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This paper is focused on deriving an explicit analytical solution for the prediction of the
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1. Introduction

In every electrokinetic related application, the electrostatic potential is a key function to be
identified in order to understand its effect on flow regimes. The methods to calculate this
electrostatic potential function depend largely on approximations based on the range of
values of the applied electrical field; therefore, it would be extremely useful to identify a
procedure that yields a more general solution valid for a wide range of magnitude of the
electrostatic potential. Thus, the same solution will be explicit for the electrostatic potential
and valid for the small and large values without restrictions. To our best knowledge, such
type of solution has not yet been reported in literature [1–5].

It becomes very much desired that an explicit mathematical expression for the
electrostatic potential should be available. This is not necessarily easy to accomplish since
the conservation of charge yields a nonlinear differential equation. This is based on the fact
that the equation that is the common starting point for the description of the electrostatic
potential is the Poisson-Boltzmann equation [6]:

y′′ = λ2 sinhy, (1.1)

where y is the dimensionless electrical potential and λ is the dimensionless inverse Debye
length. The nonlinear term on the right-hand side of (1.1) is related to the free charge density.
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The main focus of the previous studies was concentrated on how to approximate the
hyperbolic function, on the right-hand side of (1.1), in order to obtain an effective analytical
solution of the Poisson-Boltzmann differential equation. A very common simplification
invokes the Debye-Hückel approximation is usually written as

sinhy ≈ y. (1.2)

As a result, the nonlinear Poisson-Boltzmann equation reduces to the following linear
equation:

y′′ = λ2y. (1.3)

Such approximation is valid for the case when −1 ≤ y ≤ +1 [7]. Other contributions that
extend the range of valid solution to −∞ ≤ y ≤ +∞ propose splitting electrical potential
values in three regions [8] as a way of simplifying the hyperbolic sine function:

sinhy ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−0.5 exp
(
−y
)
, y < −1,

y, −1 ≤ y ≤ 1,

0.5 exp
(
y
)
, y > +1.

(1.4)

Based on the Debye-Hückel approximation, a new solution strategy for the differential
equations of the electrostatic potential was proposed by Oyanader and Arce [4, 9]. The
authors introduced the correction function fAO to the inverse Debye length, λ. The fAO

function improves the Debye-Hückel approximation. It is a recursive function of the electrical
potential and has a polynomial form whose coefficients are adjusted to predict the correct
values of the hyperbolic sine function.

In this paper, we will suggest an alternative approach to the search for an explicit
analytical solution for (1.1) by homotopy analysis method (HAM) [10–21]. In particular, a
series solution is obtained and the constant coefficients are given by recursive formulas.

The homotopy analysis method is based on homotopy, a fundamental concept in
topology and differential geometry. Briefly speaking, by means of the HAM, one constructs a
continuous mapping of an initial guess approximation to the exact solution of considered
equations. An auxiliary linear operator is chosen to construct such kind of continuous
mapping, and an auxiliary parameter is used to ensure the convergence of solution series.
The method enjoys great freedom in choosing initial approximations and auxiliary linear
operators. By means of this kind of freedom, a complicated nonlinear problem can be
transferred into an infinite number of simpler, linear subproblems, as shown by Liao and
Tan [19].
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2. Approach Based on the HAM

Consider the nonlinear Poisson-Boltzmann equation:

y′′ = λ2 sinhy, (2.1a)

y(−1) = A, y(+1) = A, y′(0) = 0. (2.1b)

According to (2.1a) and (2.1b), it is obvious that the solution y(x) can be expressed by the
base functions

{xn : n ∈ N} (2.2)

as

y(x) =
∞∑

n=1

bnx
n, (2.3)

where bn is a coefficient. It provides the Solution Expression of y(x).
Based on (2.1a), we define a nonlinear operator

N
[
φ
(
x; q
)]

=
∂2φ
(
x; q
)

∂x2
− λ2 sinh

[
φ
(
x; q
)]
, (2.4)

where q ∈ [0, 1] denotes the embedding parameter. Let y0(x) denote an initial guess of
the exact solution y(x) which satisfies the boundary conditions (2.1b), h/= 0 an auxiliary
parameter, and L an auxiliary linear operator. All of y0(x), L, and h will be chosen later with
great freedom. Then, we construct a one-parameter family of differential equations

