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We establish the Calderón reproducing formula for functions in L2 on the Heisenberg group Hd.
Also, we develop this formula in Lp(Hd)with 1 < p <∞.

1. Introduction

The classical Calderón reproducing formula reads

f =
∫+∞

0
f ∗ φt ∗ ψt dt

t
, (1.1)

where φt(x) = t−1φ(x/t), ψt(x) = t−1ψ(x/t), and ∗ denotes the convolution on R. The
Calderón reproducing formula is a useful tool in pure and applied mathematics (see [1–
4]), particularly in wavelet theory (see [5, 6]). We always call (1.1) an inverse formula of
wavelet transform. In [7], the authors generalized (1.1) to Rn when φ and ψ are sufficiently
nice normalized radial wavelet functions. The generalization of (1.1) involving nonradial
wavelets φ and ψ can be written in the following form:

f =
∫
SO(n)

dγ

∫+∞

0
f ∗ φγ,t ∗ ψγ,t dt

t
, (1.2)

where φγ,t and ψγ,t are rotated versions of φ and ψ on Rn. The authors in [8, 9] established
(1.1) for f ∈ Lp(R). Holschneider [10] studied the formula (1.2) in case f ∈ Lp(R2) and gave
an inversion formula of the Radon transform in Lp-space by using wavelets. Furthermore,
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Rubin [4] developed the Calderón reproducing formula, windowed X-ray transforms, the
Radon transforms, and k-plane transforms in Lp-spaces on Rn.

It is a remarkable fact that the Heisenberg group, denoted by Hd, arises in two
fundamental but different setting in analysis. On the one hand, it can be realized as the
boundary of the unit ball in several complex variables. On the other hand, an important
aspect of the study of the Heisenberg group is the background of physics, namely, the
mathematical ideas connected with the fundamental nations of quantum mechanics. In
other words, there is its genesis in the context of quantum mechanics which emphasizes its
symplectic role in connection with the Fourier transform, pseudodifferential operators, and
related matters (see [11]). Due to this reason, many interesting works were devoted to the
theory of harmonic analysis on Hd in [11–13] and the references therein. Also, the researches
of wavelet analysis on Hd are concerned increasingly; for this we refer readers to [14–16].
And the inversion formula of the Radon transform by using inverse wavelet transform onHd

was established in [17]. Our goal of the present article is to study the Calderón reproducing
formula on the Heisenberg group in Lp-space with 1 < p < ∞. In the sequel we will develop
the theory of inverse Radon transform onHd.

The Heisenberg groupHd is a Lie group with the underlying manifold Cd ×R, and the
multiplication law is given by

(z, t)
(
z′, t′

)
=

(
z + z′, t + t′ + 2 Im zz′

)
, (1.3)

where zz′ =
∑d

j=1 zjz
′
j . The dilation of Hd is defined by ρ(z, t) = (ρz, ρ2t) with ρ > 0. For

(z, t) ∈ Hd, the homogeneous norm of (z, t) is given by (see [11])

|(z, t)| =
∣∣∣(z, t)−1

∣∣∣ = max
{
|z|, |t|1/2

}
. (1.4)

Notice that |ρ(z, t)| = max{|ρz|, |ρ2t|1/2} = ρ|(z, t)|. In addition, | · | satisfies the quasitriangle
inequality:

∣∣(z, t)(z′, t′)∣∣ ≤ |(z, t)| +
∣∣(z′, t′)∣∣. (1.5)

The homogeneous dimension of Hd is 2d + 2, and the volume of a ball B((z, t), r) = {(z′, t′) ∈
Hd : |(z, t)−1(z′, t′)| ≤ r} is c′r2d+2, where c′ is a constant.

