
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 972930, 19 pages
doi:10.1155/2009/972930

Research Article
Modal Decoupling Using the Method of Weighted
Residuals for the Nonlinear Elastic Dynamics of a
Clamped Laminated Composite

Xiaoling He

Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Correspondence should be addressed to Xiaoling He, xiaoling.he@gatech.edu

Received 21 July 2008; Revised 30 January 2009; Accepted 28 March 2009

Recommended by Giuseppe Rega

We develop an approach to reduce the governing equation of motion for the nonlinear vibration of
a clamped laminated composite to the Duffing equation in a decoupled modal form. The method
of weighted residuals enables such a reduction for laminates with clamped boundary conditions.
Both rigidly clamped and loosely clamped boundary conditions are analyzed using this method.
The reduction method conserves the total energy of the system. The decoupled modal form
Duffing equation has constant modal parameters in terms of the laminated composite material’s
properties and geometries. The numerical computations illustrate the individual modal response
with an emphasis of the transitional phenomena to chaos caused by the large load.

Copyright q 2009 Xiaoling He. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The nonlinear dynamic response of a thin laminate occurs with a large curvature
deformation. A common threshold for nonlinear phenomena is a deflection greater than half
of the plate thickness. Large deformation associated with high-order strain can be described
by a second-order von Karman strain field or a strain field of higher order. Nonlinear
vibrations often arise when structures and membranes are subject to high pressure or intense
thermal fields. This is typical of microstructures subject to aerodynamic forces, such as those
as analyzed by Suhir [1]. Vibration can also be due to steady state thermal field variations,
as studied by Pal [2–4]. In [5, 6], we discussed thermal vibrations of laminates caused by the
transient thermal fluctuations.

One approach to analyzing the dynamic response of plates and laminates in nonlinear
elastic deformation is to use a Galerkin-type method, or the energy method, to reduce the
governing partial differential equation to an ordinary differential equation for the time-
dependent variable. Such reduction procedures are complicated by the nonlinear strain
compatibility equation. This makes it very difficult to obtain a decoupled modal form
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ordinary differential equation for the vibration of laminates; see Bloom and Coffin [7]. These
reduction procedures often lead to a differential-integral equation with modal coupling, as
detailed in [8–10]. Some authors have obtained a decoupled modal form ordinary differential
equation for the laminate nonlinear vibration by ignoring the coupled modal terms, as
done by Berger [11]. Berger’s approximation assumes that the second strain invariant of
the mid-plane can be neglected when using the energy approach. Berger’s assumption
compromises the total energy of the system. Nevertheless, Berger’s approximation has been
widely applied to many nonlinear buckling and vibration problems. For example, Basuli [12]
and Pal [2–4] studied the thermal buckling and thermal vibration of plates using Berger’s
approximation. A nonlinear equation of the Duffing type is obtained for the plate buckling
due to the static in-plane temperature variation. Pal also studied the thermal vibrations of
both circular and rectangular plates due to spatial temperature variations for both simply
supported and clamped boundary conditions. Pal’s reduction yielded a decoupled modal
form Duffing equation by restricting the thermal field to be in the form of a polynomial [2–4].
In contrast, Boley and Weiner [13] developed an alternative approach to successively solve
for the modal coefficients by using an iterative procedure. Their method transforms the modal
coupling functions, which reduces to coupled modal coefficients in the Duffing equation, into
successively modal-dependent coefficients that can be solved in a sequential manner for each
mode. However, the method is applicable only to certain boundary conditions due to the
validity of the approximations for the sequential solution.

Thermal vibration of functionally graded materials has been studied using a method
that bears similar characteristics to that for the plate thermal vibrations. For example, Hao
et al. [14] used a two-mode approximation for the nonlinear thermal vibration of bilayer
materials in a simply supported boundary condition, with the restriction that the spatial
thermal field is in a power law with respect to the thickness. A Galerkin’s approach led to
two coupled modal equations for the plate vibration. The weighted residual terms associated
with a thermal field, expressed either as a power law or as a polynomial, can be reduced to
constants, similar to the procedure used by Pal [2–4]. It is only because of such restrictive
thermal field variations that Pal and Hao were able to avoid coupled terms related to the
thermal field, while the coupling of the two modal equations remains due to the use of a third
order strain field with a two mode approximation. This two-mode approximation approach
was also applied to the vibration of a cross-ply laminate due to the in-plane load by Zhang et
al. [15]. The two mode coupling makes computation less intensive, compared to the coupling
of infinite modes. However, our studies in [5, 6], indicate that modal coupling for the simply
supported laminate can be eliminated by using a Galerkin method in conjunction with a
second order von Karman strain field.

