . , n − 1

)
. (2.9)

We observe that (2.7) can be simplified, further elucidating the structure of characteristic
equation.

(I) When n is an odd number, we obtain

detMn(0, λ) = Δ0(λ) ×
(n−1)/2∏

j=1

Δ2
j (λ)

=
[
λ + 1 −

(
α + 2β

)
e−λτ
]
×

(n−1)/2∏

j=1

[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]2

.

(2.10)

(II) When n is an even number, we obtain

detMn(0, λ) = Δ0(λ)Δn/2(λ) ×
(n−2)/2∏

j=1

Δ2
j (λ)

=
[
λ + 1 −

(
α + 2β

)
e−λτ
][
λ + 1 −

(
α − 2β

)
e−λτ
]

×
(n−2)/2∏

j=1

[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]2

.

(2.11)

In the case when n is even, that is, n = 2m, detMn(0, λ) may be further simplified into two
subcases.
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(i) When m is an odd number, we have

detMn(0, λ) = Δ0(λ)Δn/2(λ) ×
(m−1)/2∏

j=1

Δ2
j (λ)Δ

2
m−j(λ)

=
[
λ + 1 −

(
α + 2β

)
e−λτ
][
λ + 1 −

(
α − 2β

)
e−λτ
]

×
(m−1)/2∏

j=1

[
λ + 1 −

(
α + 2β cos

πj

m

)
e−λτ
]2[

λ + 1 −
(
α − 2β cos

πj

m

)
e−λτ
]2

.

(2.12)

(ii) When m is an even number, we have

detMn(0, λ) = Δ0(λ)Δn/2(λ)Δ2
n/4(λ) ×

(m−2)/2∏

j=1

Δ2
j (λ)Δ

2
m−j(λ)

=
[
λ + 1 −

(
α + 2β

)
e−λτ
][
λ + 1 −

(
α − 2β

)
e−λτ
](
λ + 1 − αe−λτ

)2

×
(m−2)/2∏

j=1

[
λ + 1 −

(
α + 2β cos

πj

m

)
e−λτ
]2[

λ + 1 −
(
α − 2β cos

πj

m

)
e−λτ
]2

.

(2.13)

From (2.8)–(2.13), we obtain the characteristic equation of (1.2) given by the following.

(1) When n is an odd number,

[
λ + 1 −

(
α + 2β

)
e−λτ
](n−1)/2∏

j=1

[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]2

= 0. (2.14)

(2) When n is an even number and n is not the multiple of 4,

[
λ + 1 −

(
α + 2β

)
e−λτ
](n−2)/4∏

j=1

[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]2

×
[
λ + 1 −

(
α − 2β

)
e−λτ
](n−2)/4∏

j=1

[
λ + 1 −

(
α − 2β cos

2πj
n

)
e−λτ
]2

= 0.

(2.15)
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(3) When n is the multiple of 4,

[
λ + 1 −

(
α + 2β

)
e−λτ
](n−4)/4∏

j=1

[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]2

×
[
λ + 1 −

(
α − 2β

)
e−λτ
](n−4)/4∏

j=1

[
λ + 1 −

(
α − 2β cos

2πj
n

)
e−λτ
]2

×
(
λ + 1 − αe−λτ

)2

= 0.
(2.16)

3. Bifurcation Analysis with n being an Odd Number

In this section, we are going to analyze the distribution of the root of the characteristic
equations given in previous section, respectively.

In this case, the characteristic equation of (1.2) is

[
λ + 1 −

(
α + 2β

)
e−λτ
](n−1)/2∏

j=1

[
λ + 1 −

(
α + 2β cos

2πj
n

)
e−λτ
]2

= 0. (3.1)

Clearly, iω (ω > 0) is a root of (3.1) if and only if there exists a

j ∈
{

0, 1, 2, . . . ,
n − 1

2

}
(3.2)

such that ω satisfies

iω + 1 −
(
α + 2β cos

2πj
n

)
e−iωτ = 0, (3.3)

that is,

cosωτ =
1

α + 2β cos
(
2πj/n

) , sinωτ = − ω

α + 2β cos
(
2πj/n

) . (3.4)

This leads to

ωj =

√(
α + 2β cos

2πj
n

)2

− 1. (3.5)

This shows that the necessary condition for (3.1) possessing purely imaginary roots is that
there exists j ∈ {0, 1, 2, . . . , (n − 1)/2} such that |α + 2β cos(2πj/n)| > 1, that is,

α + 2β cos
2πj
n

> 1 or α + 2β cos
2πj
n

< −1. (3.6)

From (3.1), conclusion then follows immediately.
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Proposition 3.1. Equation (3.1) has at most (n + 1)/2 pairs of purely imaginary roots when n is an
odd number.

Without loss of generality, one assumes the (3.1) has (n+ 1)/2 pairs of purely imaginary roots
±ωj (j = 0, 1, 2, . . . , (n − 1)/2) exactly. Define

τ
(j)
k =

1
ωj

[

arccos
1

α + 2β cos
(
2πj/n

) + 2kπ

]

, j = 0, 1, . . . ,
n − 1

2
; k = 0, 1, 2, . . . . (3.7)

Then ±iωj are purely imaginary roots of (3.1) with τ = τ
(j)
k

(k = 0, 1, 2, . . .), respectively. one notes

that ωjτ
(j)
k ∈ (0, π] (resp., ∈ (π, 2π]) when

sin
(
ωjτ

(j)
k

)
= −

ωj

α + 2β cos
(
2πj/n

) > 0 (resp. < 0). (3.8)

We can obtain the following result with no difficulty.

Proposition 3.2. Let λ(τ) = σ(τ) ± iω(τ) be the root of (3.1) near τ = τ
(j)
k satisfying σ(τ (j)k ) = 0,

ω(τ (j)
k
) = ωj (j = 0, 1, . . . , (n − 1)/2; k = 0, 1, 2, . . .). Then

dσ(τ)
dτ

∣∣∣∣
τ=τ (j)

k

> 0. (3.9)

Proof. From (3.1) we have

λ + 1 −
(
α + 2β cos

2πj
n

)
e−λτ = 0. (3.10)

Differentiating both sides with respect to τ , we have

(
dλ

dτ

)−1

= − eλτ

λ
(
α + 2β cos

(
2πj/n

)) − τ
λ
. (3.11)

Notice that λ(τ (j)
k
) = iωj , it follows that

Re
dλ

dτ

∣∣∣∣
τ=τ (j)

k

=
dσ(τ)
dτ

∣∣∣∣
τ=τ (j)

k

=
ω2
j

(
1 + τ(

j)
k

)2

+
(
τ
(j)
k
ωj

)2
> 0. (3.12)

This completes the proof.
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When τ = 0, (3.1) becomes

[
λ + 1 −

(
α + 2β

)](n−1)/2∏

j=1

[
λ + 1 −

(
α + 2β cos

2πj
n

)]2

= 0. (3.13)

Its roots are given by

λ0 = α + 2β − 1,

λ1 = α + 2β cos
2π
n
− 1,

λ2 = α + 2β cos
4π
n
− 1,

...
...

...

λ(n−1)/2 = α + 2β cos
(n − 1)π

n
− 1

= α − 2β cos
π

n
− 1.