Let P = {(z, t, ρ) : (z, t) ∈ Hd, ρ > 0}; then P is a locally compact nonunimodular group
with the group law

(
z, t, ρ

)(
z′, t′, ρ′

)
=

(
z + ρz′, t + ρ2t′ + 2ρ Im zz′, ρρ′

)
. (1.6)

The left and right Haar measures on P are given by

dμl
(
z, t, ρ

)
=
dzdt dρ

ρ2d+3
, dμr

(
z, t, ρ

)
=
dzdt dρ

ρ
, (1.7)

where dz denotes the Lebesgue measure on Cd.
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Let Lp(Hd) be the space of measurable functions f on Hd, such that

∥∥f∥∥
Lp(Hd) =

(∫
Hd

∣∣f(z, t)∣∣pdz dt
)1/p

< +∞, if p ∈ [1,+∞),

∥∥f∥∥
Lp(Hd) = ess sup

(z,t)∈Hd

∣∣f(z, t)∣∣ < +∞, if p = +∞.

(1.8)

Let Z+ = {0, 1, 2, . . .} and α = (α1, α2, . . . , αd) ∈ (Z+)d. The Fock space H is the space of
holomorphic functions F on Cd such that

‖F‖2H =
(
2
π

)d ∫
Cd

|F(ζ)|2e−2|ζ|2dζ < +∞. (1.9)

From [18] we know that {Eα(ζ) = (
√
2ζ)α/

√
α! : α ∈ (Z+)d} is an orthonormal basis of the

Hilbert space H. For λ ∈ R \ {0}, let πλ be the Bargmann-Fock representation of Hd which
acts onH by

πλ(z, t)F(ζ) =

⎧⎨
⎩
e−iλt−λ|z|

2+2
√
λζzF

(
ζ −

√
λz

)
, if λ > 0,

e−iλt+λ|z|
2−2

√
|λ|ζzF

(
ζ +

√
λz

)
, if λ < 0.

(1.10)

The group Fourier transform of a function f ∈ L1(Hd) is defined by

f̂(λ) =
∫
Hd

f(z, t)πλ(z, t)dzdt. (1.11)

Let Sp(H) (1 ≤ p < +∞) be the classes of Schatten-von Neumann operators on Hilbert
spaceH, and let S∞(H) denote the algebra of all bounded operators, that is, S∞(H) = B(H).
For T ∈ Sp(H), let ‖T‖p = (tr(T ∗T)1/p)p/2 denote the Sp-norm of T. If p = 2, ‖T‖2 is just the
Hilbert-Schmit norm of T, that denotes ‖T‖HS. Let ‖T‖∞ denote the usual operator norm of
T in S∞(H). For 1 ≤ p ≤ +∞, let Lp be the Banach space consisting of all weak measurable
operator value functions F, which also satisfy F(λ) ∈ Sp(H|λ|), a.e. λ ∈ R \ {0}, and

‖F‖Lp =

(
1

πd+1

∫
R\{0}

‖F(λ)‖pp|λ|ddλ
)1/p

< +∞, if 1 ≤ p < +∞,

‖F‖Lp = ess sup
λ∈R\{0}

‖F(λ)‖∞ < +∞, if p = ∞.

(1.12)

For f, g ∈ L2(Hd), the Parseval formula is

〈
f, g

〉
L2(Hd) =

2d−1

πd+1

∫+∞

−∞
tr
(
ĝ(λ)∗f̂(λ)

)
|λ|ddλ, (1.13)
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where ĝ(λ)∗ denotes the adjoint of ĝ(λ). The Plancherel formula is

∥∥f∥∥2
L2(Hd) =

2d−1

πd+1

∫+∞

−∞

∥∥∥f̂(λ)
∥∥∥2

HS
|λ|ddλ. (1.14)

As a consequence of (1.13), one has the inversion of the Fourier transform:

f(z, t) =
2d−1

πd+1

∫+∞

−∞
tr
(
πλ(z, t)∗f̂(λ)

)
|λ|ddλ. (1.15)

Suppose ρ > 0, and let

fρ(z, t) = ρ−(2d+2)f
(
ρ−1(z, t)

)
= ρ−(2d+2)f

(
z

ρ
,
t

ρ2

)
. (1.16)

By a direct computation, we have

f̂ρ(λ) = f̂
(
ρλ

)
. (1.17)

Let f ∗ g be the convolution of f and g, that is,

f ∗ g(z, t) =
∫
Hd

f
(
z′, t′

)
g
((
z′, t′

)−1(z, t))dz′dt′. (1.18)

Then

̂f ∗ g(λ) = f̂(λ)ĝ(λ). (1.19)