For the laminate vibration in clamped boundary conditions, two different forms of the
deflection approximating function have been used previously, for both linear and nonlinear
deformations. Sundara Raja Iyengar and Naqvi [9] and Young [16] used a combination
of hyperbolic and harmonic functions, whereas Yamaki [17] and Berger [11] both used a
product of second-degree harmonic functions. Pal [3] assumed a deflection function which
is a variation of the function used by Yamaki [17]. Both types of approximating functions
satisfy the clamped boundary conditions. However, the two approximating functions gave
rise to Duffing equations in different modal forms. Sundara Raja Iyengar and Naqvi [9]
and Young [16] obtained Duffing’s equation with complicated coefficients in terms of
integrals of coupled Fourier series. These coefficients result from the orthogonality of the
approximating function that cannot decouple all the members in the weighted residual.
To avoid such complications, Yamaki [17] assumed a one-term truncation such that the
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reduction in Galerkin’s method led to a decoupled modal form Duffing equation with
constant coefficients. The method of Yamaki [17] compromises the total energy of the system
by eliminating coupled modal terms, essentially the same as Berger’s assumption does in
terms of the energy conservation. These earlier studies suggest that the reduction from a
partial differential equation in a multimode representation of deflection will produce modal
coupling coefficients in the Duffing equation associated with clamped boundary conditions;
only approximations that ignore the total energy conservation can lead to the decoupled form
Duffing equation. We note that the Duffing equation in various forms is obtained as a direct
consequence of using the second-order strain field for the nonlinear deformation.

Motivated by finding a unified approach to obtaining a decoupled modal form
equation while preserving the total energy, we have found that the method of weighted
residuals (MWR), as described by Crandall [18], Finlayson [19] and Stakgold [20], can be
used for the laminate vibration in clamped boundary conditions. For the simply supported
laminate, our study confirmed that Galerkin’s method is useful unless we have an arbitrary
thermal field. This implies that for an arbitrary thermal field, we must use MWR as well for
the simply supported boundary condition [5]. The MWR is also referred to as the generalized
Galerkin method, as discussed by Finlayson in [19], where the weighting function need not
be the approximating function. That is, the MWR allows us to use a weighting function that
is different from that used in the standard Galerkin method.

In this paper, the MWR is applied to study the deflection of symmetric thin isotropic
laminates for both rigidly clamped and loosely clamped boundary conditions. This method
leads to a decoupled modal form Duffing equation for each mode, with constant coefficients
expressed in terms of the material properties and laminate geometries. However, our
reduction approach requires a particular choice of the approximating function, as we will
demonstrate. In the following, we first obtain the Duffing equation in a decoupled modal
form. Our key interest in the Duffing system here lies in the transitional phenomena
associated with the loading and initial conditions, instead of parametric analyses as we did
earlier [5, 6]. To this end, we use a Lyapunov function to justify the weak chaotic attractors
of the stable Duffing equation, and identify the stability condition in the time domain for the
transition from a stable to an unstable Duffing system due to a large load. Such transitional
behaviors are illustrated by the fundamental mode responses from numerical computations.
We verified this phenomenon by computing the Lyapunov exponents, which indicated that
the transition has sensitive dependence on the initial and loading conditions. Finally, the
paper closes with discussions and conclusions.

2. Equation of Motion

The nonlinear von-Karman strain field is defined as

{ε} =
{
ε0
}
+ z
{
ε1
}
, (2.1)

{
ε0
}
=

⎧
⎪⎪⎨
⎪⎪⎩

ε0
xx

ε0
yy

γ0
xy

⎫
⎪⎪⎬
⎪⎪⎭
,
{
ε1
}
=

⎧
⎪⎪⎨
⎪⎪⎩

κx

κy

κxy

⎫
⎪⎪⎬
⎪⎪⎭
, (2.2a)

ε0
xx = u0,x +

1
2
w,x

2, ε0
yy = v0,y +

1
2
w,y

2, γ0
xy = u0,y + v0,x +w,xw,y,
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κx = −w,xx, κy = −w,yy, κxy = −2w,xy.

(2.2b)

The strain field satisfies the compatibility equation:

ε0
xx,yy + ε

0
yy,xx − γ0

xy,xy = w,xy2 −w,xxw,yy. (2.3a)

Define an operator

L
(
p, q

)
= p,yyq,xx + p,xxq,yy − 2p,xyq,xy, (2.3b)

equation (2.3a) can be expressed as

ε0
xx,yy + ε

0
yy,xx − γ0

xy,xy = −1
2
L(w,w). (2.3c)

The constitutive relation between the forces and the strains is:

{
ε0

M

}
=

[
A∗ B∗

−(B∗)T D∗

]{
N

ε1

}
, (2.4)

where:

A∗ = A−1, B∗ = −A−1B, D∗ = D − BA−1B. (2.5a)

The stiffness matrices of the laminate are defined as:

[
Aij , Bij , Dij

]
=
∫h2

−h1

C
(k)
ij

[
1, z, z2

]
dz, (2.5b)

C
(k)
11 = C(k)

22 =
k=n∑
k=1

E(k)

1 −
(
ν(k)

)2
, C

(k)
12 = C(k)

21 =
k=n∑
k=1

ν(k)E(k)

1 −
(
ν(k)

)2
, C

(k)
66 =

k=n∑
k=1

E(k)

2
(
1 + ν(k)

) , (2.5c)

where n is the number of the layers in symmetry. For a symmetric isotropic laminate,
[B] = 0, D∗ = D. In (2.4), N and M are the in-plane force and moment vectors, respectively.
Introducing the Airy stress function defined by

Nx = F,yy, Ny = F,xx, Nxy = −F,xy, (2.6)

from (2.4), the compatibility (2.3c) can be expressed as

F,xxxx + p∗F,xxyy + F,yyyy = −r
∗

2
L(w,w), (2.7)
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where a symmetric isotropic laminate has

r∗ =
1
A∗22

, p∗ =
2A∗12 +A

∗
66

A∗22
= 2. (2.8)

Therefore, for the symmetric isotropic laminate, (2.7) can be further reduced to:

