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1. Introduction

The large-scale scientific and engineering computations need the parallel computer with
massively parallel processors of higher speed and large memory and also need effective
parallel numerical methods and parallel algorithms. Some numerical methods directly have
parallel character and have great efficiency on using in the parallel computer, but much
numerical methods usually need to be reconstructed to be more appropriate for the parallel
computing [1].

Consider the Telegraph equation of the form

∂2u

∂t2
+ c

∂u

∂t
= a2 ∂

2u

∂x2
+ bu + F(x, t), (1.1)

where c > 0 and b < 0. Numerical solution of this equation based on finite difference has been
successfully proposed in [2–4].

There are two types of schemes for numerical solution of time-dependent partial
differential equations, implicit and explicit schemes. The former has no restriction on its
time stepping. But in each time step one has to solve a global system of equations. The
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implementation on parallel computer is not straightforward due to its global nature. The
latter is easy to program and implement on parallel computer. However, it suffers the severely
restricted time step size from stability requirement [5]. Recently, a so-called alternating
explicit-implicit scheme has been studied by many authors, which is based on the concept
of domain decomposition and a combination of implicit schemes and explicit schemes [6, 7].
In these approaches, a physical domain is divided into several sub-domains. At each time
step, the problem is solved in some sub-domain implicitly and others explicitly. For the next
time step the solution scheme is changed (implicit is changed to explicit and vice versa).
The main advantage of alternating explicit-implicit schemes is their parallelism. Although
some families of these schemes are unconditionally stable, some families of these schemes
still give rise to restriction involving the time step, however, this restriction is much less
severe than for a fully explicit scheme. In spite of intrinsic parallel nature and good stability of
alternating explicit-implicit schemes, these schemes still have implicit phase, that is, solution
of problem implicitly over implicit subdomains. Implicit phase leads to solution of linear or
nonlinear algebraic system of equations at each time level that is not desirable due to high
computational cost, especially for large-scale problems. Therefore an unconditionally stable
fully explicit scheme with good parallelism is desirable. In [7], Saul’yev has introduced two
unconditionally stable fully explicit asymmetric schemes for solution of diffusion equation.
Unfortunately the Saul’yev schemes are not intrinsically parallel.

In this paper we developed a new family of group explicit scheme for solution of
Telegraph equations. The presented scheme is based on domain decomposition concept and
using asymmetric Saul’yev schemes for internal nodes of each sub-domain and Evan’s group
explicit method [8] for sub-domain’s boundary nodes. The rest of this paper is organized
as follows. In Section 2, we construct the scheme and describe details of implementation. In
Section 3 the stability analysis is presented and in Section 4, some numerical examples are
given to show the stability and accuracy of presented scheme.

2. Construction of New Group Explicit Scheme

In this section the numerical solution of the following problem is considered:

∂2u

∂t2
+ c

∂u

∂t
= a2 ∂

2u

∂x2
+ bu + F(x, t), (x, t) ∈ Ω,

u(x, 0) = f(x), x ∈ [0, 1],

ut(x, 0) = g(x), x ∈ [0, 1],

ux(0, t) = α(t), t ∈ [0, T],

ux(1, t) = β(t), t ∈ [0, T],

(2.1)

where c > 0, b < 0, f(x) and g(x)are initial conditions, and α(t) and β(t) are prescribed
boundary conditions . The domain Ω = [0, 1]× [0, T] will be divided into a M ×N mesh with
spatial step size h = 1/M in x direction and the time step size k = T/N, respectively. Grid
points (xi, tj) are given by xi = ih, i = 0, 1, 2, . . . ,M, and tj = jk, j = 0, 1, 2, . . . ,N, in which
M and N are positive integers. We use u

j

i to denote the finite difference approximations
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of u(ih, jk). In [7], Saul’yev has introduced two asymmetric approximations for the second
derivative uxx as follows:

A =
u
j

i+1 − u
j

i − u
j+1
i + uj+1

i−1

h2
,

B =
u
j+1
i+1 − u

j+1
i − uji + u

j

i−1

h2

(2.2)