We should notice the following facts: if f̃(z, t) = f((z, t)−1) = f(−z,−t), then

̂̃
f(λ) = f̂(λ)∗. (1.20)

And if g(z, t) = f(−z,−t), then

ĝ(λ) = f̂(−λ). (1.21)

The further detail of harmonic analysis onHd can be found in [11, 12].
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2. Calderón Reproducing Formula

The authors in [14, 15, 18] studied the theory of continuous wavelet associated with the
concept of square integrable group representations. The unitary representation of P on L2(Hd)
is defined by

U(z,t,ρ)f
(
z′, t′

)
= ρ−(d+1)f

(
z′ − z
ρ

,
t′ − t − 2 Im zz′

ρ2

)
. (2.1)

Let R+ denote the set of all positive real numbers, R− = −R+. Let Pα (α ∈ (Z+)d) be the
projection from L2(Rd) to 1-dimensional subspace spanned by Eα, and let σ = + or −,

Hσ
α =

{
f ∈ L2

(
Hd

)
: f̂(λ) = f̂(λ)Pα, and f̂(λ) = 0 if λ/∈Rσ

}
. (2.2)

From [15, Theorem 1], we have

L2
(
Hd

)
=

⊕
α∈(Z+)d

(
H+

α ⊕H−
α

)
. (2.3)

Let α ∈ (Z+)d and σ = + or −, φ ∈ Hσ
α ; if φ/= 0 and satisfies

Cφ =
〈∫

Rσ

φ̂(λ)∗φ̂(λ)
dλ

|λ|Eα, Eα
〉

H
< +∞, (2.4)

then we call φ an admissible wavelet and write φ ∈ AWσ
α. Let φ ∈ AWσ

α, f ∈ Hσ
α ; the

continuous wavelet transform of f with respect to φ is defined by

Wφf
(
z, t, ρ

)
=

〈
f,U(z,t,ρ)φ

〉
L2(Hd). (2.5)

And the following Calderón reproducing formula holds in the weak sense:

f
(
z′, t′

)
= C−1

φ

∫+∞

0

∫
Hd

Wφf
(
z, t, ρ

)
U(z,t,ρ)φ

(
z′, t′

)dzdt dρ
ρ2d+3

. (2.6)

2.1. Calderón Reproducing Formula in L2(Hd)

By (1.16) and (1.18), we can rewrite (2.5) and (2.6) as follows:

Wφf
(
z, t, ρ

)
= ρd+1f ∗ φ̃ρ(z, t), (2.7)

f(z, t) = C−1
φ

∫+∞

0
f ∗ φρ ∗ φ̃ρ(z, t)

dρ

ρ
. (2.8)
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For 0 < ε < η < +∞, let

fε,η(z, t) = C−1
φ

∫η

ε

f ∗ φρ ∗ φ̃ρ(z, t)
dρ

ρ
, (2.9)

Φε,η(z, t) = C−1
φ

∫η

ε

φρ ∗ φ̃ρ(z, t)
dρ

ρ
, (2.10)

then fε,η(z, t) = f ∗ Φε,η(z, t). We are now in a position to show that fε,η converges to f in
L2-space when ε → 0 and η → ∞. The result in this paper is an extension of that of Mourou
and Trimèche [19].

Lemma 2.1. Suppose that φ ∈ AWσ
α and φ ∈ Hσ

α satisfies φ̂(λ) ∈ S∞(H). Let Φε,η be defined by
(2.10). Then one has Φε,η ∈ L2(Hd).

Proof. By Hölder’s inequality, we have

∣∣Φε,η

∣∣2 ≤ C−2
φ

∫η

ε

∣∣∣φρ ∗ φ̃ρ(z, t)
∣∣∣2dρ
ρ

∫η

ε

dρ

ρ
. (2.11)

Thus

∫
Hd

∣∣Φε,η

∣∣2dzdt ≤ C−2
φ

∫η

ε

∫
Hd

∣∣∣φρ ∗ φ̃ρ(z, t)
∣∣∣2dzdt dρ

ρ

∫η

ε

dρ

ρ
. (2.12)