∇4F = −r
∗

2
L(w,w). (2.9)

The governing equations of motion for a laminate in a nonlinear elastic deformation are given
in [21]:

Nx,x +Nxy,y = 0,

Nxy,x +Ny,y = 0,

Mx,xx + 2Mxy,xy +My,yy +N(w) + q = Iw,tt − I2∇2w,tt,

(2.10)

where

N(w) =Nxw,xx + 2Nxyw,xy +Nyw,yy. (2.11)

Define the inertia of the laminate as

[I, I1, I2] =
N∑
k=1

∫h2

−h1

ρ
(k)
0

[
1, z, z2

]
dz. (2.12)

A homogeneous material with a symmetric layer distribution yields I1 = 0. Using (2.4), (2.6)
and (2.10), we obtain the equilibrium equation for the deflection of a symmetric isotropic
laminate:

D11∇4w + Iw,tt − I2∇2w,tt − L(F,w) = q, (2.13)

where:

L(F,w) =
I∑
i=1

J∑
j=1

N∑
n=1

M∑
m=1

(
Fmn,xxwij ,yy + Fmn,yywij ,xx − 2Fmn,xywij ,xy

)
. (2.14)
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Here Fmn are the modal functions of the Airy stress function F(x, y, t), and wij are the modal
components of the deflection function w(x, y, t). For either the rigidly clamped or the loosely
clamped laminates, ŵ(x, y, t) is chosen as the deflection approximating function in series as

ŵ
(
x, y, t

)
=

N∑
n=1

M∑
m=1

Wmn(t)∗w
(
x, y

)
=

N∑
n=1

M∑
m=1

Wmn(t)cos2(αmx)cos2(βny
)
,

x ∈
[
−a

2
,
a

2

]
, y ∈

[
−b

2
,
b

2

]
, αm =

mπ

a
, βn =

nπ

b
,
m = 2k − 1, k = 1, 2, . . .M.

n = 2j − 1, j = 1, 2, . . .N.

(2.15)

This expression satisfies the actual boundary conditions, namely:

ŵ

(
x,−b

2
, t

)
= 0, ŵ

(
x,
b

2
, t

)
= 0, ŵ

(a
2
, y, t

)
= 0, ŵ

(a
2
, y, t

)
= 0,

ŵ,y

(
x,−b

2
, t

)
= 0, ŵ,y

(
x,
b

2
, t

)
= 0, ŵ,x

(
−a

2
, y, t

)
= 0, ŵ,x

(a
2
, y, t

)
= 0.

(2.16a)

In addition, the rigidly clamped laminate must satisfy the in-plane motion constraints of the
mid-plane at the boundaries as:

u0

(
−a

2
, y, t

)
= 0, u0

(a
2
, y, t

)
= 0, v0

(
x,−b

2
, t

)
= 0, v0

(
x,
b

2
, t

)
= 0. (2.16b)

Note that the approximating functions in (2.15) are the same as those previously used
by Yamaki [17]; however, our procedure for reduction is not the same as in [17] using
Galerkin’s method. Instead, MWR, as described in [18–20], will be used. In particular, a
weighting function that is a derivative of the set of the approximating function is used for
modal decoupling.

Define the residual of the equilibrium equation, (2.13), due to the approximating
function ŵ(x, y, t), as

Ẽ = D11∇4ŵ + Iŵ,tt − I2∇2ŵ,tt − L(F, ŵ) − q. (2.17)

Using MWR, we require that

∫b/2

−b/2

∫a/2

−a/2

[
Ẽφ
(
x, y

)]
dxdy = 0, (2.18)

where the weighting function has the same index as that of the approximating function in
(2.15), given as:

φ
(
x, y

)
≡ ŵ,xxyy

(
x, y

)
=

N∑
n=1

M∑
m=1

cos(2αmx) cos
(
2βny

)
. (2.19)
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This makes (2.18) equivalent to

∫b/2

−b/2

∫a/2

−a/2

{[
D11∇4ŵ + Iŵ,tt − I2∇2ŵ,tt − L(F, ŵ) − q

]
cos
(
2αpx

)
cos
(
2βqy

)}
dxdy = 0.

(2.20)

As a preliminary to evaluate integral (2.20), various calculations are necessary. Using the
deflection approximation ŵ(x, y, t) in (2.15), the function in (2.9) becomes:

∇4Fmn = −r
∗

2
α2
mβ

2
nW

2
mn

[
cos(2αmx) + cos

(
2βny

)
+ cos(4αmx) + cos

(
4βny

)
+ cos(4αmx)

cos(2αmx) + cos
(
4βny

)
+ 2 cos(2αmx) cos

(
2βny

)
]
.

(2.21)

Solving (2.21), we obtain

Fmn =
1
2
C1
mny

2 +
1
2
C2
mnx

2 + F̃mn, (2.22)

where

F̃mn =W2
mn(t)

⎡
⎣

f1 cos(2αmx) + f2 cos
(
2βny

)
+ f3 cos(4αmx) + f4 cos

(
4βny

)
+

f5 cos(2αmx) cos
(
4βny

)
+ f6 cos(4αmx) cos

(
2βny

)
+ f7 cos(2αmx) cos

(
2βny

)

⎤
⎦

(2.23a)

and the coefficients fi are given by

f1 = −
r∗β2

n

32α2
m

, f2 = −
r∗α2

m

32β2
n

, f3 = −
r∗β2

n

512α2
m

, f4 = −
r∗α2

m

512β2
n

, f5 = −
r∗α2

mβ
2
n

32
(
α2
m + 4β2

n

)2
,

f6 = −
r∗α2

mβ
2
n

32
(
4α2

m + β2
n

)2
, f7 = −

r∗α2
mβ

2
n

16
(
α2
m + β2

n

)2
.