By combining with the usual form for utt + cut − bu, one gets the Saul’yev formula,

u
j−1
i − 2uji + u

j+1
i

k2
+ c

u
j+1
i − uj−1

i

2k
− buji =

⎧
⎨

⎩

a2A + Fji ,

a2B + Fji .
(2.3)

So for the Saul’yev scheme A, we have

−ra2u
j+1
i−1 +

(

1 +
ck

2
+ ra2

)

u
j+1
i =

(
2 + bk2 − ra2

)
u
j

i + ra
2u

j

i+1 −
(

1 − ck
2

)

u
j−1
i + k2F

j

i , (2.4)

for i = 0, 1, 2, . . . ,M, where r = k2/h2. Although the above approximation does not appear
explicit, because uj+1

i and u
j+1
i−1 are on the left-hand side, a suitable use of the equation makes

it explicit. Hence we write (2.4) in the following form:

u
j+1
i =

1
1 + ck/2 + ra2

[

ra2u
j+1
i−1 +

(
2 + bk2 − ra2

)
u
j

i + ra
2u

j

i+1 −
(

1 − ck
2

)

u
j−1
i + k2F

j

i

]

, (2.5)

for i = 0, 1, 2, . . . ,M. It is important to note that the Saul’yev scheme A is explicit if the
calculation begins at the left boundary, and moves to the right, so that only the single value
u
j+1
i is unknown. It can be easily seen that this explicit formula is unconditionally stable.

Replacing Saul’yev B in (2.3), then

(

1 +
ck

2
+ ra2

)

u
j+1
i − ra2u

j+1
i+1 = ra2u

j

i−1 +
(

2 + bk2 − ra2
)
u
j

i −
(

1 − ck
2

)

u
j−1
i + k2F

j

i , (2.6)

for i =M,M − 1, . . . , 1, 0. The computational molecule of formulae (2.4) and (2.6) is shown in
Figure 1. The Saul’yev formula B is in the following form:

u
j+1
i =

1
1 + ck/2 + ra2

[

ra2u
j+1
i+1 + ra2u

j

i−1 +
(

2 + bk2 − ra2
)
u
j

i −
(

1 − ck
2

)

u
j−1
i + k2F

j

i

]

, (2.7)

for i =M,M−1, . . . , 1, 0. The Saul’yev scheme B has a similar explicit nature if the calculations
proceed to the left from the right-hand boundary. Application of Saul’yev formulae A and B
alternatively give better accuracy and error distribution. Obviously the Saul’yev scheme A or
B is not intrinsically parallel.
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−ra2

i − 1

1 +
ck

2
+ ra2

2 + bk2 − ra2

−(1 − ck
2 )

j + 1

j

j − 1

i i + 1

ra2

Formula A

−ra2

i − 1

1 +
ck

2
+ ra2

2 + bk2 − ra2

−(1 − ck
2 )

j + 1

j

j − 1

i i + 1

ra2

Formula B

Figure 1: The computational molecule for the Saul’yev formulae A and B.

For parallel implementation of Saul’yev scheme, we use concept of domain decompo-
sition. For convenience, we only decompose the domain [0, 1] into two sub-domains, which
are [0, xξ] and [xξ+1, 1]. If the formula A is used for the sub-domain 1, ([0, xξ]), and the
calculation begins at the left boundary, and moves to the right and in similar manner, the
formula B is used for the sub-domain 2, ([xξ+1, 1]), and the calculations proceed to the left
from the right-hand boundary, then the calculation of each sub-domain is independent from
another. For the next time step the formula B is used for the sub-domain 1 and formula A
is used for the sub-domain 2 and the calculation is started from points xξ and xξ+1 for sub-
domains 1 and 2, respectively. But we apply the initial condition ut(x, 0) = g(x) only in the
j = 1, therefore, we consider two cases j = 0, 1 and j ≥ 2. In case 1, and j = 0, for i = 0, 1, . . . , ξ
the solution is approximated by (2.4)

−ra2u1
i−1 +

(

1 +
ck

2
+ ra2

)

u1
i =

(
2 + bk2 − ra2

)
u0
i + ra

2u0
i+1 −

(

1 − ck
2

)

u−1
i + k2F0

i . (2.8)

