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A computational method for solving Fredholm integral equations of the first kind is presented. The
method utilizes Chebyshev wavelets constructed on the unit interval as basis in Galerkin method
and reduces solving the integral equation to solving a system of algebraic equations. The properties
of Chebyshev wavelets are used to make the wavelet coefficient matrices sparse which eventually
leads to the sparsity of the coefficients matrix of obtained system. Finally, numerical examples are
presented to show the validity and efficiency of the technique.

1. Introduction

Many problems of mathematical physics can be stated in the form of integral equations.
These equations also occur as reformulations of other mathematical problems such as
partial differential equations and ordinary differential equations. Therefore, the study of
integral equations and methods for solving them are very useful in application. In recent
years, several simple and accurate methods based on orthogonal basic functions, including
wavelets, have been used to approximate the solution of integral equation [1–5]. The main
advantage of using orthogonal basis is that it reduces the problem into solving a system
of algebraic equations. Overall, there are so many different families of orthogonal functions
which can be used in this method that it is sometimes difficult to select the most suitable
one. Beginning from 1991, wavelet technique has been applied to solve integral equations [6–
10]. Wavelets, as very well-localized functions, are considerably useful for solving integral
equations and provide accurate solutions. Also, the wavelet technique allows the creation of
very fast algorithms when compared with the algorithms ordinarily used.

In various fields of science and engineering, we encounter a large class of integral
equations which are called linear Fredholm integral equations of the first kind. Several
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methods have been proposed for numerical solution of these types of integral equation.
Babolian and Delves [11] describe an augmented Galerkin technique for the numerical
solution of first kind Fredholm integral equations. In [12] a numerical solution of Fredholm
integral equations of the first kind via piecewise interpolation is proposed. Lewis [13] studied
a computational method to solve first kind integral equations. Haar wavelets have been
applied to solve Fredholm integral equations of first kind in [14]. Also, Shang and Han [15]
used Legendre multiwavelets for solving first kind integral equations.

Consider the linear Fredholm integral equations of the first kind:

∫1

0
K
(
x, y
)
u
(
y
)
dy = f(x), 0 ≤ x ≤ 1, (1.1)

where f ∈ L2
w[0, 1] and K ∈ L2

w([0, 1] × [0, 1]), in which w(x) = 1/2
√
x(1 − x), are known

functions and u is the unknown function to be determined. In general, these types of integral
equation are ill-posed for given K and f . Therefore (1.1) may have no solution, while if a
solution exists, the response ration ‖∂u‖/‖∂f‖ to small perturbations in f may be arbitrary
large [16].

The main purpose of this article is to present a numerical method for solving (1.1) via
Chebyshev wavelets. The properties of Chebyshev wavelets are used to convert (1.1) into
a linear system of algebraic equations. We will notice that these wavelets make the wavelet
coefficient matrices sparse which concludes the sparsity of the coefficients matrix of obtained
system. This system may be solved by using an appropriate numerical method.

The outline of the paper is as follows: in Section 2, we review some properties of
Chebyshev wavelets and approximate the function f and also the kernel function K(x, y)
by these wavelets. Convergence theorem of the Chebyshev wavelet bases is presented in
Section 3. Section 4 is devoted to present a computational method for solving (1.1) utilizing
Chebyshev wavelets and approximate the unknown function u(x). In Section 5, the sparsity
of the wavelet coefficient matrix is studied. Numerical examples are given in Section 6.
Finally, we conclude the article in Section 7.

2. Properties of Chebyshev Wavelets

2.1. Wavelets and Chebyshev Wavelets

Wavelets consist of a family of functions constructed from dilation and translation of a
single function called the mother wavelet. When the dilation parameter a and the translation
parameter b vary continuously, we have the following family of continuous wavelets [17]:

ψa,b(t) = |a|−1/2ψ

(
t − b
a

)
, a, b ∈ R, a /= 0. (2.1)

If we restrict the parameters a and b to discrete values a = a−k0 , b = nb0a
−k
0 , a0 > 1, b0 > 0

where n and k are positive integers, then we have the following family of discrete wavelets:

ψk,n(t) = |a0|k/2ψ
(
ak0 t − nb0

)
, (2.2)
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where ψk,n(t) form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1, then
ψk,n(t) forms an orthonormal basis [17, 18].