(2.23b)

In order to satisfy the in-plane motion constraints (2.16b) for a rigidly clamped laminate,

C1
mn =

3[Wmn(t)]2

32

(
A11α

2
m +A12β

2
n

)
, C2

mn =
3[Wmn(t)]2

32

(
A12α

2
m +A11β

2
n

)
, (2.23c)

so that for the rigidly clamped laminate

Fmn =
3[Wmn(t)]2

64

((
A12α

2
m +A11β

2
n

)
x2 +

(
A11α

2
m +A12β

2
n

)
y2
)
+ F̃mn, (2.24)
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where F̃mn is as expressed in (2.23a). For the loosely clamped laminate, which permits the
in-plane motion at the boundaries, it is sufficient to take C1

mn = C2
mn = 0, so that

F̃mn = Fmn. (2.25)

To evaluate the integral (2.20), we introduce the following symmetric pairs for integration.
JI = {J1

I (αmx, βny)J
1
I (αpx, βqy), J

2
I (αmx, βny)J

2
I (αpx, βqy)}I = 0, 1, . . . 7. (19) These

pairs are defined by:

J0=
{

cos
(
2αpx

)
cos2(βqy

)
, cos

(
2βqy

)
cos2(αpx

)}
,

J1=
{

cos(2αmx) cos
(
2βqy

)
cos2(αpx

)
, cos

(
2βny

)
cos
(
2αpx

)
cos2(βqy

)}
,

J2=
{

cos(4αmx) cos
(
2βqy

)
cos2(αpx

)
, cos

(
4βny

)
cos
(
2αpx

)
cos2(βqy

)}
,

J3=
{

cos(2αmx) cos
(
4βny

)
cos
(
2βqy

)
cos2(αpx

)
, cos(4αmx) cos

(
2βny

)
cos
(
2αpx

)
cos2(βqy

)}
,

J4=
{

cos(4αmx) cos
(
2βny

)
cos
(
2βqy

)
cos2(αpx

)
, cos(2αmx) cos

(
4βny

)
cos
(
2αpx

)
cos2(βqy

)}
,

J5=
{

cos(2αmx) cos
(
2βny

)
cos
(
2βqy

)
cos2(αpx

)
, cos(2αmx) cos

(
2βny

)
cos
(
2αpx

)
cos2(βqy

)}
,

J6=
{

sin(2αmx) sin
(
4βny

)
sin
(
2βqy

)
sin
(
2αpx

)
, sin(4αmx) sin

(
2βny

)
sin
(
2αpx

)
sin
(
2βqy

)}
,

J7=
{

sin(2αmx) sin
(
2βny

)
sin
(
2αpx

)
sin
(
2βqy

)}
.

(2.26)

Each of the above pairs contains a product of a function of x and a function of y, that is,

JkI
(
x, y

)
= JkIx

[
f1(αmx), f2

(
αpx

)]
JkIy
[
g1
(
βny

)
, g2
(
βqy

)]
k = 1, 2; I = 0, 1, . . . 7. (2.27)

In (2.27), not all functions fi and gj need to be present in each pair. Noticeably, the two
functions J1

I and J2
I in each pair are symmetric with respect to their dependent variables,

x and y, that is,

J1
Ix

[
f1(αmx), f2

(
αpx

)]
J1
Iy

[
g1
(
βny

)
, g2
(
βqy

)]

= J2
Ix

[
g1(αmx), g2

(
αpx

)]
J2
Iy

[
f1
(
βny

)
, f2
(
βqy

)]
I = 0, 1, . . . 7.

(2.28a)

This means by switching the argument (αmx), (αpx) with (βny), (βqy), respectively, in the
corresponding function, the two components in each pair is the same, equivalently;

J1
I

(
f
[
(αmx),

(
αpx

)]
, g
[(
βny

)
,
(
βqy

)])

= J2
I

(
f
[(
βny

)
,
(
βqy

)]
, g
[
(αmx),

(
αpx

)] )
I = 0, 1, . . . 7.

(2.28b)
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Therefore, the evaluation of each integral pair denoted by k = 1, 2, respectively, in the spatial
coordinates has the following properties:

∫b/2

−b/2

∫a/2

−a/2
JkI
(
x, y

)
dxdy =

∫a/2

−a/2
JkIx(x)dx ∗

∫b/2

−b/2
JkIy
(
y
)
dy, k = 1, 2, I = 0, 1, . . . 7,

∫b/2

−b/2

∫a/2

−a/2
J1
I dxdy =

∫b/2

−b/2

∫a/2

−a/2
J2
I dxdy,

∫b/2

−b/2

∫a/2

−a/2
J1
I w,xxyydxdy =

∫b/2

−b/2

∫a/2

−a/2
J2
I w,xxyydxdy.