By initial condition ut(x, 0) = g(x), we have u−1
i = u1

i − 2kg(xi) , then

−ra2u1
i−1 +

(
2 + ra2

)
u1
i =

(
2 + bk2 − ra2

)
u0
i + ra

2u0
i+1 + 2k

(

1 − ck
2

)

g(xi) + k2F0
i , (2.9)

while for i = ξ + 1, ξ + 2, . . . ,M the solution is approximated by (2.6)

(

1 +
ck

2
+ ra2

)

u1
i − ra

2u1
i+1 = ra2u0

i−1 +
(

2 + bk2 − ra2
)
u0
i −

(

1 − ck
2

)

u−1
i + k2F0

i . (2.10)

Similarly, by initial condition ut(x, 0) = g(x), we have

(
2 + ra2

)
u1
i − ra

2u1
i+1 = ra2u0

i−1 +
(

2 + bk2 − ra2
)
u0
i + 2k

(

1 − ck
2

)

g(xi) + k2F0
i . (2.11)
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Also, in case 1, and j = 1, for sub-domain 1, we use formula (2.6) and for sub-domain 2, we
use formula (2.4), then at node (xξ, t2), the solution is approximated by (2.6)

(

1 +
ck

2
+ ra2

)

u2
ξ − ra

2u2
ξ+1 = ra2u1

ξ−1 +
(

2 + bk2 − ra2
)
u1
ξ −

(

1 − ck
2

)

u0
ξ + k

2F1
ξ , (2.12)

and at node (xξ+1, t2), the solution is approximated by (2.4)

−ra2u2
ξ +

(

1 +
ck

2
+ ra2

)

u2
ξ+1 =

(
2 + bk2 − ra2

)
u1
ξ+1 + ra

2u1
ξ+2 −

(

1 − ck
2

)

u0
ξ+1 + k

2F1
ξ+1.

(2.13)

Assum that μ = 1+ ck/2+ ra2, and ω = 2+bk2 − ra2, then the matrix form of (2.12) and (2.13)
will be

[
μ −ra2

−ra2 μ

][
u2
ξ

u2
ξ+1

]

=

[
ω 0

0 ω

][
u1
ξ

u1
ξ+1

]

+

⎡

⎢
⎢
⎢
⎣

ra2u1
ξ−1 −

(

1 − ck
2

)

u0
ξ
+ k2F1

ξ

ra2u1
ξ+2 −

(

1 − ck
2

)

u0
ξ+1 + k

2F1
ξ+1

⎤

⎥
⎥
⎥
⎦
, (2.14)

then, we have

[
u2
ξ

u2
ξ+1

]

=
1

μ2 − r2a4

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
μω ra2ω

ra2ω μω

][
u1
ξ

u1
ξ+1

]

+

[
μ ra2

ra2 μ

]

⎡

⎢
⎢
⎢
⎣

ra2u1
ξ−1 −

(

1 − ck
2

)

u0
ξ + k

2F1
ξ

ra2u1
ξ+2 −

(

1 − ck
2

)

u0
ξ+1 + k

2F1
ξ+1

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(2.15)

or, we have

[
u2
ξ

u2
ξ+1

]

=
1

μ2 − r2a4

×

⎡

⎢
⎢
⎢
⎣

ra2μu1
ξ−1+μωu

1
ξ
+ra2ωu1

ξ+1+r
2a4u1

ξ+2 −μ
(

1− ck
2

)

u0
ξ
−ra2

(

1− ck
2

)

u0
ξ+1+μk

2F1
ξ
+ra2k2F1

ξ+1

r2a4u1
ξ−1+ra

2ωu1
ξ
+μωu1

ξ+1+ra
2μu1

ξ+2 −ra
2
(

1− ck
2

)

u0
ξ
−μ

(

1− ck
2

)

u0
ξ+1+ra

2k2F1
ξ
+μk2F1

ξ+1

⎤

⎥
⎥
⎥
⎦

(2.16)

which can be diagrammatically represented by the computational molecule given in Figure 2.
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1

ra2

μ2 − r2a4

μω

μ2 − r2a4

ra2ω

μ2 − r2a4

r2a4

μ2 − r2a4

ra2( ck2 − 1)