(
1 − q

)
L
[
φ
(
x; q
)
− y0(x)

]
= qhN

[
φ
(
x; q
)]

(2.5)

subject to the boundary conditions

φ
(
−1; q

)
= A, φ

(
+1; q

)
= A,

∂φ
(
x; q
)

∂x

∣
∣
∣
∣
∣
x=0

= 0. (2.6)

Obviously, when q = 0, because of the property L(0) = 0 of any linear operator L, (2.5) and
(2.6) have the solution

φ(x; 0) = y0(x), (2.7)

and when q = 1, since h/= 0, (2.5) and (2.6) are equivalent to the original ones, (2.1a) and
(2.1b), provided that

φ(x; 1) = y(x). (2.8)
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Thus, based on (2.7) and (2.8), as the embedding parameter q increases from 0 to 1, φ(x; q)
varies continuously from the initial approximation y0(x) to the exact solution y(x). This
kind of deformation φ(x; q) is totally determined by the so-called zeroth-order deformation
equations (2.5) and (2.6).

By Taylor’s theorem, φ(x; q) can be expanded in a power series of q as follows:

φ
(
x; q
)
= y0(x) +

∞∑

m=1

ym(x)qm, (2.9)

where

ym(x) = Dm

[
φ
(
x; q
)]
,

Dm

[
f
(
q
)]

=
1
m!

∂mf
(
q
)

∂qm

∣
∣
∣
∣
∣
q=0

.
(2.10)

Dm is called the mth-order homotopy-derivative of f .
Fortunately, the homotopy-series (2.9) contains an auxiliary parameter h. Besides, we

have great freedom to choose the auxiliary linear operator L, as illustrated by Liao [16]. If the
auxiliary linear parameter L and the nonzero auxiliary parameter h are properly chosen so
that the power series (2.9) of φ(x; q) converges at q = 1, then, under these assumptions, we
have the so-called homotopy-series solution:

y(x) =
∞∑

m=0

ym(x). (2.11)

According to the fundamental theorems in calculus, each coefficient of the Taylor series
of a function is unique. Thus, ym(x) is unique and is determined by φ(x; q). Therefore, the
governing equations and boundary conditions of ym(x) can be deduced from the zeroth-
order deformation equations (2.5) and (2.6). For brevity, define the vectors

−→yn(x) =
{
y0(x), y1(x), y2(x), . . . , yn(x)

}
. (2.12)

Differentiating the zero-order deformation equation (2.5)m times with respect to q and
then dividing by m! and finally setting q = 0, we have the so-called high-order deformation
equation:

L
[
ym(x) − χmym−1(x)

]
= hRm

(−→ym−1(x)
)
,

ym(−1) = 0, ym(+1) = 0, y′m(0) = 0,
(2.13)



Mathematical Problems in Engineering 5

where

Rm

(−→ym−1(x)
)
= Dm−1

(
N
[
φ
])

=
1

(m − 1)!
∂m−1N

[
φ
(
x; q
)]

∂qm−1

∣
∣
∣
∣
∣
q=0

, (2.14)

χm =

⎧
⎨

⎩

0, m ≤ 1,

1, m > 1.
(2.15)

Using the definitions (2.4) and (2.14), we have the explicit expression

Dm

(
N
[
φ
])

= Dm

(
φ′′
)
− λ2Dm

(
sinhφ

)
. (2.16)

Now we have to find Dm(sinhφ). It is clear from (2.10) that Dm(φ′′) = y′′m, and by using the
definition of the operator Dm, it holds

D0

(
eφ
)
= ey0 . (2.17)

Besides, one has

∂eφ

∂q
= eφ

∂φ

∂q
. (2.18)

Thus, Leibnitz’s rule for derivatives of product implies that

1
m!

∂meφ

∂qm
=

1
m!

∂m−1

∂qm−1

(

eφ
∂φ

∂q

)

=
1
m

m−1∑

k=0

1
(m − k − 1)!

∂keφ

∂qk
∂m−kφ

∂qm−k

=
m−1∑

k=0

(

1 − k

m

)(
1
k!
∂keφ

∂qk

)(
1

(m − k)!
∂m−kφ

∂qm−k

)

.