(3.14)

For convenience, denote

S :=
{(
α, β
)
| α < 1,

1 − α
2 cos((n − 1)π/n)

< β <
1 − α

2

}
, (3.15)

P :=
{(
α, β
)
| −1 − α

2
< β <

1 − α
2

,
1 − α

2 cos((n − 1)π/n)
< β <

−1 − α
2 cos((n − 1)π/n)

}
, (3.16)

and let D := S/P . One can find out that the region S is a sector, P is a parallelogram, and D is
the outside of the parallelogram in the sector S. These are shown in Figure 1.

Proposition 3.3. If α + 2β < 1 and α + 2β cos((n − 1)π/n) < 1(α − 2β cos(π/n) < 1), that is
(α, β) ∈ S, then all roots of (3.13) have negative real parts.

From (3.6), Proposition 3, and Corollary 2.4 of Ruan and Wei [19], we have the
following result immediately.

Proposition 3.4. If |α + 2β| < 1 and |α + 2β cos((n − 1)π/n)| < 1(|α − 2β cos(π/n)| < 1), that is,
(α, β) ∈ P , then all roots of (3.1) have negative real parts for all τ ≥ 0.

From Proposition 2 and Corollary 2.4 of Ruan and Wei [19], conclusion then follows
immediately.

Proposition 3.5. If there exist j ∈ {0, 1, 2, . . . , (n − 1)/2} such that α + 2β cos(2πj/n) > 1, that is,
(α, β) is located outside of the sector S, then (3.1) has at least one root with positive part for all τ ≥ 0.
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α + 2β cos((n − 1)π/n) = 1
(α − 2β cos(π/n) = 1)

Figure 1: Bifurcation set in (α, β)-plane. The outside of the sector S is unstable region; the parallelogram P
is the absolutely stable region; the outside of the parallelogram in the sector is conditionally stable region.

Proposition 3.6. Suppose that one of the following conditions is satisfied (i.e., (α, β) ∈ D):

(1) |α + 2β| < 1 and α − 2β cos(π/n) < −1;

(2) α + 2β < −1 and |α − 2β cos(π/n)| < 1;

(3) α + 2β < −1 and α − 2β cos(π/n) < −1.

Then there exist at most (n + 1)/2 sequences of critical value

τ
(j)
k , j = 0, 1, . . . ,

n − 1
2

; k = 0, 1, 2, . . . (3.17)

defined by (3.7) such that

(1) all roots of (3.1) have negative real parts for all τ ∈ [0, τ0), where

τ0 = min
{
τ
(j)
0 : 0 ≤ j ≤ n − 1

2

}
; (3.18)

(2) equation (3.1) has at least one root with positive part when τ > τ0;

(3) at τ = τ (j)
k

(j = 0, 1, . . . , (n− 1)/2; k = 0, 1, . . .), (3.1) has a pair of purely imaginary roots
±iωj .

From Propositions 3.1–3.6, we have the following results immediately.

Theorem 3.7. (i) If |α + 2β| < 1 and |α − 2β cos(π/n)| < 1, then the zero equilibrium of (1.2) is
asymptotically stable for all τ ≥ 0.

(ii) If j (j = 0, 1, 2, . . . , (n − 1)/2) exist such that α + 2β cos(2πj/n) > 1, then the zero
equilibrium of (1.2) is unstable for all τ ≥ 0.
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(iii) Suppose that one of the following conditions holds:

(1) |α + 2β| < 1 and α − 2β cos(π/n) < −1;
(2) α + 2β < −1 and |α − 2β cos(π/n)| < 1;
(3) α + 2β < −1 and α − 2β cos(π/n) < −1.

Then there exist at most (n + 1)/2 sequences of critical value τ (j)
k

(j = 0, 1, . . . , (n − 1)/2; k =
0, 1, 2, . . .) defined by (3.7) such that the zero equilibrium of (1.2) is asymptotically stable for τ ∈
[0, τ0), where τ0 = min{τ (j)0 : 0 ≤ j ≤ (n − 1)/2}, unstable for all τ > τ0, and the system undergoes a

Hopf bifurcation with τ = τ (j)k (j = 0, 1, . . . , (n − 1)/2; k = 0, 1, . . .).

Proposition 3.6 shows that the region D, which is the outside of the parallelogram in
the sector shown as in Figure 1, is a conditionally stable region. This means that the stability
of the zero equilibrium of (1.2) is dependent on the delay. Namely, the distribution of the roots
of (3.1) is dependent on the delay. Particularly, for (α, β) ∈ D, (3.1) with some critical value
τ has simple pure imaginary roots or multiply pure imaginary roots. It is well know that the
Hopf bifurcations are different between the simple and multiple pure imaginary roots. So it is
necessary to observe the region D. In fact, we have the following conclusions on occurrence
of purely imaginary roots of (3.1) for (α, β) ∈ D.

(1) In the region

E0 =
{(
α, β
)
| α + 2β < −1; α − 2β cos

π

n
< 1; α + 2β cos

2π
n

> −1
}
, (3.19)

Equation (3.1) with τ
(0)
k

has one pair of purely imaginary roots exactly, denoted by ±iω0,

which are simple, where ω0 =
√
(α + 2β)2 − 1 and

τ
(0)
k

=
1
ω0

(
arccos

1
α + 2β

+ 2kπ
)

(k = 0, 1, 2, . . .). (3.20)

(2) In the region

E1 =
{(
α, β
)
| α + 2β cos

2π
n

< −1; α − 2β cos
π

n
< 1; α + 2β cos

4π
n

> −1
}
, (3.21)

Equation (3.1) has two pairs of purely imaginary roots exactly, denoted by ±iω0 and ±iω1,
when τ = τ

(1)
k

and τ = τ
(0)
k

, respectively. Here ±iω0 are simple, ±iω1 are double, and ω1 =√
(α + 2β cos(2π/n))2 − 1, τ (0)k is defined by (3.20) and

τ
(1)
k

=
1
ω1

(
arccos

1
α + 2β cos(2π/n)

+ 2kπ
)

(k = 0, 1, 2, . . .). (3.22)

Furthermore,

τ
(0)
0 =

1
ω0

(
arccos

1
α + 2β

)
> τ

(1)
0 =

1
ω1

(
arccos

1
α + 2β cos(2π/n)

)
. (3.23)
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(3) In the region

E2 =
{(
α, β
)
| α + 2β cos

4π
n

< −1; α − 2β cos
π

n
< 1; α + 2β cos

6π
n

> −1
}
, (3.24)

Equation (3.1) has three pairs of purely imaginary roots exactly, denoted by ±iω0, ±iω1, and
±iω2, when τ = τ

(0)
k

, τ = τ
(1)
k

, and τ = τ
(2)
k

, respectively. Here ±iω0 are simple, ±iω1 and

±iω2 are double, ω2 =
√
(α + 2β cos(4π/n))2 − 1, τ (0)k and τ (1)k are defined by (3.20) and (3.22),

respectively, and

τ
(2)
k

=
1
ω2

(
arccos

1
α + 2β cos(4π/n)

+ 2kπ
)

(k = 0, 1, 2, . . .). (3.25)

Furthermore,

τ
(0)
0 > τ

(1)
0 > τ

(2)
0 =

1
ω2

(
arccos

1
α + 2β cos(4π/n)

)
.

. . . . . . . . . . . .

(3.26)

Naturally, the region E(n−1)/4 (when n−1 is multiple of 4) or E(n−3)/4 (when n−1 is not multiple
of 4) can be defined by

E(n−1)/4 =
{(
α, β
)
| α + 2β cos

(n − 1)π
2n

< −1; α − 2β cos
π

n
< 1; α + 2β cos

2π
n

< −1
}
,

E(n−3)/4 =
{(
α, β
)
| α + 2β cos

(n − 3)π
2n

< −1; α − 2β cos
π

n
< 1; α + 2β cos

2π
n

< −1
}
.