μ2 − r2a4

μ( ck2 − 1)

μ2 − r2a4

ξ − 1 ξ ξ + 1 ξ + 2

j = 2

j = 1

j = 0

(a)

1

ra2μ

μ2 − r2a4

μω

μ2 − r2a4
ra2ω

μ2 − r2a4

r2a4

μ2 − r2a4

ra2( ck2 − 1)

μ2 − r2a4

μ( ck2 − 1)

μ2 − r2a4

ξ − 1 ξ ξ + 1 ξ + 2

j = 2

j = 1

j = 0

(b)

Figure 2: The computational molecule for node (xξ, t2) (a) and node (xξ+1, t2) (b).

But, in case 2, (j ≥ 2), for j = 2, 4, . . . , the solution at the nodes i = 0, 1, . . . , ξ is
approximated by (2.4), and the solution at the nodes i = ξ + 1, ξ + 2, . . . ,M is approximated
by (2.6), where j = 2. Similary, at the node (xξ, tj+1), the solution is approximated by (2.6),

(

1 +
ck

2
+ ra2

)

u
j+1
ξ
− ra2u

j+1
ξ+1 = ra2u

j

ξ−1 +
(

2 + bk2 − ra2
)
u
j

ξ
−
(

1 − ck
2

)

u
j−1
ξ

+ k2F
j

ξ
, (2.17)

while at node (xξ+1, tj+1) the solution is approximated by (2.4),

−ra2u
j+1
ξ +

(

1 +
ck

2
+ ra2

)

u
j+1
ξ+1 =

(
2 + bk2 − ra2

)
u
j

ξ+1 + ra
2u

j

ξ+2 −
(

1 − ck
2

)

u
j−1
ξ+1 + k

2F
j

ξ+1.

(2.18)

If (2.17) and (2.18) are rewritten in matrix form:

[
μ −ra2

−ra2 μ

]⎡

⎣
u
j+1
ξ

u
j+1
ξ+1

⎤

⎦ =

[
ω 0

0 ω

]⎡

⎣
u
j

ξ

u
j

ξ+1

⎤

⎦ +

⎡

⎢
⎢
⎣

ra2u
j

ξ−1 −
(

1 − ck
2

)

u
j−1
ξ + k2F

j

ξ

ra2u
j

ξ+2 −
(

1 − ck
2

)

u
j−1
ξ+1 + k

2F
j

ξ+1

⎤

⎥
⎥
⎦, (2.19)

whose (2×2) matrix of coefficient can easily be inverted, the equation can be written in explicit
form as

⎡

⎣
u
j+1
ξ

u
j+1
ξ+1

⎤

⎦=
1

μ2 − r2a4

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
μω ra2ω

ra2ω μω

]⎡

⎣
u
j

ξ

u
j

ξ+1

⎤

⎦+

[
μ ra2

ra2 μ

]

⎡

⎢
⎢
⎢
⎣

ra2u
j

ξ−1 −
(

1 − ck
2

)

u
j−1
ξ

+ k2F
j

ξ

ra2u
j

ξ+2 −
(

1 − ck
2

)

u
j−1
ξ+1 + k

2F
j

ξ+1

⎤

⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(2.20)
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· · ·

· · ·
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j = 4

j = 3

j = 2

j = 1

i = 1 2 3 ξ − 2 ξ − 1 ξ ξ + 1 ξ + 2 ξ + 3 M − 3 M − 2 M − 1
Sub-domain 1 Sub-domain 2

Figure 3: The diagram of the parallel implementation of asymmetric Saul’yev schemes for two sub-
domains.
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· · ·

· · ·
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...

...
j = 4

j = 3

j = 2

j = 1

Sub-domain 1 Sub-domain 2 Sub-domain 3 Sub-domain 4

Figure 4: The diagram of the parallel implementation of asymmetric Saul’yev schemes.