By (1.14), (1.19), and (1.20), we have

∫
Hd

∣∣∣φρ ∗ φ̃ρ(z, t)
∣∣∣2dzdt = 2d−1

πd+1

∫+∞

−∞

∥∥∥φ̂(ρλ)φ̂(ρλ)∗
∥∥∥2

HS
|λ|ddλ

=
2d−1

πd+1

∫+∞

−∞
tr
(
φ̂
(
ρλ

)∗
φ̂
(
ρλ

)
φ̂
(
ρλ

)∗
φ̂
(
ρλ

))|λ|ddλ.
(2.13)

Noticing that

tr
(
φ̂
(
ρλ

)∗
φ̂
(
ρλ

)
φ̂
(
ρλ

)∗
φ̂
(
ρλ

))
=

∑
α

〈
φ̂
(
ρλ

)∗
φ̂
(
ρλ

)
Eα, φ̂

(
ρλ

)∗
φ̂
(
ρλ

)
Eα

〉
H
, (2.14)

we obtain

tr
(
φ̂
(
ρλ

)∗
φ̂
(
ρλ

)
φ̂
(
ρλ

)∗
φ̂
(
ρλ

)) ≤
∥∥∥φ̂(

ρλ
)∥∥∥2

∞
tr
(
φ̂
(
ρλ

)∗
φ̂
(
ρλ

))
. (2.15)
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Thus we get

∫
Hd

∣∣∣φρ ∗ φ̃ρ(z, t)
∣∣∣2dzdt ≤ 2d−1

πd+1

∫+∞

−∞

∥∥∥φ̂
∥∥∥2

L∞
tr
(
φ̂
(
ρλ

)∗
φ̂
(
ρλ

))|λ|ddλ

=
2d−1

πd+1

∥∥∥φ̂
∥∥∥2

L∞

∫+∞

−∞
tr
(
φ̂
(
ρλ

)∗
φ̂
(
ρλ

))|λ|ddλ

=
∥∥∥φ̂∥∥∥2

L∞

∥∥φρ∥∥2
L2(Hd).

(2.16)

Therefore,

∫
Hd

∣∣Φε,η

∣∣2dzdt ≤ C−2
φ

∫η

ε

∥∥∥φ̂
∥∥∥2

L∞

∥∥φρ∥∥2
L2(Hd)

dρ

ρ

∫η

ε

dρ

ρ

= C−2
φ

∥∥∥φ̂
∥∥∥2

L∞

∥∥φρ∥∥2
L2(Hd)

∫η

ε

ρ−2(d+1)
dρ

ρ

∫η

ε

dρ

ρ

< +∞.

(2.17)

Then we complete the proof of this lemma.

Theorem 2.2. Let φ ∈ AWσ
α and φ ∈ Hσ

α satisfy φ̂(λ) ∈ S∞(H). Then for f ∈ Hσ
α , one has

fε,η ∈ L2(Hd) and limε→ 0,η→∞fε,η = f.

Proof. Notice that

fε,η(z, t) = f ∗Φε,η(z, t), (2.18)

and by (1.19) and Lemma 2.1 we deduce fε,η ∈ L2(Hd). Then by (1.17) and (1.19), we have

lim
ε→ 0
η→∞

〈∫
Hd

fε,η(z, t)πλ(z, t)dzdtEα, Eα
〉

H

= lim
ε→ 0
η→∞

〈∫
Hd

f ∗Φε,η(z, t)πλ(z, t)dzdtEα, Eα
〉

H

= lim
ε→ 0
η→∞

〈
C−1
φ

∫η

ε

f̂(λ)φ̂
(
ρλ

)∗
φ̂
(
ρλ

)dρ
ρ
Eα, Eα

〉
H

= lim
ε→ 0
η→∞

C−1
φ

〈∫η

ε

φ̂σα
(
λ′

)∗
φ̂σα

(
λ′

)dλ′
|λ′|Eα, Eα

〉
H

〈
f̂σα (λ)Eα, Eα

〉
H

=
〈
f̂(λ)Eα, Eα

〉
H
,

(2.19)

where σ = + if λ > 0, otherwise σ = −. By (1.11) we get the desired result.