(3.27)

�A: Obviously, in the region E(n−1)/4 (or E(n−3)/4), we have that

τ
(0)
0 > τ

(1)
0 > τ

(2)
0 > τ

(3)
0 > · · · > τ ((n−1)/4)

0

(
or τ ((n−3)/4)

0

)
. (3.28)

(4) In the region

E((n−1)/2) =
{(
α, β
)
| α + 2β cos

(n − 1)π
n

< −1; α + 2β < 1; α + 2β cos
(n − 3)π

n
> −1

}

=
{(
α, β
)
| α − 2β cos

π

n
< −1; α + 2β < 1; α − 2β cos

3π
n

> −1
}
,

(3.29)

Equation (3.1) has a pair of purely imaginary roots exactly, denoted by ±iω(n−1)/2, which are

double, where ω(n−1)/2 =
√
(α + 2β cos((n − 1)π/n))2 − 1 =

√
(α − 2β cos(π/n))2 − 1 and

τ
((n−1)/2)
k

=
1

ω(n−1)/2

(
arccos

1
α − 2β cos(π/n)

+ 2kπ
)

(k = 0, 1, 2, . . .). (3.30)
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(5) In the region

E((n−3)/2) =
{(
α, β
)
| α − 2β cos

3π
n

< −1; α + 2β < 1; α − 2β cos
5π
n

> −1
}
, (3.31)

Equation (3.1) has two pairs of purely imaginary roots exactly, denoted by ±iω(n−1)/2 and
±iω(n−3)/2, when τ = τ

((n−1)/2)
k and τ = τ

((n−3)/2))
k , respectively, and the two pairs of purely

imaginary roots are all double. Here

ω(n−3)/2 =

√(
α + 2β cos

(n − 3)π
n

)2

− 1 =

√(
α − 2β cos

3π
n

)2

− 1, (3.32)

τ
((n−1)/2)
k

is defined by (3.30), and

τ
((n−3)/2)
k

=
1

ω(n−3)/2

(
arccos

1
α − 2β cos(3π/n)

+ 2kπ
)

(k = 0, 1, 2, . . .). (3.33)

Moreover,

τ
((n−1)/2)
0 =

1
ω(n−1)/2

(
arccos

1
α−2β cos(π/n)

)
>τ

((n−3)/2)
0 =

1
ω(n−3)/2

(
arccos

1
α−2β cos(3π/n)

)
.

. . . . . . . . . . . .

(3.34)

Naturally, the region E(n+3)/4 (when n−1 is multiple of 4) or E(n+1)/4 (when n−1 is not multiple
of 4) can be defined by

E(n+3)/4 =
{(
α, β
)
| α + 2β cos

2π
n

< −1; α + 2β < 1; α + 2β > −1
}
,

E(n+1)/4 =
{(
α, β
)
| α + 2β cos

2π
n

< −1; α + 2β < 1; α + 2β > −1
}
.

(3.35)

�B: Obviously, in the region E(n+3)/4 (or E(n+1)/4), we have

τ
((n−1)/2)
0 > τ

((n−3)/2)
0 > τ

((n−5)/2)
0 > · · · > τ ((n+3)/4)

0

(
or τ ((n+1)/4)

0

)
. (3.36)

To carry out our work we need some background from the theory of functional
differential equation. Let C = C([−τ, 0], Rn) denote the Banach space of continuous mappings
from [−τ, 0] into Rn equipped with the supernorm. Let x(t) be a solution of (1.2) and define
xt(θ) = x(t + θ), −τ ≤ θ ≤ 0. If x(t) is continuous, then xt(θ) ∈ C. With this structure, we may
write the model as the following functional differential equation:

ẋ(t) = F(xt), (3.37)
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where F : C → Rn is defined via

Fi
(
φ
)
= −φi(0) + αf

(
φi(−τ)

)
+ β
[
f
(
φi−1(−τ)

)
+ f
(
φi+1(−τ)

)]
, i(modn). (3.38)

Similarly, the linearization of (3.37) at equilibrium (0, 0, . . . , 0)T may be written as

u̇(t) = L(τ)ut, (3.39)

where the linear operator L(τ) : C → Rn is defined via

L(τ)φ = −Idφ(0) + αIdφ(−τ) + βδφ(−τ). (3.40)

It is well known that a linear functional differential equation such as (3.39) generates a
strongly continuous semigroup of linear operators with infinitesimal generator A given by

Aφ = φ̇, φ ∈ Dom(A), (3.41)

where Dom(A) = φ ∈ C, φ(0) = L(τ)φ.
To explore the possible (spatial) symmetry of (1.2), we need to introduce three

compact Lie groups. One is the cycle group S1; another is Zn, the cyclic group of order n,
which corresponds to rotations of 2π/n, denoting the generator of this group by ρ, then
action on Rn is given by (ρx)i = xi+1; the third is the dihedral group Dn of order 2n, which
corresponds to the group of symmetries of an n-gon. It can be shown that Dn is generated by
ρ and κ, where κ is the flip of order 2 or reflection, and it acts on Rn by (κx)i = xn+2−i.

Definition 3.8. Let F : C → Rn and Γ be a compact group. The system (3.37) is said to be
Γ-equivariant if F(γxt) = γF(xt) for all γ ∈ Γ.

Proposition 3.9. The nonlinear system (3.37) and linear system (3.39) are Dn equivariant.

Proof. We begin with (3.37); that is, we let F be as in (3.38) and φ ∈ C. We need only check
the equivariant condition on the generators, ρ, κ, of Dn:

Fi
(
ρφ
)
= −
(
ρφ
)
i(0) + αf

((
ρφ
)
i(−τ)

)
+ β
[
f
((
ρφ
)
i−1(−τ)

)
+ f
((
ρφ
)
i+1(−τ)

)]

= −φi+1(0) + αf
(
φi+1(−τ)

)
+ β
[
f
(
φi(−τ)

)
+ f
(
φi+2(−τ)

)]

= Fi+1
(
φ
)

= ρFi
(
φ
)
,

Fi
(
κφ
)
= −
(
κφ
)
i(0) + αf

((
κφ
)
i(−τ)

)
+ β
[
f
((
κφ
)
i−1(−τ)

)
+ f
((
κφ
)
i+1(−τ)

)]

= −φn+2−i(0) + αf
(
φn+2−i(−τ)

)
+ β
[
f
(
φn+3−i(−τ)

)
+ f
(
φn+1−i(−τ)

)]

= Fn+2−i
(
φ
)

= κFi
(
φ
)
.

(3.42)

Thus (3.37) is Dn equivariant.
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From (3.39), we begin by noting that L may be written componentwise as follows:

Li(τ)φ = −φi(0) + aφi(−τ) + β
[
φi−1(−τ) + φi+1(−τ)

]
, i(modn). (3.43)

The rest of the proof is similar to that for (3.37). This completes the proof.