This simplifies to

⎡

⎣
u
j+1
ξ

u
j+1
ξ+1

⎤

⎦

=
1

μ2 − r2a4

×

⎡

⎢
⎢
⎣

ra2μu
j

ξ−1+μωu
j

ξ+ra
2ωu

j

ξ+1+r
2a4u

j

ξ+2 −μ
(

1− ck
2

)

u
j−1
ξ −ra

2
(

1− ck
2

)

u
j−1
ξ+1+μk

2F
j

ξ+ra
2k2F

j

ξ+1

r2a4u
j

ξ−1+ra
2ωu

j

ξ+μωu
j

ξ+1+ra
2μu

j

ξ+2 −ra
2
(

1− ck
2

)

u
j−1
ξ −μ

(

1− ck
2

)

u
j−1
ξ+1+ra

2k2F
j

ξ+μk
2F

j

ξ+1

⎤

⎥
⎥
⎦

(2.21)

which similarity can be diagrammatically represented by the computational molecule given
in Figure 2. The flow chart of this method is displayed in Figure 3. We use � to denote the
scheme (2.4), � to denote the scheme (2.6) and � and � to denote the scheme (2.16).

Implementation of this algorithm for more than two sub-domains is straightforward
as follows (see Figure 4). For more than two sub-domains, we have :

(i) Division of spatial computational domain to desired number of sub-domains, based
on load balancing constraint.
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(ii) Indication of sweeping direction for each sub-domain. Sweeping direction of each
sub-domain must be in opposite direction of its neighbors. For example, we use LR
(left to right) direction for odd sub-domains and RL (right to left) direction for even
sub-domains. This sweeping direction is inversed after each time step.

(iii) Updating start node of each sub-domain with (2.13) and remained nodes with (2.5)
or (2.6). If start node is located at physical boundaries, the prescribed boundary
value is used (without using (2.13)).

3. Stability Analysis and Convergence

3.1. Stability Analysis

In this section we prove unconditional stability of presented scheme by the matrix method.
Pay attention that in the best case, if the number of the sub-domains is reduced to one
sub-domain, the presented scheme converted to asymmetric Saul’yev schemes that are
unconditionally stable (see [9]) and in the worst case, if the number of sub-domains increased
such that each sub-domain only has two nodes the presented scheme is converted to
alternating group explicit method that is unconditionally stable (see [6]).

To prove the stability of presented scheme, suppose that the spatial computational
domain is divided to number of κ sub-domains (κ is even for simplicity) and each sub-
domain contains number of λ nodes. Also the first sub-domain contains the left Neumann
boundary node and the last sub-domain contains the right Neumann boundary node as
additional nodes. Similarly, the presented scheme can be expressed in two cases. In the first
case, considering j = 0, 1, then we have :

(
2I + ra2G1

)
U1 =

((
2 + bk2

)
I − ra2G2

)
U0 + B1,

((

1 +
ck

2

)

I + ra2G2

)

U2 =
((

2 + bk2
)
I − ra2G1

)
U1 + B2,

(3.1)

where Uj = (uj0, u
j

1, . . . , u
j

M−1, u
j

M)T , j = 0, 1, 2, . . ., and

B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2k
(

1 − ck
2

)

g(x0) + k2F(x0, t0) − 2ra2hα(t1)

2k
(

1 − ck
2

)

g(x1) + k2F(x1, t0)

2k
(

1 − ck
2

)

g(x2) + k2F(x2, t0)

...

2k
(

1 − ck
2

)

g(xM−2) + k2F(xM−2, t0)

2k
(

1 − ck
2

)

g(xM−1) + k2F(xM−1, t0)

2k
(

1 − ck
2

)

g(xM) + k2F(xM, t0) + 2ra2hβ(t1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(

1 − ck
2

)

u0
0 + k

2F(x0, t1) − 2ra2hα(t1)

−
(

1 − ck
2

)

u0
1 + k

2F(x1, t1)

−
(

1 − ck
2

)

u0
2 + k

2F(x2, t1)

...