8 Mathematical Problems in Engineering

2.2. Calderón Reproducing Formula in Lp(Hd) with 1 < p <∞
For f ∈ Lp(Hd) with 1 < p < ∞, the continuous wavelet transform of f with respect to a
wavelet φ can be defined by formula (2.7) under certain conditions on φ. In this part we will
show that fε,η converges to f.

Let f be a measurable function onHd; for (z, t) ∈ Hd, define

f∗(z, t) = ess sup
{∣∣f(

z′, t′
)∣∣ : (z′, t′) ∈ Hd,

∣∣(z′, t′)∣∣ > |(z, t)|
}
. (2.20)

It is easy to see that f∗ is nonnegative and radially decreasing, that is,

0 ≤ f∗(z1, t1) ≤ f∗(z2, t2) only if |(z1, t1)| > |(z2, t2)|, (2.21)

and f∗ ≥ |f | a.e. on Hd.
Let g ∈ L1(R+). Then for any (z, t) ∈ Hd, we define

G∗(z, t) = sup

{
ρ−(2d+2)

∣∣∣∣∣
∫+∞

ρ

g(s)ds

∣∣∣∣∣ : ρ > |(z, t)|
}
, (2.22)

and thus we have the following lemma.

Lemma 2.3. Let g ∈ L1(R+) and G∗(z, t) be defined by (2.22). Then one has

∫
Hd\B

G∗(z, t)dzdt ≤ c
∫+∞

1

∣∣g(s)∣∣ ln s ds, (2.23)

where c is a positive constant, B = B((0, 0), 1).

Proof. First we let

G(z, t) = |(z, t)|−(2d+2)
∫+∞

|(z,t)|

∣∣g(s)∣∣ds. (2.24)

It is obvious that G∗(z, t) ≤ G(z, t) for any (z, t) ∈ Hd \ {(0, 0)}. Since G(z, t) is nonnegative
and radially decreasing, from [11, page 542], we know that there exists a positive constant c
such that

∫
Hd

G(z, t)dzdt = c
∫+∞

0
G(r)r2d+1dr. (2.25)
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Thus,

∫
Hd\B

G∗(z, t)dzdt ≤
∫
Hd\B

G(z, t)dzdt

= c
∫+∞

1
G(r)r2d+1dr

= c
∫+∞

1
r−(2d+2)

∫+∞

r

∣∣g(s)∣∣ds r2d+1dr

= c
∫+∞

1

∫s

1

∣∣g(s)∣∣dsdr
r

= c
∫+∞

1

∣∣g(s)∣∣ ln s ds.

(2.26)

This completes the proof.

Let k be a radial function in Lp(Hd) (1 < p <∞) and let

K(z, t) = |(z, t)|−(2d+2)
∫ |(z,t)|

0
k(sω)s2d+1ds (2.27)

for any (z, t) ∈ Hd \ {(0, 0)}, where ω is a unit vector of Hd. Then we have the following
lemma.

Lemma 2.4. Let k be a radial function in Lp(Hd) (1 < p < ∞) and let K(z, t) be defined by k in
(2.27). If k satisfies

∫
Hd k(z, t)dzdt = 0, and k(z, t) ln |(z, t)| ∈ L1(Hd), then K ∈ L1(Hd).

Proof. Analogous to (2.20)we define

K∗(z, t) = ess sup
{∣∣K(

z′, t′
)∣∣ : (z′, t′) ∈ Hd,

∣∣(z′, t′)∣∣ > |(z, t)|
}
, (2.28)

and then K∗ ≥ |K| a.e. on Hd.
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Let (z, t), (z′, t′) ∈ Hd and 0 < |(z, t)| < |(z′, t′)|; by (2.25)we have

∣∣K(
z′, t′

)∣∣ = 1

|(z′, t′)|(2d+2)

∣∣∣∣∣
∫ |(z′,t′)|

0
k(sω)s2d+1ds

∣∣∣∣∣

≤ 1

|(z′, t′)|(2d+2)
∫ |(z′,t′)|

0
|k(sω)|s2d+1ds

=
1

c|(z′, t′)|(2d+2)
∫
B((0,0),|(z′,t′)|)

∣∣k(z′′, t′′)∣∣′dz′′dt′′

≤ 22d+2

c(|(z, t)| + |(z′, t′)|)(2d+2)
∫
B((z,t),|(z,t)|+|(z′,t′)|)

∣∣k(z′′, t′′)∣∣dz′′dt′′

≤ 22d+2(Mk)(z, t),

(2.29)

where Mk is the Hardy-Littlewood maximal function of k. From the definition of K∗, we
have K∗ ≤ 22d+2(Mk). Because k ∈ Lp(Hd), we get K∗ ∈ Lp(Hd).