(2.19)

Setting q = 0 in the above expression, one has

Dm

(
eφ
)
=

m−1∑

k=0

(

1 − k

m

)

Dk

(
eφ
)
Dm−k

(
φ
)
. (2.20)
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It is clear that D0(sinhφ) = sinhy0, and it holds for any integer m ≥ 1 that

Dm

(
sinhφ

)
=

1
2
Dm

(
eφ − e−φ

)

=
m−1∑

k=0

(

1 − k

m

)

Dm−k
(
φ
)
Dk

(
eφ + e−φ

2

)

=
m−1∑

k=0

(

1 − k

m

)

Dm−k
(
φ
)
Dk

(
coshφ

)
.

(2.21)

Similarly,

D0
(
coshφ

)
= coshy0,

Dm

(
coshφ

)
=

m−1∑

k=0

(

1 − k

m

)

Dm−k
(
φ
)
Dk

(
sinhφ

)
, m ≥ 1.

(2.22)

In this line we have that

Rm

(−→ym−1(x)
)
= Dm−1

(
N
[
φ
])

= y′′m−1 − λ
2Sm(x) (2.23)

with the following recurrence formulas:

Sn =
An − Bn

2
, n ≥ 0,

A0 = 1,

B0 = 1,

An =
n−1∑

m=0

(

1 − m
n

)

Amyn−m−1, n ≥ 1,

Bn = −
n−1∑

m=0

(

1 − m
n

)

Bmyn−m−1, n ≥ 1.

(2.24)

From the above recurrence formulas, we have

R1
(−→y0

)
= y′′0(x) − λ2y0,

R2
(−→y1

)
= y′′1(x) − λ

2y1,

R3
(−→y2

)
= y′′2(x) − λ2

(

y2 +
1
6
y3

0

)

,

(2.25)

and so on. So, by means of symbolic computation software such as Mathematica and Matlab,
it is not difficult to get Rm(

−→ym−1(x)) for large values of m.
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Note that the high-order deformation equations (2.13) are linear ODEs. So, according
to (2.11), the original nonlinear problem is transferred into an infinite number of linear ODEs.

Both the auxiliary linear operator L and the initial guess y0(x) are chosen under the
so-called Rule of Solution Expression: the auxiliary linear operator L and the initial guess
y0(x) must be chosen so that the solutions of the high-order deformation equations (2.13)
exist and besides they obey the Solution Expression (2.3). So, for the solutions to obey the
Solution Expression (2.3) and the boundary conditions (2.1b), we choose the initial guess of
the solution:

y0(x) =
A

2

(
1 + x2

)
. (2.26)

Because the original equation (2.1a) is of second order, we simply choose such a second-order
auxiliary linear operator:

L
[
y
]
= y′′, (2.27)

which has the property

L[C1 + C2x] = 0 (2.28)

for any real coefficients C1 and C2. Let ŷm(x) denote a particular solution of (2.13), then its
general solution is expressed by

ym(x) = ŷm(x) + χmym−1(x) + C1 + C2x, (2.29)

where C1 and C2 are determined by the conditions in (2.13), that is,

C2 = −ŷ′m(0) − χmy′m−1(0), C1 = 0. (2.30)

In this way, we get ym(x) one by one in the order m = 1, 2, 3, . . . .
At the Mth-order approximation, the solution can be expressed as follows:

y(x) =
M∑

m=0

m+1∑

k=0

αm,kx
k, (2.31)

where αm,k is a coefficient.

3. Illustrative Example

Consider the system consisting of two parallel walls, each subjected to a dimensionless
electrostatic potential equal to ψw. In order to take advantage of the symmetry, the coordinates
have been placed in the vertical center of the capillary domain. In dimensionless coordinates,
the wall located at the right-hand side is at the location ξ = 1 while the one on the left-hand
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ξ = −1 ξ = 0 ξ = 1

ξ

ψ(ξ)

Figure 1: Geometrical sketch of the capillary channel.

side is at ξ = −1 (see Figure 2). In terms of the electrostatic forces, the system is defined by
(2.1a) jointly with appropriate boundary conditions [3, 4]:

d2ψ

dξ2
= λ2 sinhψ, (3.1a)

ψ(−1) = ψw, ψ(+1) = ψw,
dψ

dξ

∣
∣
∣
∣
ξ=0

= 0. (3.1b)