In the case where (α, β) ∈ E0, we can apply the standard Hopf bifurcation theorem of
delay differential equations to obtain a Hopf bifurcation of synchronous periodic solutions.
In the case where (α, β) ∈ Ej (1 ≤ j ≤ (n − 1)/2), the aforementioned standard Hopf
bifurcation theorem does not apply since ±iωj are double eigenvalues. On the other hand,
the considered system is equivariant with respect to the Dn-action where the Zn subgroup
acts by permutation (sending xi to xi+1) and the flip acts by interchanging (sending xi to
xn+2−i). This allows us to apply the symmetric Hopf bifurcation theorem for delay differential
equations established in [4] (as an extension of the well-known Golubitsky-Stewart Theorem
[1] for symmetric ordinary differential equations) to obtain 2(n+1) branches of asynchronous
periodic solutions. More precisely, we have the following theorem.

Theorem 3.10. Assume that (α, β) ∈ D (D = S/P , where the regions S and P are defined by (3.15)
and (3.16), resp.). Then

(1) in case (α, β) ∈ E0, near τ = τ
(0)
0 there exists a supercritical bifurcation of stable

synchronous periodic solutions of period pτ near (2π/ω0), bifurcated from the zero solution
of system (1.2);

(2) in case (α, β) ∈ Ej (1 ≤ j ≤ (n − 1)/2), near τ = τ
(j)
0 there exist 2(n + 1) branches

of asynchronous periodic solutions of period pτ near (2π/ωj), bifurcated simultaneously
from the zero solution of system (1.2), and there are

(a) two stable phase-locked oscillations: xi(t) = xi+1(t ± (pτ/n)), for i(modn) and t ∈ R,
(b) n unstable mirror-reflecting waves: xi(t) = xn+2k−i(t) for i(modn) and t ∈ R, where

k = 1, 2, . . . , n,

(c) n unstable standing waves: xi(t) = xn+2k−i(t − (pτ/2)) for i(modn) and t ∈ R,
where k = 1, 2, . . . , n.

Proof. (1) The existence is an immediate application of the standard Hopf bifurcation theorem
for functional differential equations. Let τ∗ = τ

(0)
0 , μ = τ − τ (0)0 . According to the calculations

in Part 2 of the appendix, the normal form of (1.2) on the center manifold can be written in
polar coordinates as

ρ̇ =
(
a1μ + b1ρ

2
)
ρ +O

(
μ2ρ
)
+O
(
ρ4
)
, (3.44)

where

a1 =
ω0τ

(0)
0

(
1 + τ (0)0

)2
+ω2

0

> 0,
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b1 =
f ′′′(0)

2

τ
(0)
0

(
1 + τ (0)0 +ω0τ

(0)
0

)

(
1 + τ (0)0

)2
+ω2

0

< 0.

(3.45)

Conclusion (1) then follows immediately.
(2) Let τ∗ = τ

(j)
0 , u∗ = ωj/τ

(j)
0 , μ = τ − τ (j)0 . We obtain from the calculations in Part 1 of

the appendix the normal form of (1.2) on the center manifolds that is given by

(
ω̇1

ω̇2

)

= u∗τ∗
(
ω2

−ω1

)

+ μu∗
(

Im
(
a−1)ω1 + Re

(
a−1)ω2

−Re
(
a−1)ω1 + Im

(
a−1)ω2

)

+ 3bτ∗
(
ρ2

1 + 2ρ2
2

)(Re
(
a−1(1 − iu∗)

)
ω1 − Im

(
a−1(1 − iu∗)

)
ω2

Im
(
a−1(1 − iu∗)

)
ω1 + Re

(
a−1(1 − iu∗)

)
ω2

)

+O
(
μ2|ω|

)
+O
(
|ω|4
)
,

(
ω̇3

ω̇4

)

= u∗τ∗
(
ω4

−ω3

)

+ μu∗
(

Im
(
a−1)ω3 + Re

(
a−1)ω4

−Re
(
a−1)ω3 + Im

(
a−1)ω4

)

+ 3bτ∗
(
ρ2

2 + 2ρ2
1

)(Re
(
a−1(1 − iu∗)

)
ω3 − Im

(
a−1(1 − iu∗)

)
ω4

Im
(
a−1(1 − iu∗)

)
ω3 + Re

(
a−1(1 − iu∗)

)
ω4

)

+O
(
μ2|ω|

)
+O
(
|ω|4
)
,

(3.46)

where

ρ1 =
√
ω2

1 +ω
2
2,

ρ2 =
√
ω2

3 +ω
2
4,

a = 1 + τ∗ − iu∗τ∗,

b =
1
3!
f ′′′(0).

(3.47)

Introducing the periodic-scaling parameter ω and letting

z1(t) = ω1(s) + iω2(s),

z2(t) = ω3(s) + iω4(s)
(3.48)

with

s = [(1 +ω)u∗τ∗]−1t, (3.49)
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and using a computation process similar to that of Wu et al. [24], we obtain the normal form

(1 +ω)ż1 = −iz1 − iμ(τ∗)−1a−1z1 + 3b(u∗)−1a−1(1 − iu∗)
(
|z1|2 + 2|z2|2

)
z1,

(1 +ω)ż2 = −iz2 − iμ(τ∗)−1a−1z2 + 3b(u∗)−1a−1(1 − iu∗)
(
|z2|2 + 2|z1|2

)
z2.

(3.50)

Let g : C ⊕ C ⊕ R → C ⊕ C be given so that −g(z1, z2, μ) is the right-hand side of (3.50). Then
(3.50) can be written as

(1 +ω)ż + g
(
z, μ
)
= 0. (3.51)

Note that

Dzg(0, 0)(z1, z2) = i(z1, z2), z = (z1, z2) ∈ C ⊕ C. (3.52)

Also note that g(·, μ) : C ⊕ C → C ⊕ C is Dn × S1-equivariant with respect to the following
Dn × S1-action on C ⊕ C:

ρ(z1, z2) =
(
ei(2kπ/n)z1, e

−i(2kπ/n)z2

)
, Zn = 〈ρ〉 ≤ Dn,

κ(z1, z2) = (z2, z1), Z2 = 〈κ〉 ≤ Dn,

eiθ(z1, z2) =
(
eiθz1, e

iθz2

)
, eiθ ∈ S1.

(3.53)

Using a computation process similar to that of Wu et al. [24], we obtain

A0 = iu∗(τ∗)−1a−1 − iω,

AN = −6b(u∗)−1a−1(1 − iu∗),

B0 = 3b(u∗)−1a−1(1 − iu∗).

(3.54)

By the results of [1, page 376], we know that the bifurcation of phase-locked oscillation is
supercritical (resp., subcritical) and depends on whether Re(AN + B0) > 0 (resp., Re(AN +
B0) < 0), and these are orbitally asymptotically stable if Re(AN + B0) > 0 and ReB0 < 0.
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Note that

Re(AN + B0) = Re
(
−3b(u∗)−1a−1(1 − iu∗)

)

= −3b(u∗)−1 Re

[
1 + τ∗ + iu∗τ∗

(1 + τ∗)2 + (u∗τ∗)2 (1 − iu
∗)

]

= −3b(u∗)−1 1 + τ∗ + (u∗)2τ∗

(1 + τ∗)2 + (u∗τ∗)2

> 0,

Re(B0) = Re
(

3b(u∗)−1a−1(1 − iu∗)
)

= 3b(u∗)−1 1 + τ∗ + (u∗)2τ∗

(1 + τ∗)2 + (u∗τ∗)2

< 0.

(3.55)

Consequently, the bifurcation of phase-locked oscillations is supercritical and orbitally
asymptotically stable.

Note also that

Re(2AN + B0) = Re
(
−9b(u∗)−1a−1(1 − iu∗)

)

= −9b(u∗)−1 1 + τ∗ + (u∗)2τ∗

(1 + τ∗)2 + (u∗τ∗)2

> 0,

Re(B0) < 0.