(2.29)

By using the orthogonal properties between each member in (2.17) and the weighting
function and the symmetry properties in (2.29), all of the modal functions in (2.20) are
decoupled, giving rise to constant coefficients in the Duffing equation. Therefore, MWR
reduces (2.20) to the decoupled modal form Duffing equation for the transient response of
each mode as

Ẅmn +ωmn
2Wmn + rmnWmn

3 = qmn, (2.30)

where the coefficients for an isotropic laminate in a rigidly clamped boundary condition are

ωmn
2 =

16D11
(
α2
m + β2

n

)2

Ĩ
, (2.31a)

rmn =
1

16Ĩ

{
6
[
A11α

4
m + 2A12α

2
mβ

2
n +A11β

4
n

]

+
A2

11 −A
2
12

A11

[
9
(
α4
m + β4

n

)
+

4α4
mβ

4
n(

α2
m + 4β2

n

)2
+

4α4
mβ

4
n(

4α2
m + β2

n

)2

]}
,

(2.31b)

qmn =
Qmn

Ĩ
, (2.31c)

Ĩ = I +
(
α2
m + β2

n

)
I2. (2.31d)

For a loosely clamped laminate, we obtain an identical Duffing equation with the same ωmn
2

and qmn expressions as above, except that the stiffness coefficient is given by

rLmn =
1

16Ĩ

{
A2

11 −A
2
12

A11

[
9
(
α4
m + β4

n

)
+

4α4
mβ

4
n(

α2
m + 4β2

n

)2
+

4α4
mβ

4
n(

4α2
m + β2

n

)2

]}
. (2.31e)

The Duffing equation (2.30) represents a hard spring system for both the rigidly clamped and
the loosely clamped boundaries, due to the relation between the laminate stiffness coefficients
of A11 > A12 and Aij > 0, which yields rmn > 0 in (2.31b) and rLmn > 0 in (2.31e), respectively.
The loosely clamped boundary condition has a reduced stiffness, that is, rLmn < rmn. Equations
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(2.31a), (2.31b), and (2.31e) indicate that both the natural frequency ωmn and the stiffness
rmn and rLmn decrease with an increase of the inertia Ĩ, due to the increased density and
thickness. On the contrary, a higher rigidity Dij and stiffness Aij of the laminate, owing to an
increased thickness, increases the natural frequency and stiffness. In addition, an increase in
the geometric dimensions of the laminate plane decreases the natural frequency and stiffness
as a result of reduced modal parameter αm or βn. In comparison, a higher mode has a higher
ωmn and rmn, or rLmn, since amn and βmn are amplified by the modal integers m and n.

3. The Chaotic Attractor and Stability Transitions

The general characteristics of the Duffing equation have been studied extensively for various
behaviors that are relevant for laminate response analysis. The Duffing equation with
damping in a normalized form is

d2W

dτ2
+W + η̃Ẇ + r̃W3 = f̃ cos(kτ), (3.1)

where τ = ωt, r̃ = r/ω2, η̃ = η/ω2, f̃ = f/ω2, k = Ω/ω, and η is the damping coefficient.
Closed form solutions in terms of elliptical functions were found in [1, 22, 23] for the Duffing
equation without damping, in the free response and the response subject to a constant
load. Marinca and Herisanu [24] and Tang [25] demonstrated that the periodic solutions
can be obtained by numerical computation for a nonlinear system subject to harmonic
excitation. Approximate solutions were found for the finite periodic orbits of the Duffing
equation by perturbation of the averaged system, as described by Nayfeh and Balachandran,
Guckenheimer and Holmes in [26–28], and by the method of harmonic balancing by Hayashi
[29]. It was shown in [29, 30] that the nonlinear resonance frequency and amplitude depend
on the load. Studies in [28, 31, 32] demonstrate that chaotic attractors of the Duffing system
have a sensitive dependence on the initial and loading conditions. However, these studies
were concerned with a Duffing system with an unstable separatrix where ω2 < 0, or a system
with a negative stiffness r < 0. Consequently, the results may not directly apply to the Duffing
equation with ω2 > 0 and a positive stiffness r > 0 and without damping, as in (2.30).

For our Duffing equation (2.30), it can be shown that the Mel’nikov function for this
system is identically zero due to the homoclinic orbit around the center. This means that the
Mel’nikov function is not adaptable to establish any bifurcation condition with respect to the
loading for the onset of chaos, which is in contrast to the case of ω2 < 0, as studied in [33].
To describe the behavior of our system subject to the large load, we found that the weak
Lyapunov function of the Duffing equation can serve as an indicator of a weak attractor, with
a tendency toward chaos when the system is subjected to perturbations. Denoting V = Ẇ =
dW/dt, the weak Lyapunov function of the system is

L(W,V ) =
V 2

2
+
W2

2
+
rW4

2
> 0. (3.2)

The function L(W,V ) is positive over the plane, except at the center L(W,V ) = L(0, 0) = 0.
The stability of the system can be measured by the time derivative of the Lyapunov function,
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which vanishes at the center:

L̇(0, 0) =
(
W + rW3

)
Ẇ + V V̇ = 0. (3.3)

This means that the center is a weak attractor and is Lyapunov stable [34]. This system
becomes chaotic when subjected to certain levels of perturbations, such as a large dynamic
load as we demonstrate hereinafter. The time elapsed can be estimated before the system
changes from a stable system to an unstable system. To this end, we express the harmonic
forcing f̃ cos(kτ) in the form of a series, so that the Duffing equation (3.1), without damping
becomes

Ẅ +W + r̃W3 = f̃

(
1 − (kτ)2

2!
+
(kτ)4

4!
− (kτ)6

6!
+
(kτ)8

8!
+ · · · + (−1)n

(kτ)2n

(2n)!