The HAM explicit analytical solution (2.31) depends on the auxiliary parameter h.
Let Rh denote the set of all values of h which ensure the convergence of the series (2.31).
According to Liao’s proof [16], all of these series solutions must converge to the solution of
the original problem (3.1a)-(3.1b). For a fixed ξ0 in the range of ξ, plot the h-curve, ψ(ξ0)
versus h. Because the limit of all convergent series solutions (2.31) is the same for a given ψw,
there exists a horizontal line segment above the region h ∈ Rh. So, by plotting the h-curve at
a high enough order approximation, one can find an approximation Rh = {h : −2 < h < 0}, as
shown in Figure 1 in the case of ψw = 1 and λ = 0.24. In Table 1, the value h = −1.5 ensures
the convergence of the series (2.31).

We can conclude that, for any given value of ψw, we can always find a proper value of
h to ensure the convergence of the series of the solution ψ(ξ).

Let us consider the average residual errors of (3.1a):

E =
1
2

∫1

−1

∣
∣
∣ψ ′′ − λ2 sinhψ

∣
∣
∣dξ. (3.2)

The average residual errors of the series (2.31) at different orders of approximations when
h = −1.5 are listed in Table 2. Obviously, as the order M increases, the average residual errors
decrease. This clearly indicates that our series solution (2.31) is indeed the solution of (3.1a)-
(3.1b).
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Figure 2: Curve ψ(0.2) versus h at the 15th order of approximation.

Table 1: Approximation of ψ(0.2) when ψw = 1, λ = 0.24, h = −1.5.

Order of approximation ψ(0.2)
2 0.8690
4 0.8943
6 0.9617
8 0.9661
10 0.9687
12 0.9687
14 0.9687

Table 2: Residual errors of our analytic solution when h = −1.5 at different orders of approximation.

Order of approximation E

2 2.72 × 10−2

5 3.22 × 10−3

10 1.43 × 10−4

15 2.57 × 10−5

20 8.11 × 10−6

25 1.40 × 10−6

30 4.13 × 10−7

In a previous work [22], and for coordinates system as shown in Figure 1, the authors
have obtained the approximate analytical solution of the model described by (3.1a)-(3.1b),
and it is given by

ψ(ξ) = ψw
coshλξ
coshλ

, (3.3)

which is only valid in the range −1 ≤ ψ ≤ +1.
The proposed technique does not require small parameters in the equations under

study. As a result, the technique completely eliminates the difficulty arising in the classical
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Figure 3: ψ versus ξ: comparison of the numerical solutions when Ψw = 1, λ = 0.24 and h = −1.5. Hollow
dots: 15th-order HAM approximation; continued lines: numerical solution; dashed lines: Debye-Hückel
approximation; dot-dashed lines: fAO approximation.

perturbation methods. The homotopy perturbation method (HPM) [23] was used to obtain
an explicit analytical solution to the nonlinear Poisson- Boltzmann problem (3.1a)-(3.1b). The
HPM solution is not accurate enough since it depends on an approximated form of (3.1a):

d2ψ

dξ2
= λ2

(
ψ + ψ3

)
, (3.4)

and it is very difficult to obtain more than the first few terms of the series solution since the
constant coefficients are not given by recursive formulas.

Figure 3 shows the electrostatic potential variation, along the transversal coordinate ξ,
predicted by the numerical solution of the complete Poisson-Boltzmann equation by Runge-
Kutta method (RK4), Debye-Hückel approximation (3.3), 15th-order HAM approximation
with h = −1.5, and fAO approximation [4].

In particular, Figure 3 demonstrates that the use of the proposed approach, consider-
ably improves the prediction of the electrostatic potential, ψ, yielding values nearly identical
with the numerical solutions. Obviously, we dare say that the best possible approximation
with the numerical solution has been achieved by using HAM solution (2.31).

4. Conclusion

Some models show nonlinear sources, such as, electrostatic potential. The general situation
is that these models lack analytical or closed form solutions that are quite handy when
coupling is required. In this study we developed a simple procedure to obtain an explicit and
purely analytic solution for the prediction of the electrostatic potential; that is, the structure
of the solution is known and the constant coefficients are given by recursive formulas and
it is unnecessary to use any numerical methods to get any coefficients. This new approach
embraces excellent results for a wide range of electrostatic potential values and can be highly
adaptable to many situations.
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