(3.56)

We infer from the results of [1, page 376] again that the bifurcations of mirror-reflecting
waves and standing waves are supercritical and unstable. This completes the proof.

Using a proof process similar to that of Yuan and Campbell [25], by using Liapunov’s
second method we can obtain the followings.

Theorem 3.11. If |α| + 2|β| < 1, then the trivial solution of (1.2) is global asymptotically stable.

4. Computer Simulations

To demonstrate the properties of the Hopf bifurcation in Section 3, we carry out some
numerical simulations for a particular case of (1.2) as in following form:

ẋi(t) = −xi(t) + α[tanh(xi(t − τ))] + β[tanh(xi−1(t − τ)) + tanh(xi+1(t − τ))], i(mod3). (4.1)
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0.1

0.05
0

−0.05

−0.1 −0.1
−0.05

0
0.05

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure 2: Simulations for the asymptotically stable equilibrium to system (4.1) with τ = 0.5 < τ0 = 0.955185.

Clearly, the origin (0, 0, 0) is a fixed point to (4.1). Choosing α = −2 and β = 1/3 we
obtain that τ (0)0 = 2.73273 and τ

(1)
0 = 0.955185, thus τ0 = 0.955185.

From Theorem 3.7(iii), it follows that the zero equilibrium is asymptotically stable if
τ ∈ [0, τ0), it is unstable if τ > τ0, and the system undergoes a Hopf bifurcation with τ =
τ
(j)
k
(j = 0, 1, . . . , (n − 1)/2; k = 0, 1, . . .). Simulate the solutions of system (4.1) for τ = 0.5 and

1.0. In Figure 2, it is shown that the zero equilibrium is asymptotically stable for τ = 0.5 <
τ0 = 0.955185. In Figure 3, for the data τ = 1.0 > τ0 = 0.99185, it is shown that there exists a
periodic orbit which is orbitally asymptotically stable.

Appendix

A. The Calculation of Normal Forms on Center Manifolds with n being
an Odd Number

In this appendix, we employ the algorithm and notations of Faria and Magalhães [26] to
derive the normal forms of system (1.2) on the center manifolds.

We first rescale the time by t �→ (t/τ) to normalize the delay so that (1.2) can be written
as

ẋ(t) = F(xt, τ) (A.1)

in the phase space C = C([−1, 0];Rn), where for φ = (φ1, φ2, . . . , φn)
T ∈ C, we have

(
F
(
φ, τ
))

i = −τφi(0) + ατf
(
φi(−1)

)
+ βτ
[
f
(
φi−1(−1)

)
+ f
(
φi+1(−1)

)]
(A.2)
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Figure 3: Simulations for an orbitally asymptotically stable periodic orbit to system (4.1) with τ = 1.0 >
τ0 = 0.99185.

with i(modn). We also assume that

f(x) = x + bx3 + h.o.t. (A.3)

with

b =
1
3!
f ′′′(0). (A.4)

The linearized equation at zero for system (A.1) is

ẋ(t) = L(τ)xt, (A.5)

where

L(τ)
(
φ
)
= −τφ(0) + ταφ(−1) + τβδ

(
φ(−1)

)
,

δ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 · · · 0 1

1 0 1 0 · · · 0 0

0 1 0 1 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0

...
...

...
... · · ·

...
...

1 0 0 0 · · · 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

n×n

.
(A.6)
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The characteristic equation of (A.5) at (0, 0, . . . , 0)T is detMn(0, λ/τ) = 0, that is,

[
λ

τ
+ 1 −

(
α + 2β

)
e−λ
](n−1)/2∏

j=1

[
λ

τ
+ 1 −

(
α + 2β cos

2πj
n

)
e−λ
]2

= 0, (A.7)

where detMn(0, λ) = 0 is the characteristic equation of the linearization of (1.2) at
(0, 0, . . . , 0)T .

Part 1.

Case 1 ((α, β) ∈ Ej (1 ≤ j ≤ (n − 1)/2). In this case, at τ = τ∗ the characteristic equation of

(A.5) has imaginary zeros ±iu∗τ∗ which are double, where τ∗ = τ (j)0 and

u∗τ∗ = ωj =

√(
α + 2β cos

2πj
n

)2

− 1. (A.8)

Since

Mn(0, iu∗)vj =
[
iu∗ + 1 −

(
α + 2β cos

2πj
n

)
e−iu

∗τ∗
]
vj = 0, (A.9)

the center space at τ = τ∗ and in complex coordinates is X = span(φ1, φ2, φ3, φ4), where

φ1(θ) = eiu
∗τ∗θvj , θ ∈ [−1, 0],

φ2(θ) = e−iu
∗τ∗θvj , θ ∈ [−1, 0],

φ3(θ) = eiu
∗τ∗θvj , θ ∈ [−1, 0],

φ4(θ) = e−iu
∗τ∗θvj , θ ∈ [−1, 0],

vj =
(

1, e(2πi/n)j , e(2πi/n)2j , . . . , e(2πi/n)(n−1)j
)T
, j = 1, 2, . . . , n − 1.

(A.10)

Let

Φ =
(
φ1, φ2, φ3, φ4

)
. (A.11)

Note that

vTi vj =

⎧
⎨

⎩

n, i = j,

0, i /= j,

vj = vn−j .

i, j = 1, 2, . . . , n − 1. (A.12)
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It is easy to check that a basis for the adjoint space X∗ is

Ψ(s) =

⎛

⎜⎜⎜⎜⎜
⎝

ψ1(s)

ψ2(s)

ψ3(s)

ψ4(s)

⎞

⎟⎟⎟⎟⎟
⎠

=
1
n

⎛

⎜⎜⎜⎜⎜⎜
⎝

(a)−1e−iu
∗τ∗svTj

a−1eiu
∗τ∗svTj

(a)−1e−iu
∗τ∗svTj

a−1eiu
∗τ∗svTj

⎞

⎟⎟⎟⎟⎟⎟
⎠

, s ∈ [0, 1] (A.13)

with (Ψ,Φ) = Id (the 4 × 4 identity matrix) for the adjoint bilinear from on C∗ × C defind in
[27], where

a = 1 + τ∗ − iu∗τ∗. (A.14)

It is useful to note the following:

Ψ(0) =
1
n

⎛

⎜⎜⎜⎜⎜⎜
⎝

(a)−1vTj

a−1vTj

(a)−1vTj

a−1vTj

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (A.15)

and for x ∈ C4, we have

Φ(0)x =
[
vj , vj , vj , vj

]
x = (x1 + x4)vj + (x2 + x3)vj ,

Φ(−1)x =
(
e−iu

∗τ∗x1 + eiu
∗τ∗x4

)
vj +
(
eiu

∗τ∗x2 + e−iu
∗τ∗x3

)
vj ,

δ(Φ(−1)x) =
(
e−iu

∗τ∗x1 + eiu
∗τ∗x4

)
δvj +

(
eiu

∗τ∗x2 + e−iu
∗τ∗x3

)
δvj = 2 cos

2πj
n

Φ(−1)x.

(A.16)

Introducing the new parameter

μ = τ − τ∗, (A.17)

we can rewrite (A.1) as

ż(t) = L(τ∗)zt +G
(
zt, μ
)
, (A.18)
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where

G
(
zt, μ
)
= L
(
μ
)
zt + bα

(
τ∗ + μ

)

⎛

⎜⎜⎜⎜⎜⎜
⎝

z3
1(t − 1)

z3
2(t − 1)

...
...