)

= f̃g(kτ), n = 0, 1 . . .

(3.4)

The series g(kτ) in expression (3.4) satisfies |g(kτ)| ≤ 1. Assuming the load is in proportion
to the deflection, that is, f̃ = μW, we obtain after rearranging terms

Ẅ + ω̃2W + r̃W3 = 0, (3.5a)

where

ω̃2 = 1 − μ
(

1 − (kτ)2

2
+
(kτ)4

4!
− (kτ)6

6!
+
(kτ)8

8!
+ · · ·

)
= 1 − μg(kτ). (3.5b)

Here the factor μ � 1, μ � 1 and μ ∼ 1 represent the large load, the small load and
the intermediate load regimes, respectively. Equation (3.5b) implies that when μ � 1, the
response of the system is almost periodic since ω̃2 ≈ 1 for all values of kτ . When μ ∼ 1 or
μ � 1, ω̃2 in (3.5b) can become negative. The transition time τc, when the system passes
out of the stable system at ω̃2 = 0 can be obtained numerically as infinite number of roots
of (3.5b), which corresponds to infinite transitions from a stable to an unstable system. An
approximation of the first passage time τc when kτ < 1 with μ ∼ 1, based on retaining only
three terms in (3.5b) for ω̃2 < 0, is:

τc = max

⎧
⎪⎨
⎪⎩

12
k
,

1
k

√√√√6 + 2

√
3 +

6
μ

⎫
⎪⎬
⎪⎭
. (3.6)

This threshold time τc signifies the system’s transition into an unstable system with ω̃2 < 0.
This unstable system becomes chaotic if the load is very large, or the initial deflection and the
initial velocity are large, or a combination of these two situations, as established in [27, 28].
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1

2

3

4

Figure 1: A symmetric PWB (130 ∗ 180 ∗ 1.54 mm).

Table 1: Physical parameters of a PWB.

Layer Material Specific weight (g/cm3) Young’s module(MPa) Poisson ratio Thickness (mm)
1 Cu/FR-4 7.599 17.9 ∗ 104 0.205 0.030
2 FR-4 1.200 18.6 ∗ 104 0.190 0.200
3 Cu 8.310 11.8 ∗ 104 0.400 0.035
4 FR-4 1.200 18.6 ∗ 104 0.190 1.000

Table 2: Modal parameters of the Duffing equation.

Mode Natural frequency
ωmn, [(s)

−1]
Natural frequency ratio Stiffness rmn, [(mm · s)−2]

M1: m=1, n=1 6.7839e3 7.1888e6
M2: m=1, n=3 2.5381e4 ω31/ω11 = 2.68 1.2548e8
M3: m=3, n=1 4.2430e4 ω31/ω13 = 1.68 4.3085e8
M4. m=3, n=3 6.1008e4 ω33/ω31 = 1.45 5.8140e8

4. Numerical Computation

We will use the fourth-order Runge-Kutta method to illustrate the fundamental mode
response of the Duffing equation for the chaotic and periodic behaviors in relation to the
loading and initial conditions. The computation also generates the Lyapunov exponents to
verify the transition to chaos. The case study examines a thin laminate of 130 ∗ 180 ∗ 1.54 mm
in symmetric layers as shown in Figure 1. The physical properties of the laminate are listed
in Table 1. The parameters for the second, third and fourth modes of the Duffing equation
are shown in Table 2. Table 2 indicates that a higher mode has higher stiffness and higher
natural frequency, which give rise to reduced deflections when subjected to the same loading
compared to the lower mode responses. For example, our computations show that the
deflection is in the ratio of 1/3, 1/4, and 1/6 of that of the fundamental mode response for the
seconh, third and fourth modes under Q11 = 12 cos(kω11t)N/cm2. The computation specifies
the pressure load to the laminate Qmn, instead of the normalized load qmn in (2.31c). The
conversion between the pressure load and the normalized load is q11/Q11 = 0.5215 for the
fundamental mode, Mode-1, whereas the normalized force q and the pressure load Q are
measured in [mm] and [N/cm2], respectively.

Figures 2(a) and 2(b) represent the same Poincare map of Mode-1 in a quasiperiodic
behavior with finite periodic orbits subject to, Q11 = 2.4 cos(kω11t)N/cm2, k = 1, with initial
condition x0 = 0, and v0 = 0. A periodic pattern is visible by the consecutive traces of each
period, as shown in Figure 2(a). The periodic behavior remains with a moderate increase
in the load and the initial conditions, as shown in Figure 3(a) where a finite period orbit
emerges subject to x0 = 2 mm and a load Q11 = 24 cos(kω11t)N/cm2, k = 1. A transition to
chaos arises from a higher load or large initial conditions. Figure 3(b) shows the transition
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(b) Map with disconnected periodic points

Figure 2: Mode-1 Poincare map in finite periodic orbits subject to the harmonic load Q11 =
2.4 cos(kw11t) N/cm2, k = 1.

to chaos when the initial condition increases to x0 = 20 mm while the load remains at
Q11 = 24 cos(kω11t)N/cm2, k = 1. The result confirms the center of the phase map as a
weak attractor, as predicted by the Lyapunov function as analyzed above. Around the center,
there is a limit cycle. The attractor has sensitive dependence on initial conditions, namely, a
chaotic attractor.