Chebyshev wavelets ψnm(t) = ψ(k, n,m, t) have four arguments: n = 1, 2, . . . , 2k−1, k is
any nonnegative integer, m is the degree of Chebyshev polynomial of first kind, and t is the
normalized time. The Chebyshev wavelets are defined on the interval [0, 1) by [19]

ψnm(t) =

⎧⎨
⎩

2k/2T̃m
(
2kt − 2n + 1

)
,

n − 1
2k−1

≤ t < n

2k−1
,

0, otherwise,
(2.3)

where

T̃m(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
π
, m = 0,

√
2
π
Tm(t), m > 0,

(2.4)

and m = 0, 1, . . . ,M− 1, n = 1, 2, . . . , 2k−1. Here Tm(t), m = 0, 1, . . ., are Chebyshev polynomials
of first kind of degree m, given by [20]

Tm(t) = cosmθ, (2.5)

in which θ = arccos t. Chebyshev polynomials are orthogonal with respect to the weight
function w((t + 1)/2) = 1/

√
1 − t2, on [−1, 1]. We should note that Chebyshev wavelets are

orthonormal set with the weight function:

wk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1,k(t), 0 ≤ t < 1
2k−1

,

w2,k(t),
1

2k−1
≤ t < 2

2k−1
,

...
...

w2k−1,k(t),
2k−1 − 1

2k−1
≤ t < 1,

(2.6)

where wn,k(t) = w(2k−1t − n + 1).

2.2. Function Approximation

A function f(x) ∈ L2
w[0, 1] may be expanded as

f(x) =
∞∑
n=1

∞∑
m=0

cnmψnm(x), (2.7)
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where

cnm =
〈
f(x), ψnm(x)

〉
wk
, (2.8)

in which 〈., .〉wk
denotes the inner product in L2

wk
[0, 1]. The series (2.7) is truncated as

f(x) 	 Tk,M
(
f(x)
)
=

2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) = CtΨ(x), (2.9)

where C and Ψ(x) are two vectors given by

C=
[
c10, c12, . . . , c1(M−1), c20, . . . , c2(M−1), . . . , c(2k−1)0, . . . , c(2k−1)(M−1)

]t
=[c1, c2, . . . , c2k−1M]t,

Ψ(x)=
[
ψ10(x), ψ12(x), . . . , ψ1(M−1)(x), ψ20(x), . . . , ψ2(M−1)(x), . . . , ψ(2k−1)0(x), . . . , ψ(2k−1)(M−1)(x)

]t
=
[
ψ1(x), ψ2(x), . . . , ψ2k−1M(x)

]t
.

(2.10)

Similarly, by considering i = M(n − 1) +m + 1 and j = M(n′ − 1) + m′ + 1, we approximate
K(x, y) ∈ L2

w([0, 1] × [0, 1]) as

K
(
x, y
)
	

2k−1M∑
i=1

2k−1M∑
j=1

Kijψi(x)ψj
(
y
)
, (2.11)

or in the matrix form

K
(
x, y
)
	 Ψt(x)KΨ

(
y
)
, (2.12)

where K = [Kij]1≤i,j≤2k−1M with the entries

Kij =
〈
ψi(x),

〈
K(x, y), ψj(y)

〉
wk

〉
wk

. (2.13)

3. Convergence of the Chebyshev Wavelet Bases

In this section, we indicate that the Chebyshev wavelet expansion of a function f(x), with
bounded second derivative, converges uniformly to f(x).
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Lemma 3.1. If the Chebyshev wavelet expansion of a continuous function f(x) converges uniformly,
then the Chebyshev wavelet expansion converges to the function f(x).

Proof. Let

g(x) =
∞∑
n=1

∞∑
m=0

cnmψnm(x), (3.1)

where cnm = 〈f(x), ψnm(x)〉wk
. Multiplying both sides of (3.1) by ψpq(x)wk(x), where p and

q are fixed and then integrating termwise, justified by uniformly convergence, on [0, 1], we
have

∫1

0
g(x)ψpq(x)wk(x)dx =

∫1

0

∞∑
n=1

∞∑
m=0

cnmψnm(x)ψpq(x)wk(x)dx

=
∞∑
n=1

∞∑
m=0

cnm

∫1

0
ψnm(x)ψpq(x)wk(x)dx

= cpq.

(3.2)

Thus 〈g(x), ψnm(x)〉wk
= cnm for n = 1, 2, . . . and m = 0, 1, . . . . Consequently f and g have

same Fourier expansions with Chebyshev wavelet basis and therefore f(x) = g(x); (0 ≤ x ≤
1) [21].

Theorem 3.2. A function f(x) ∈ L2
w([0, 1]), with bounded second derivative, say |f ′′(x)| ≤ N, can

be expanded as an infinite sum of Chebyshev wavelets, and the series converges uniformly to f(x),
that is,

f(x) =
∞∑
n=1

∞∑
m=0

cnmψnm(x). (3.3)

Proof. From (2.8) it follows that

cnm =
∫1

0
f(x)ψnm(x)wk(x)dx =

∫n/2k−1

(n−1)/2k−1
2k/2f(x)T̃m

(
2kx − 2n + 1

)
w
(

2kx − 2n + 1
)

dx.