By the hypothesis k is radial and
∫
Hd k(z, t)dzdt = 0; together with the definition ofK,

we have

|K(z, t)| = 1

|(z, t)|(2d+2)

∣∣∣∣∣
∫+∞

|(z,t)|
k(sω)s2d+1ds

∣∣∣∣∣. (2.30)

Since k(z, t)(ln |(z, t)|) ∈ L1(Hd), it follows from Lemma 2.3 that
∫
Hd\BK

∗(z, t)dzdt < +∞,

that is, K∗ ∈ L1
loc(H

d). On the other hand, K∗ ∈ Lp(Hd) ⊂ L1
loc(H

d), and thus K∗ ∈ L1(Hd),
which implies that K ∈ L1(Hd).

Without loss of generality, we assume that Cφ = 1; then (2.9) and (2.10) can be written
as

Φε,η(z, t) =
∫η

ε

φρ ∗ φ̃ρ(z, t)
dρ

ρ
, (2.31)

fε,η(z, t) =
∫η

ε

f ∗ φρ ∗ φ̃ρ(z, t)
dρ

ρ
. (2.32)

In fact,Φε,η is always stated under conditions on k := φ∗φ̃ rather than under conditions
on φ for convenience (see [4, 10]). By Lemma 2.4 we have the following theorem.

Theorem 2.5. Let k be in the conditions of Lemma 2.4 and letK be defined by (2.27). Suppose φ∗φ̃ =
k and

∫
Hd K(z, t)dzdt = 1. Then for f ∈ Lp(Hd), one has limε→ 0,η→∞fε,η = f.

Proof. From (2.31) we have

Φε,η(z, t) = Φε,∞(z, t) −Φη,∞(z, t). (2.33)
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Since k(z, t) = φ ∗ φ̃(z, t), and φ̃(z, t) = φ(−z,−t),we deduce

kρ(z, t) = ρ−(2d+2)
∫
Hd

φ
(
z′, t′

)
φ

((
ρ−1z, ρ−2t

)−1(
z′, t′

))
dz′dt′

= ρ−(4d+4)
∫
Hd

φ
(
z′, t′

)
φ
(
ρ−1

(
(z, t)−1

(
ρz′, ρ2t′

)))
d
(
ρ z′

)
d
(
ρ2t′

)

= ρ−(4d+4)
∫
Hd

φ
(
ρ−1

(
z′, t′

))
φ
(
ρ−1

(
(z, t)−1

(
z′, t′

)))
dz′dt′

= φρ ∗ φ̃ρ(z, t).

(2.34)

Then we have

Φε,∞(z, t) =
∫+∞

ε

kρ(z, t)
dρ

ρ

=
∫+∞

ε

k

(
(z, t)
ρ

)
dρ

ρ2d+3

=
1

|(z, t)|2d+2
∫+∞

ε/|z,t|
k

(
(z, t)
ρ|(z, t)|

)
dρ

ρ2d+3

=
1

|(z, t)|2d+2
∫ |z,t|/ε

0
k

(
ρ(z, t)
|(z, t)|

)
ρ2d+1dρ

=
ε−2(d+1)

|(z, t)/ε|2d+2
∫ |(z,t)|/ε

0
k
(
ρω

)
ρ2d+1dρ

= Kε(z, t).

(2.35)

By Lemma 2.4 together with the approximation of the identity, we have

lim
ε→ 0
η→∞

fε,η(z, t) = lim
ε→ 0
η→∞

Φε,η ∗ f(z, t) = lim
ε→ 0

Kε ∗ f(z, t) − lim
η→∞

Kη ∗ f(z, t) = f(z, t). (2.36)

Then we complete the proof of this theorem.
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