Figure 3(c) shows the Mode-1 Poincare map in chaos subject to a large load of Q11 =
432 cos(kω11t)N/cm2, k = 1, whereas the initial 100 transient points are eliminated. The map
contains both chaotic and periodic orbits, whereas the heteroclinic manifold for the unstable
system has two attractors, and the stable system has one attractor at the center. The result
indicates a coexistence of chaotic and periodic orbits [31]. The coexistence of the two types
of orbits persists, regardless of the transient time eliminated from the map, which suggests
that the large load causes alternating transitions of the system between ω̃2 > 0 and ω̃2 < 0,
as we analyzed as we analyzed the roots of (3.5b) in the afore discussed section. Generally
speaking, a two-attractor map symbolizes the heteroclinic orbit of an unstable Duffing system
withω2

mn < 0, which is in contrast to the homoclinic orbit around the center of a stable Duffing
system with ω2

mn > 0 [27]. This means that a larger load effectively transforms a stable system
to an unstable system. Figure 3(d) shows the response subject to a further increasing load of
Q11 = 4800 cos(kω11t)N/cm2, k = 1 without the initial 100 transient periods. Evidently, the
periodic orbits with two attractors are in chaos, identical to that shown in Figure 3(c).

Other than the Poincare map, the Lyapunov exponent provides an alternative indicator
for chaos. The Lyapunov exponents for the Duffing system were computed using the
algorithms developed for low-dimensional systems by Dieci [35], which converges for 10
000 to 30 000 iterations. It is found that the largest Lyapunov exponent is negative for the case
in Figure 3(a), which means that it is a periodic response. The largest Lyapunov exponent for
the 2D Duffing system of the differential equation converges to 0.00283, 0.36466, and 1.29960
for the responses in Figures 3(b), 3(c), and 3(d), which indicate that each response is chaotic.
In addition, the sum of the Lyapunov exponents is negative for each case, which suggests that
the chaos is bounded [36], as indicated by the Poincare map. Noticeable also is that a larger
deflection prevails at chaos compared with that of a periodic response.
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(a) x0 = 2 mm, Q11 = 24 N/cm2, k = 1
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(b) x0 = 20 mm, Q11 = 24 N/cm2, k = 1.
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(c) x0 = 0, Q11 = 432 N/cm2, k = 1.
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(d) x0 = 0, Q11 = 4800 N/cm2, k = 1.

Figure 3: Mode-1 response with respect to the harmonic load Q = Q11 cos(kω11t)N/cm2

These results point out that a large amplitude harmonic forcing can transform a stable
Duffing system into an unstable system. In addition, chaos shows a sensitive dependence
on the initial and loading conditions, as observed from the comparisons of Figures 3(a), 3(b),
and 3(c). Our results suggest that the transitional phenomenon of the Duffing system without
damping, that has sensitive dependence on the initial conditions, is similar to that of a system
with damping as studied earlier by Ueda, Holmes, and Guckenheimer [28, 31, 32].

5. Discussion

The MWR method used in the present study, for obtaining the Duffing equation, eliminated
the modal coupling resulting from a use of the standard Galerkin method. The modal
decoupling avoids the computational difficulties associated with coupled modal coefficients
in integral forms, such as those obtained by Sundara Raja Iyengar and Naqvi [8, 9]. A
distinction between the present method and the method used by Berger [11] and Yamaki
[17] is that their methods do not conserve the total energy of the system. Specifically, in
Yamaki’s analysis using the Galerkin method, the coupling term is eliminated by imposing
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the condition
∫b/2

0

∫a/2
0 (L(F,w)w)dxdy = 0. Similarly, in Berger’s approach using the energy

method for the single mode response, the total energy is altered by neglecting the second
strain invariant in the strain energy expression:

U =
D

2

∫b/2

0

∫a/2

0

{[(
∇2w +

12
h2
e1

2
)]

− 2(1 − ν)

⎡
⎣12
h2
e2+

∂2w

∂x2

∂2w

∂y2
−
(

∂2w

∂x∂y

)2
⎤
⎦
⎫
⎬
⎭dxdy,

(5.1)

where the first and the second strain invariants are defined as

e1 = εx + εy, e2 = εxεy −
1
4
γ2
xy. (5.2)

Berger’s method applied the principle of virtual work with the assumption e2 = 0, in order
to obtain the decouple modal form Duffing equation. In contrast to Berger and by Yamaki,
the Duffing equation obtained using MWR retains the total energy. Consequently, the results
from our method are more accurate, in the sense of Galerkin type averaging.

It has been discussed by Crandall et al. [18–20] that in using the MWR there is
flexibility in choice of the approximating and weighting functions. For example, Shen and
Pesheck used a weighting function that is different from their approximating function, in
discussing ordinary and partial differential equations [37, 38]. Our choice of ŵ,xxyy(x, y)
for the weighting function, where ŵ(x, y) is our approximating function, enables modal
decoupling in all the weighted residual terms in (2.20), while retaining all these terms. This
leads directly to the Duffing equation with constant coefficients. The modal form Duffing
equation can readily be applied to each individual mode response analysis, such as resonance,
periodic, and chaotic behaviors with respect to various parameters, as we studied in [39]
for the clamped laminate with thermal effect. An accurate account for each modal response
provides a basis for truncations in a multimode superposition and for identification of
internal resonance among different modes. This is of particular interest when the response
is chaotic, since an increased deflection at chaos of higher modes becomes much more
significant in the total response of multimodes.