−
(

1 − ck
2

)

u0
M−2 + k

2F(xM−2, t1)

−
(

1 − ck
2

)

u0
M−1 + k

2F(xM−1, t1)

−
(

1 − ck
2

)

u0
M + k2F(xM, t1) + 2ra2hβ(t1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.2)

and in the second case, j = 2, 4, . . .,

((

1 +
ck

2

)

I + ra2G1

)

Uj+1 =
((

2 + bk2
)
I − ra2G2

)
Uj + Bj+1,

((

1 +
ck

2

)

I + ra2G2

)

Uj+2 =
((

2 + bk2
)
I − ra2G1

)
Uj+1 + Bj+2,

(3.3)

where

Bj+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(

1 − ck
2

)

u
j−2
0 + k2F

(
x0, tj

)
− 2ra2hα

(
tj+1

)

−
(

1 − ck
2

)

u
j−2
1 + k2F

(
x1, tj

)

−
(

1 − ck
2

)

u
j−2
2 + k2F

(
x2, tj

)

...

−
(

1 − ck
2

)

u
j−2
M−2 + k

2F
(
xM−2, tj

)

−
(

1 − ck
2

)

u
j−2
M−1 + k

2F
(
xM−1, tj

)

−
(

1 − ck
2

)

u
j−2
M + k2F

(
xM, tj

)
+ 2ra2hβ

(
tj+1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Bj+2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(

1 − ck
2

)

u
j−1
0 + k2F

(
x0, tj+1

)
− 2ra2hα

(
tj+1

)

−
(

1 − ck
2

)

u
j−1
1 + k2F

(
x1, tj+1

)

−
(

1 − ck
2

)

u
j−1
2 + k2F

(
x2, tj+1

)

...

−
(

1 − ck
2

)

u
j−1
M−2 + k

2F
(
xM−2, tj+1

)

−
(

1 − ck
2

)

u
j−1
M−1 + k

2F
(
xM−1, tj+1

)

−
(

1 − ck
2

)

u
j−1
M + k2F

(
xM, tj+1

)
+ 2ra2hβ

(
tj+1

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3.4)

In both cases, G1 and G2 are

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1

−1 1 0

. . . . . . . . .

−1 1 0

0 1 −1

. . . . . . . . .

0 1 −1

0 1 −1

−1 1 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

−1 1 0

0 1 −1

. . . . . . . . .

0 1 −1

−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(M+1)×(M+1)
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G2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1

0 1 −1

. . . . . . . . .

0 1 −1

−1 1 0

. . . . . . . . .

−1 1 0

−1 1 0

0 1 −1

0 1 −1

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 1 −1

−1 1 0

. . . . . . . . .

−1 1 0

−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(M+1)×(M+1)

(3.5)

assume that

Pκ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1

−1 1

. . .

−1 1

−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

λ×(λ+1)

, Qκ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1

1 −1

. . .

1 −1

1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

λ×(λ+1)

, (3.6)
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then we have

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1

P1

Q2

. . .

Pκ−1

Qκ

−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1

0 Q1

P2

. . .

Qκ−1

Pκ 0

−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.7)

By eliminating U1 from (3.1) we obtain

U2 = Φ̂U0 + Υ̂, (3.8)

where

Φ̂ =
((

1 +
ck

2

)

I + ra2G2

)−1((
2 + bk2

)
I − ra2G1

)(
2I + ra2G1

)−1((
2 + bk2

)
I − ra2G2

)
,

Υ̂ =
((

1 +
ck

2

)

I + ra2G2

)−1((
2 + bk2

)
I − ra2G1

)(
2I + ra2G1

)−1
B1

+
((

1 +
ck

2

)

I + ra2G2

)−1

B2.

(3.9)

similarly, by eliminating Uj+1 from (3.3) we obtain

Uj+2 = ΦUj + Υ, j = 2, 4, . . . , (3.10)

where

Φ =
((

1 +
ck

2

)

I + ra2G2

)−1((
2 + bk2

)
I − ra2G1

)((

1 +
ck

2

)

I + ra2G1

)−1

×
((

2 + bk2
)
I − ra2G2

)
,

Υ =
((

1 +
ck

2

)

I + ra2G2

)−1((
2 + bk2

)
I − ra2G1

)((

1 +
ck

2

)

I + ra2G1

)−1

Bj+1

+
((

1 +
ck

2

)

I + ra2G2

)−1

Bj+2.