...

z3
n(t − 1)

⎞

⎟⎟⎟⎟⎟⎟
⎠

+ bβ
(
τ∗ + μ

)

⎛

⎜⎜⎜⎜⎜⎜
⎝

z3
2(t − 1) + z3

n(t − 1)

z3
1(t − 1) + z3

3(t − 1)

...
...

...

z3
1(t − 1) + z3

n−1(t − 1)

⎞

⎟⎟⎟⎟⎟⎟
⎠

+ h.o.t.

(A.19)

Define the 4 × 4 matrix

B = iu∗τ∗ diag(1,−1, 1,−1). (A.20)

Using the decomposition zt = Φx(t) + yt, we can decompose (A.18) as

ẋ = Bx + Ψ(0)G
(
Φx + y, μ

)
,

ẏ = AQ1y + (I − π)X0G
(
Φx + y, μ

) (A.21)

with x ∈ C4, y ∈ Q1. Here and throughout this appendix, we refer the readers to [26] for
explanations of several notations involved. We will write the Taylor expansion

Ψ(0)G
(
Φx + y, μ

)
=
∑

j≥2

1
j!
f1
j

(
x, y, μ

)
, (A.22)

where f1
j (x, y, μ) are homogeneous polynomials of degree j in (x, y, μ) with coefficients in

C4. Then the normal form of (1.2) on the center manifold of the origin at μ = 0 is given by

ẋ = Bx +
1
2
g1

2
(
x, 0, μ

)
+

1
3!
g1

3
(
x, 0, μ

)
+ h.o.t., (A.23)

where g1
2 and g1

3 will be calculated in the following part of this section.
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First of all, using δ(Φ(−1)x) = 2 cos(2πj/n)Φ(−1)x, we find that

1
2
f1

2
(
x, 0, μ

)
= Ψ(0)L

(
μ
)
(Φx)

= Ψ(0)μ
[
−Φ(0)x + αΦ(−1)x + βδ(Φ(−1)x)

]

= Ψ(0)μ
{[
−(x1 + x4)vj − (x2 + x3)vj

]
+
(
α + 2β cos

2πj
n

)

×
[(
e−iu

∗τ∗x1 + eiu
∗τ∗x4

)
vj +
(
eiu

∗τ∗x2 + e−iu
∗τ∗x3

)
vj
]}

= μiu∗Ψ(0)
[
(x1 − x4)vj + (−x2 + x3)vj

]

= iμu∗

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1(x1 − x4)

a−1(−x2 + x3)

(a)−1(−x2 + x3)

a−1(x1 − x4)

⎞

⎟⎟⎟⎟⎟
⎠
.

(A.24)

These are the second-order terms in (μ, x) of (A.22), and following Faria and Magalhaes [26],
we have the second-order terms in (μ, x) of the normal form on center manifold as follows:

1
2
g1

2
(
x, 0, μ

)
= Projker(M1

2)
1
2
f1

2
(
x, 0, μ

)
. (A.25)

Here we recall that

M1
j

(
p
)(
x, μ
)
= Dxp

(
x, μ
)
Bx − Bp

(
x, μ
)
, j ≥ 2. (A.26)

In particular,

M1
j

(
μxqek

)
= iu∗τ∗μ

(
q1 − q2 + q3 − q4 + (−1)k

)
xqek,

∣∣q
∣∣ = j − 1, (A.27)

where j ≥ 2, 1 ≤ k ≤ 4, and {e1, e2, e3, e4} are the canonical basis for C4. Therefore, if |q| = 1,
then

ker
(
M1

2

)
∩ span

{
μxqek :

∣∣q
∣∣ = 1, k = 1, 2, 3, 4

}

= span
{
μx1e1, μx3e1, μx2e2, μx4e2, μx1e3, μx3e3, μx2e4, μx4e4

}
,

1
2
g1

2
(
x, 0, μ

)
= iμu∗

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1x1

−a−1x2

(a)−1x3

−a−1x4

⎞

⎟⎟⎟⎟⎟
⎠
.

(A.28)
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To compute g1
3(x, 0, μ), we first note that from (A.26) it follows that

g1
3
(
x, 0, μ

)
= Projker(M1

3)f
1
3

(
x, 0, μ

)

= Projker(M1
3)f

1
3 (x, 0, 0) +O

(
μ2|x|

)
,

(A.29)

since μxqej is not in Ker(M1
3), for |q| = 2, j = 1, 2, 3, 4. Next, we define

f1
3

(
x, 0, μ

)
= f1

3
(
x, 0, μ

)
+

3
2

[(
Dxf

1
2

)
U1

2 −
(
DxU

1
2

)
g1

2

](
x, 0, μ

)
+

3
2

[(
Dyf

1
2

)
h
](
x, 0, μ

)
,

(A.30)

where U1
2 is the change of variables associated with the transformation from f1

2 to g1
2 , and

h is such that M2
2(h) = g2

2 , that is, h = U2
2 is the change of variables associated with the

transformation of the second-order terms in the second equation of system (A.21). For μ = 0,
f1

2 (x, 0, 0) = g
1
2(x, 0, 0) = 0, and we have simply

1
3!
f1

3 (x, 0, 0) =
1
3!
f1

3 (x, 0, 0) = bτ
∗Ψ(0)

[
βδ
(
(Φ(−1)x)3

)
+ α(Φ(−1)x)3

]
, (A.31)

where we utilized the following notations:

(Φ(−1)x)3 =

⎛

⎜⎜⎜⎜⎜
⎝

((Φ(−1)x)1)
3

((Φ(−1)x)2)
3

: : :

((Φ(−1)x)n)
3

⎞

⎟⎟⎟⎟⎟
⎠
. (A.32)

Let

A1 = e−iu
∗τ∗x1 + eiu

∗τ∗x4, A2 = eiu
∗τ∗x2 + e−iu

∗τ∗x3. (A.33)
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We have

(Φ(−1)x)3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(A1 +A2)
3

(
e(2πi/n)jA1 + e−(2πi/n)jA2

)3

(
e(2πi/n)2jA1 + e−(2πi/n)2jA2

)3

...
...

...
(
e(2πi/n)(n−1)jA1 + e−(2πi/n)(n−1)jA2

)3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= A3
1v

3
j + 3A2

1A2vj +A3
2v

3
j + 3A1A

2
2vj ,

δ(Φ(−1)x)3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
e(2πi/n)jA1 + e−(2πi/n)jA2

)3
+
(
e(2πi/n)(n−1)jA1 + e−(2πi/n)(n−1)jA2

)3

(A1 +A2)3 +
(
e(2πi/n)2jA1 + e−(2πi/n)2jA2

)3

(
e(2πi/n)jA1 + e−(2πi/n)jA2

)3
+
(
e(2πi/n)3jA1 + e−(2πi/n)3jA2

)3

...
...

...