Our decoupling method would not be valid for the approximating function for the
clamped laminate as that used by Sundara Raja Iyengar and Naqvi [9] and Young [16], that
is,

ŵ
(
x, y, t

)
=

N∑
n=1

M∑
m=1

Wmn(t)Xm(αmx)Xn

(
βny

)
, x ∈ [−a, a], y ∈ [−b, b],

Xm(αmx)Xn

(
βny

)
=
(

cosh(αmx)
cosh(αma)

− cos(αmx)
cos(αma)

)(cosh
(
βny

)

cosh
(
βnb

) − cos
(
βny

)

cos
(
βnb

)
)
.

(5.3)

It can be verified that the reduction using the standard Galerkin method with this
approximating function, and the weighting function is identically equal to the approximating
function, leads to multimode integral terms that cannot be reduced to constants. For example,
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the following integral function remains:

∫a
−a

cosh(2αmx) cosh
(
αjx

)
cosh(αkx)dx. (5.4)

It is apparent that orthogonality of this approximating function determines that any other
weighting function will also give rise to integral coefficients. Therefore, neither the standard
Galerkin method nor MWR will lead to a decoupled modal form Duffing equation using the
function in (5.3).

We note that our reduction procedure resulted in a decoupled modal form Duffing
equation. This differs from the reduction for the normal forms of a nonlinear vibration system,
as studied by Shaw and Pierre [40] as well as by Pesheck et al. [38]. Specifically, our objective
is to obtain an equation for the time-dependent deflection functions for the laminate dynamic
response, whereas the normal form reduction schemes focus on finding the spatial functions
governing the normal manifolds for a specific equation of motion. This suggests that the
search for the normal forms for each decoupled modal form Duffing equation, as obtained
from our study, can be conducted using the procedures outlined by Pesheck and Shaw et
al. An interesting observation from these two types of drastically different studies is that
Pesheck essentially used the method of weighted residuals in obtaining the normal forms.
This indicates the usefulness of the MWR in solving various problems.

6. Conclusions

A decoupled modal form Duffing equation with constant coefficients is obtained for the
nonlinear vibration of a thin symmetric isotropic laminate for both the rigidly clamped
and loosely clamped boundary conditions. This equation results from a reduction of the
governing equation of motion by using the method of weighted residuals, with a total
conservation of energy in the sense of Galerkin’s averaging. The benefit, other than the modal
decoupling, is an improved accuracy and computation efficiency. The decoupled modal
form Duffing equation provides a direct formulation for the laminates’ modal response. Our
analytical and computation studies identified the transitional phenomena of the Duffing
equation from a stable system to an unstable system subject to a large load. The weak
Lyapunov function justifies the weak attractors of the stable system as a path to chaos. The
results also illustrate that chaos has a sensitive dependence on the loading and the initial
conditions. By generalizing the Galerkin approach to the MWR, the present study found
a particular procedure for modal decoupling of the Duffing equation for the dynamics of
laminates with clamped boundary conditions.

Nomenclature

A: Laminate rigidity matrix of the laminate
A∗: Inverse of A
A∗ij : Elements of A∗

B: Coupling rigidity matrix of the laminate
C: Stiffness matrix of the laminate
C

(k)
ij , C

(k)
ij , i, j = 1, 2, 6: Stiffness coefficients of the laminate

C1
mn, C

2
mn: Complementary function coefficients of the Airy stress function
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D: Flexural rigidity matrix of the laminate
Dij : Matrix components of D
Ẽ: Residual of the equation of motion
E(k): kth lamina Young’s Modulus
f : Normalized load
fi: Airy’s stress function coefficients
F(x, y, t), F̃(x, y, t): Airy’s stress function
I, I1, I2, Ĩ: Inertia of the laminate
JkI (x, y),J

k
Ix((αmx), (αix)), J

k
Iy((βny)(βjy)): integrant functions.

M: Applied moment vector
N: In-plane force vector
N(w): In-plane force as a function of deflection
Q̂mn: Laminate pressure load
h : Fime step in numerical integration
k : Forcing frequency index
p∗: Stiffness coefficient
qmn: Duffing equation forcing load
r∗: Stiffness coefficient
rmn: Stiffness in Duffing’s equation
r̃: Normalized stiffness in Duffing’s equation
u0(x, y): Mid-plane deformation in x direction
u(x, y): Deformation in x direction
v0(x, y): Mid-plane deformation in y direction
v(x, y): Deformation in y direction
v: Velocity ẇ
ẇ0: Initial velocity of |W(t)|
|Wmn(t)|: Time-dependent deflection function in

modal form
w̃(x, y, t): deflection
w(x, y, t),w(x, y): Approximate deflection
ẇ: Velocity of the approximate deflection
ẅ: Acceleration of the approximate deflection
x0: initial deflection of |W(t)|
εi, εij , γij : Strain components
αm, αi, αp: Modal coefficient in x
βn, βj , βq: Modal coefficient in y
η: Damping ratio
η̃: The normalized damping ratio
μ: Factor
τ : Normalized time.
τc: Threshold time
ρ
(k)
0 : Mass density of the kth lamina
ν(k): Poisson ratio of the kth lamina
ωmn, ω̃: Natural frequency
Ω: Forcing frequency
φ(x, y) : weighting function
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