(3.11)
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By Lax-Richtmyer condition of stability, the below inequality must be satisfy

∥
∥
∥Φ̂

∥
∥
∥ ≤ 1, ‖Φ‖ ≤ 1. (3.12)

then we have

∥
∥
∥Φ̂

∥
∥
∥ ≤

∥
∥
∥
∥
∥
((1 +

ck

2
)I + ra2G2)

−1
∥
∥
∥
∥
∥
·
∥
∥
∥

(
2 + bk2

)
I − ra2G1

∥
∥
∥

·
∥
∥
∥(2I + ra2G1)

−1
∥
∥
∥ ·

∥
∥
∥

(
2 + bk2

)
I − ra2G2

∥
∥
∥,

‖Φ‖ ≤
∥
∥
∥
∥
∥
((1 +

ck

2
)I + ra2G2)

−1
∥
∥
∥
∥
∥
·
∥
∥
∥

(
2 + bk2

)
I − ra2G1

∥
∥
∥

·
∥
∥
∥
∥
∥
((1 +

ck

2
)I + ra2G1)

−1
∥
∥
∥
∥
∥
·
∥
∥
∥

(
2 + bk2

)
I − ra2G2

∥
∥
∥.

(3.13)

Note that the matrixs G1 and G2 are singular, also must be M | κ, then for M and κ, the
eignvalues of G1 and G2 are

eig(G1) =

⎧
⎨

⎩
1, 1, 1, . . . , 1
︸ ︷︷ ︸

M−κ−2

, 2, 0, 2, 0, . . . , 2, 0

⎫
⎬

⎭
,

eig(G2) =

⎧
⎨

⎩
1, 1, 1, . . . , 1
︸ ︷︷ ︸

M−κ

, 2, 0, 2, 0, . . . , 2, 0

⎫
⎬

⎭
.

(3.14)

It easy to see that [3, 4], the Φ̂ and Φ are nonsingular and for all r > 0

∥
∥
∥Φ̂

∥
∥
∥ ≤ 1, ‖Φ‖ ≤ 1. (3.15)

Then the following theorem satisfies for Telegraph equation.

Theorem 3.1. The parallel implementation of asymmetric Saul’yev schemes for the solution of
Telegraph equation (2.1) is unconditionally stable for all r > 0.

3.2. Convergence

The real important of the concept of consistency lies in a theorem by Lax [10], which state
that If a linear finite-difference equation is consistent with a properly posed linear initial value problem
then stability guarantees convergence of u to U as the mesh lengths tend to zero, where u and U are
numerical and exact solutions of problem. Consistency can be defined in either of two equivalent
but slightly different ways.
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The more general definition is as follows [11, pages 40–45]. Let L(U) = 0, represent
the partial differential equation in the independent variables x and t, with exact solution U,
and F(u) = 0 represent the approximation finite difference equation with exact solution u.
Let v be a continuous function of x and t with a sufficient number of continues derivatives to
enable L(v) to be evaluated at the point (ih, jk).

Then the truncation error Tji (v) at the point (ih, jk) is defined by

T
j

i (v) = F
j

i (v) − L
(
v
j

i

)
. (3.16)

If Tji (v) → 0 as h → 0, k → 0, then the difference equation is said to be consistent or compatible

with the partial differential equation. With this definition T
j

i gives an indication of the error
resulting from the replacement of L(vji ) by Fji (v).

Most authors put v = U, because L(U) = 0. It then follows that

T
j

i (U) = Fji (U), (3.17)

and the truncation error coincides with the local truncation error. The difference equation is then
consistent if the limiting value of the local truncation error is zero as h → 0, k → 0. We now
illustrate the convergence of covering difference equation (3.10). Substituting εnm = Un

m − unm
into (3.10), we get

εn+2 = Φεn + Tn, n = 2, 4, . . . , (3.18)

where εn = [εn1 εn2 . . . εnM−1]
T , and Tn = [Tn1 Tn2 . . . TnM−1]

T , is the truncation error of
(2.3), and for m = 1, 2, . . . ,M − 1, we have Tnm = O(k2 + h2). Then

∥
∥
∥εn+2

∥
∥
∥ ≤ ‖Φ‖‖εn‖ + ‖Tn‖, n = 2, 4, . . .