(A1 +A2)3 +
(
e(2πi/n)(n−2)jA1 + e−(2πi/n)(n−2)jA2

)3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(A.34)

Then, we have

Ψ(0)(Φ(−1)x)3 =
1
n

⎛

⎜⎜⎜⎜⎜⎜
⎝

(a)−1vTj

a−1vTj

(a)−1vTj

a−1vTj

⎞

⎟⎟⎟⎟⎟⎟
⎠

(
A3

1v
3
j + 3A2

1A2vj +A3
2v

3
j + 3A1A

2
2vj
)

= 3

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1A2
1A2

a−1A1A
2
2

(a)−1A1A
2
2

a−1A2
1A2

⎞

⎟⎟⎟⎟⎟
⎠
,

Ψ(0)δ(Φ(−1)x)3 =
[
(Ψ(0)δ)T

]T
(Φ(−1)x)3

=
[
δ(Ψ(0))T

]T
(Φ(−1)x)3
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=
[

1
n
δ
(
(a)−1vj , a

−1vj , (a)
−1vj , a

−1vj
)]T

(Φ(−1)x)3

=
[

1
n

2 cos
2πj
n

(
(a)−1vj , a

−1vj , (a)
−1vj , a

−1vj
)]T

(Φ(−1)x)3

=
1
n

2 cos
2πj
n

⎛

⎜⎜⎜⎜⎜⎜
⎝

(a)−1vTj

a−1vTj

(a)−1vTj

a−1vTj

⎞

⎟⎟⎟⎟⎟⎟
⎠

(
A3

1v
3
j + 3A2

1A2vj +A3
2vj

3 + 3A1A
2
2vj
)

= 6 cos
2πj
n

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1A2
1A2

a−1A1A
2
2

(a)−1A1A
2
2

a−1A2
1A2

⎞

⎟⎟⎟⎟⎟
⎠
.

(A.35)

Then, we have

1
3!
f1

3 (x, 0, 0) = bτ
∗Ψ(0)

[
βδ
(
(Φ(−1)x)3

)
+ α(Φ(−1)x)3

]

= bτ∗3
(
α + 2β cos

2πj
n

)

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1A2
1A2

a−1A1A
2
2

(a)−1A1A
2
2

a−1A2
1A2

⎞

⎟⎟⎟⎟⎟
⎠
.

(A.36)

Note that

A2
1A2 =

(
e−2iu∗τ∗x2

1 + 2x1x4 + e2iu∗τ∗x2
4

)(
eiu

∗τ∗x2 + e−iu
∗τ∗x3

)
,

A1A
2
2 =
(
e−iu

∗τ∗x1 + eiu
∗τ∗x4

)(
e2iu∗τ∗x2

2 + 2x2x3 + e−2iu∗τ∗x2
3

)
.

(A.37)

Also note that

M1
3
(
xqej
)
= 0, with

∣∣q
∣∣ = 3 iff q1 − q2 + q3 − q4 + (−1)j = 0, j = 1, 2, 3, 4. (A.38)
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Then

1
3!
g1

3(x, 0, 0) = Projker(M1
2)

1
3!
f1

3 (x, 0, 0)

= 3bτ∗
(
α + 2β cos

2πj
n

)

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1e−iu
∗τ∗
(
x2

1x2 + 2x1x3x4
)

a−1eiu
∗τ∗
(
x1x

2
2 + 2x2x3x4

)

(a)−1e−iu
∗τ∗
(
x2

3x4 + 2x1x2x3
)

a−1eiu
∗τ∗
(
x3x

2
4 + 2x1x2x4

)

⎞

⎟⎟⎟⎟⎟
⎠

= 3bτ∗

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1(1 + iu∗)x1(x1x2 + 2x3x4)

a−1(1 − iu∗)x2(x1x2 + 2x3x4)

(a)−1(1 + iu∗)x3(x3x4 + 2x1x2)

a−1(1 − iu∗)x4(x3x4 + 2x1x2)

⎞

⎟⎟⎟⎟⎟
⎠
.

(A.39)

Consequently, the normal form on the center manifold becomes

ẋ = iu∗τ∗

⎛

⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞

⎟⎟⎟⎟⎟
⎠
x + iμu∗

⎛

⎜⎜⎜⎜⎜
⎝

(a)−1x1

−a−1x2

(a)−1x3

−a−1x4

⎞

⎟⎟⎟⎟⎟
⎠

+
1
3!
g1

3(x, 0, 0) +O
(
μ2|x|

)
+O
(
|x|4
)

(A.40)

for x ∈ C4. Changing to real coordinates by the change of variables

x = Sω, with S =

⎛

⎜⎜⎜⎜⎜
⎝

1 −i 0 0

1 i 0 0

0 0 1 −i
0 0 1 i

⎞

⎟⎟⎟⎟⎟
⎠

(A.41)

and letting

ρ2
1 = x1x2 = ω2

1 +ω
2
2,

ρ2
2 = x3x4 = ω2

3 +ω
2
4,

(A.42)
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we obtain

(
ω̇1

ω̇2

)

= u∗τ∗
(
ω2

−ω1

)

+ μu∗
(

Im
(
a−1)ω1 + Re

(
a−1)ω2

−Re
(
a−1)ω1 + Im

(
a−1)ω2

)

+ 3bτ∗
(
ρ2

1 + 2ρ2
2

)(Re
(
a−1(1 − iu∗)

)
ω1 − Im

(
a−1(1 − iu∗)

)
ω2

Im
(
a−1(1 − iu∗)

)
ω1 + Re

(
a−1(1 − iu∗)

)
ω2

)

+O
(
μ2|ω|

)
+O
(
|ω|4
)
,

(
ω̇3

ω̇4

)

= u∗τ∗
(
ω4

−ω3

)

+ μu∗
(

Im
(
a−1)ω3 + Re

(
a−1)ω4

−Re
(
a−1)ω3 + Im

(
a−1)ω4

)

+ 3bτ∗
(
ρ2

2 + 2ρ2
1

)(Re
(
a−1(1 − iu∗)

)
ω3 − Im

(
a−1(1 − iu∗)

)
ω4

Im
(
a−1(1 − iu∗)

)
ω3 + Re

(
a−1(1 − iu∗)

)
ω4

)

+O
(
μ2|ω|

)
+O
(
|ω|4
)
.

(A.43)

If we use double polar coordinates

ω1 = ρ1 cosχ1,

ω2 = ρ1 sinχ1,

ω3 = ρ2 cosχ2,

ω4 = ρ2 sinχ2,

(A.44)

then we find

ρ̇1 =
(
a1μ + b1ρ

2
1 + 2b1ρ

2
2

)
ρ1 +O

(
μ2∣∣(ρ1, ρ2

)∣∣
)
+O
(∣∣(ρ1, ρ2

)∣∣4
)
,

ρ̇2 =
(
a1μ + b1ρ

2
2 + 2b1ρ

2
1

)
ρ2 +O

(
μ2∣∣(ρ1, ρ2

)∣∣
)
+O
(∣∣(ρ1, ρ2

)∣∣4
)
,

χ̇1 = −u∗τ∗ + c1μ + d1ρ
2
1 + 2d1ρ

2
2 +O

(
μ2∣∣(ρ1, ρ2

)∣∣
)
+O
(∣∣(ρ1, ρ2

)∣∣4
)
,

χ̇2 = −u∗τ∗ + c1μ + d1ρ
2
2 + 2d1ρ

2
1 +O

(
μ2∣∣(ρ1, ρ2

)∣∣
)
+O
(∣∣(ρ1, ρ2

)∣∣4
)
,

(A.45)

with

a1 = Im
(
a−1
)
u∗, b1 = Re

(
a−1(1 − iu∗)

)
3bτ∗,

c1 = −u∗ Re
(
a−1
)
, d1 = 3bτ∗Im

(
a−1(1 − iu∗)

)
.