≤ ‖Φ‖n/2+1
∥
∥
∥ε0

∥
∥
∥ +

n/2∑

s=1

‖Φ‖s−1
∥
∥
∥T2s−2

∥
∥
∥,

≤ ‖Φ‖n/2+1
∥
∥
∥ε0

∥
∥
∥ +

I − ‖Φ‖n/2

I − ‖Φ‖ max
1≤s≤n

∥
∥
∥T2s−2

∥
∥
∥.

(3.19)

Using Theorem 3.1, we have ‖Φ‖ ≤ 1, so we have

∥
∥
∥εn+2

∥
∥
∥ ≤

∥
∥
∥ε0

∥
∥
∥ +

1
1 − ‖Φ‖max

1≤s≤n

∥
∥
∥T2s−2

∥
∥
∥, (3.20)

where

max
1≤s≤n

∥
∥
∥T2s−2

∥
∥
∥ =M

(
k2 + h2

)
, (3.21)
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Table 1: The average of absolute errors of test Example 4.1.

x
Number of sub-domain

2 4 6 8
2
19

1.88767059e-004 2.01585278e-004 2.20992690e-004 2.42050716e-004

4
19

2.17086802e-004 2.30713785e-004 2.17202537e-004 2.39552996e-004

6
19

2.57232399e-004 2.39418130e-004 2.62471306e-004 2.54550100e-004

8
19

3.03646182e-004 2.90480449e-004 2.85129788e-004 2.77156840e-004

10
19

3.21312054e-004 3.15940605e-004 3.10202033e-004 3.06178032e-004

12
19

3.68769542e-004 3.69093725e-004 3.64261355e-004 3.62145246e-004

14
19

4.10539234e-004 4.13602591e-004 3.86283671e-004 3.83301138e-004

16
19

4.42670434e-004 4.22685287e-004 4.22098694e-004 3.97233016e-004

18
19

4.61241511e-004 4.42709395e-004 4.20277475e-004 3.97016774e-004

1 4.64209163e-004 4.45913196e-004 4.23724691e-004 4.00709711e-004

and M is a constant. Therefore

∥
∥
∥εn+2

∥
∥
∥ ≤

∥
∥
∥ε0

∥
∥
∥ +M

(
k2 + h2

)
. (3.22)

From this result we deduce unconditional convergence as k → 0 and h → 0.

4. Numerical Experiments

Example 4.1. In this section the accuracy and stability of presented parallel scheme is
numerically investigated by solution of a test problem. Consider the following problem:

∂2u

∂t2
+ 3

∂u

∂t
=
∂2u

∂x2
− u, (x, t) ∈ [0, 1] × [0, 1],

u(x, 0) = −sin(x), x ∈ [0, 1],

ut(x, 0) = sin(x), x ∈ [0, 1],

ux(0, t) = −e−t, t ∈ [0, 1],

ux(1, t) = −e−t cos 1, t ∈ [0, 1].

(4.1)
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(a)

1.5

2

2.5

3

3.5

4

4.5

5
×10−4

x

0 0.2 0.4 0.6 0.8 1

(b)

2

2.5

3

3.5

4

4.5

5
×10−4

x

0 0.2 0.4 0.6 0.8 1

(c)

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
×10−4

x

0 0.2 0.4 0.6 0.8 1

(d)

Figure 5: (a)The number of sub−domain = 2. (b) The number of sub−domain = 4. (c) The number of
sub−domain = 6. (d) The number of sub−domain = 8.

The exact solution is given by

u(x, t) = −e−tsin(x). (4.2)

The average of absolute errors of this problem for M = N = 96, and κ = 2, 4, 6, 8, is given in
Table 1. The figures of this data, that is, |

∑N
j=1uexact(x, tj) − uapprox(x, tj)|/N, are shown in

Figure 5.

5. Conclusion

In this paper, we have discussed a new three-level implicit parallel difference scheme of
O(k2 + h2) for the different solution of the Telegraph equation (2.1). The scheme is stable
for r > 0, and applicable to singular equations. It is hoped that the new idea presented in
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this paper will be useful for the development of an unconditionally stable parallel difference
formula of O(k4 + h4) for the numerical solution of the Telegraph equation (2.1).
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