(A.46)
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As

a−1 =
1 + τ∗ + iu∗τ∗

(1 + τ∗)2 + (u∗τ∗)2
, (A.47)

we have

a1 =
(u∗)2τ∗

(1 + τ∗)2 + (u∗τ∗)2
,

b1 = 3bτ∗
1 + τ∗ + (u∗)2τ∗

(1 + τ∗)2 + (u∗τ∗)2
,

c1 = − u∗(1 + τ∗)

(1 + τ∗)2 + (u∗τ∗)2
,

d1 = −3b
u∗τ∗

(1 + τ∗)2 + (u∗τ∗)2
.

(A.48)

Part 2.

Case 2 ((α, β) ∈ E0). In this case, at τ = τ∗ the characteristic equation of (A.5) has imaginary
zeros ±iu∗τ∗ which are simple, where τ∗ = τ (0)0 and

u∗τ∗ = ω0 =
√
(α + 2β)2 − 1 (A.49)

are given by (3.5) and (3.7), respectively. Since

Mn(0, iu∗)v0 =
[
iu∗ + 1 −

(
α + 2β

)
e−iu

∗τ∗
]
v0 = 0, (A.50)

where v0 = (1, 1, . . . , 1)T , the center space at τ = τ∗ and in complex coordinates is X =
span(φ1, φ2), where

φ1(θ) = eiu
∗τ∗θv0,

φ2(θ) = e−iu
∗τ∗θv0,

θ ∈ [−1, 0]. (A.51)

Let

Φ =
(
φ1, φ2

)
. (A.52)

From vT0 v0 = n, it is easy to check that a basis for the adjoint space X∗ is

Ψ(s) =

(
ψ1(s)

ψ2(s)

)

=
1
n

(
(a)−1e−iu

∗τ∗svT0

a−1eiu
∗τ∗svT0

)

, s ∈ [0, 1] (A.53)
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with (Ψ,Φ) = Id (the 2 × 2 identity matrix) for the adjoint bilinear from on C∗ × C defined in
[27], where

a = 1 + τ∗ − iu∗τ∗. (A.54)

It is useful to note the following:

Ψ(0) =
1
n

(
(a)−1vT0

a−1vT0

)

, (A.55)

and for x ∈ C2, we have

Φ(0)x = [v0, v0] x = (x1 + x2)v0,

Φ(−1)x =
(
e−iu

∗τ∗x1 + eiu
∗τ∗x2

)
v0,

δ(Φ(−1))x = 2
(
e−iu

∗τ∗x1 + eiu
∗τ∗x2

)
v0.

(A.56)

For the new parameter μ = τ − τ∗ and decomposition zt = Φx(t) + yt, x ∈ C2, y ∈ Q1, and
with

B = diag(iu∗τ∗, −iu∗τ∗), (A.57)

the normal form of (1.2) on the center manifold of the origin at μ = 0 is

ẋ = Bx +
1
2
g1

2
(
x, 0, μ

)
+

1
3!
g1

3
(
x, 0, μ

)
+ h.o.t., (A.58)

and we will compute the second- and third-order terms, that is, g1
2(x, 0, μ) and g1

3(x, 0, μ), as
we have done above for Case 2 of Theorem 3.10 We have

1
2
f1

2
(
x, 0, μ

)
= Ψ(0)L

(
μ
)
(Φx)

= Ψ(0)μ
[
−Φ(0)x + αΦ(−1)x + βδ(Φ(−1)x)

]

= Ψ(0)μ
[
−(x1 + x2) +

(
α + 2β

)(
e−iu

∗τ∗x1 + eiu
∗τ∗x2

)]
v0

= Ψ(0)μ[−(x1 + x2) + (1 + iu∗)x1 + (1 − iu∗)x2]v0

= iμu∗
(
(a)−1(x1 − x2)

a−1(x1 − x2)

)

.

(A.59)
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Since

1
2
g1

2
(
x, 0, μ

)
= Projker(M1

2)
1
2
f1

2
(
x, 0, μ

)
,

M1
j

(
μxqek

)
= iu∗τ∗μ

(
q1 − q2 + (−1)k

)
xqek,

∣∣q
∣∣ = j − 1, k = 1, 2, j ≥ 2

(A.60)

for the canonical basis {e1, e2} for C2, then

ker
(
M1

2

)
∩ span

{
μxqek :

∣∣q
∣∣ = 1, k = 1, 2

}
= span

{
μx1e1, μx2e2

}
,

1
2
g1

2
(
x, 0, μ

)
= iμu∗

(
(a)−1x1

−a−1x2

)

.

(A.61)

As for the previous case and for similar reasons,

g1
3
(
x, 0, μ

)
= Projker(M1

3)
f1

3

(
x, 0, μ

)

= Projker(M1
3)f

1
3 (x, 0, 0) +O

(
μ2|x|

)
,

(A.62)

where

1
3!
f1

3 (x, 0, 0) = bτ
∗Ψ(0)

[
βδ
(
(Φ(−1)x)3

)
+ α(Φ(−1)x)3

]

= bτ∗Ψ(0)
(
α + 2β

)(
e−iu

∗τ∗x1 + eiu
∗τ∗x2

)3
v0

= bτ∗
(
α + 2β

)(
e−iu

∗τ∗x1 + eiu
∗τ∗x2

)3
(
(a)−1

a−1

)

.

(A.63)

Also note that

M1
3
(
xqej
)
= iu∗τ∗

(
q1 − q2 + (−1)j

)
xqej ,

∣∣q
∣∣ = 3, j = 1, 2, (A.64)

which implies that

ker
(
M1

3

)
∩ span

{
xqej :

∣∣q
∣∣ = 3, j = 1, 2

}
= span

{
x2

1x2e1, x1x
2
2e2

}
. (A.65)

We can then derive

1
3!
g1

3(x, 0, 0) = 3bτ∗
(
(a)−1(1 + iu∗)x2

1x2

a−1(1 − iu∗)x1x
2
2

)

. (A.66)
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Consequently, the normal form on the center manifold becomes

ẋ = iu∗τ∗
(

1 0

0 −1

)

x + iμu∗
(
(a)−1x1

−a−1x2

)

+
1
3!
g1

3(x, 0, 0) +O
(
μ2|x|

)
+O
(
|x|4
)

(A.67)

for x ∈ C2. Changing to real coordinates by the change of variables

x = Sω, with S =

(
1 −i
1 i

)

, (A.68)

and letting

ρ2 = x1x2 = ω2
1 +ω

2
2, (A.69)

we obtain

(
ω̇1

ω̇2

)

= u∗τ∗
(
ω2

−ω1

)

+ μu∗
(

Im
(
a−1)ω1 + Re

(
a−1)ω2

−Re
(
a−1)ω1 + Im

(
a−1)ω2

)

+ 3bτ∗ρ2

(
Re
(
a−1(1 − iu∗)

)
ω1 − Im

(
a−1(1 − iu∗)

)
ω2

Im
(
a−1(1 − iu∗)

)
ω1 + Re

(
a−1(1 − iu∗)

)
ω2

)

+O
(
μ2|ω|

)
+O
(
|ω|4
)
.

(A.70)

If we use polar coordinates

ω1 = ρ cosχ,

ω2 = ρ sinχ,
(A.71)

then we find that

ρ̇ =
(
a1μ + b1ρ

2
)
ρ +O

(
μ2ρ
)
+O
(
ρ4
)
,

χ̇ = −u∗τ∗ + c1μ + d1ρ
2 +O

(
μ2ρ
)
+O
(
ρ4
)
,

(A.72)

where a1, b1, c1, and d1 are as in (A.48).
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