(3.4)
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If m > 1, by substituting 2kx − 2n + 1 = cos θ in (3.4), it yields

cnm =
1

2k/2

∫π
0
f

(
cos θ + 2n − 1

2k

)√
2
π

cosmθdθ

=
√

2
2k/2
√
π
f

(
cos θ + 2n − 1

2k

)(
sinmθ
m

)]π
0

(3.5)

+
√

2
23k/2m

√
π

∫π
0
f ′
(

cos θ + 2n − 1
2k

)
sinmθ sin θdθ (3.6)

=
1

23k/2m
√

2π
f ′
(

cos θ + 2n − 1
2k

)(
sin(m − 1)θ

m − 1
− sin(m + 1)θ

m + 1

)]π
0

+
1

25k/2m
√

2π

∫π
0
f ′′
(

cos θ + 2n − 1
2k

)
hm(θ)dθ,

(3.7)

where

hm(θ) = sin θ
(

sin(m − 1)θ
m − 1

− sin(m + 1)θ
m + 1

)
. (3.8)

Thus, we get

|cnm| =
∣∣∣∣ 1

25k/2m
√

2π

∫π
0
f ′′
(

cos θ + 2n − 1
2k

)
hm(θ)dθ

∣∣∣∣

≤
(

1

25k/2m
√

2π

)∫π
0

∣∣∣∣f ′′
(

cos θ + 2n − 1
2k

)
hm(θ)

∣∣∣∣dθ

≤
(

N

25k/2m
√

2π

)∫π
0
|hm(θ)|dθ.

(3.9)

However

∫π
0
|hm(θ)|dθ =

∫π
0

∣∣∣∣sin θ
(

sin(m − 1)θ
m − 1

− sin(m + 1)θ
m + 1

)∣∣∣∣dθ

≤
∫π

0

∣∣∣∣sin θ sin(m − 1)θ
m − 1

∣∣∣∣ +
∣∣∣∣sin θ sin(m + 1)θ

m + 1

∣∣∣∣dθ

≤ 2mπ
(m2 − 1)

.

(3.10)

Since n ≤ 2k−1, we obtain

|cnm| <
√

2πN

(2n)5/2(m2 − 1)
. (3.11)
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Now, if m = 1, by using (3.6), we have

|cn1| <
√

2π

(2n)3/2
max
0≤x≤1

∣∣f ′(x)∣∣. (3.12)

Hence, the series
∑∞

n=1
∑∞

m=1 cnm is absolutely convergent. It is understandable that for m = 0,
{ψn0}∞n=1 form an orthogonal system constructed by Haar scaling function with respect to the
weight function w(t), and thus

∑∞
n=1 cn0ψn0(x) is convergence [22]. On the other hand, we

have

∣∣∣∣∣
∞∑
n=1

∞∑
m=0

cnmψnm(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
n=1

cn0ψn0(x)

∣∣∣∣∣ +
∞∑
n=1

∞∑
m=1

|cnm|
∣∣ψnm(x)∣∣

≤
∣∣∣∣∣
∞∑
n=1

cn0ψn0(x)

∣∣∣∣∣ +
∞∑
n=1

∞∑
m=1

|cnm| <∞.

(3.13)

Therefore, utilizing Lemma 3.1, the series
∑∞

n=1
∑∞

m=0 cnmψnm(x) converges to f(x) uniformly.

4. Solution of First Kind Integral Equations

In this section, the Chebyshev wavelet method is used for solving (1.1) by approximating
functions f(x), u(y), and K(x, y) in the matrix forms:

f(x) 	 FtΨ(x),

u
(
y
)
	 UtΨ

(
y
)
,

K
(
x, y
)
	 Ψt(x)KΨ

(
y
)
.

(4.1)

By substituting (4.1) into (1.1), we obtain

Ψt(x)K

(∫1

0
Ψ
(
y
)
Ψt(y)dy

)
U −Ψt(x)F = R2k−1M(x), (4.2)

where R2k−1M(x) is the residual. By letting

∫1

0
Ψ
(
y
)
Ψt(y)dy = L, (4.3)

where L is a 2k−1M × 2k−1M matrix which is computed next, we have

Ψt(x)KLU −Ψt(x)F = R2k−1M(x). (4.4)
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Our aim is to compute u1, u2, . . . , u2k−1M such that R2k−1M(x) ≡ 0, but in general, it is not
possible to choose such ui, i = 1, 2, . . . , 2k−1M. In this work, R2k−1M(x) is made as small as
possible such that

〈
ψnm(x), R2k−1M(x)

〉
wk

= 0, (4.5)

where n = 1, 2, . . . , 2k−1 and m = 0, 1, . . . ,M − 1. Now, by using orthonormality of Chebyshev
wavelets, we obtain the following linear system of algebraic equations:

KLU = F, (4.6)

for unknowns U = [u1, u2, . . . , u2k−1M].
Here, we define two operator equationsK andH as follows:

K(u(x)) =
∫1

0
K
(
x, y
)
u
(
y
)
dy, (4.7)

H(u(x)) =
∫1

0
Ψt(x)KΨ

(
y
)
u
(
y
)
dy, (4.8)

for all u ∈ L2
w[0, 1] and x ∈ [0, 1]. We assume that integral operator K as defined in (4.7) is

compact, one-to-one, onto, and ‖K−1‖ <∞. We rewrite (1.1) and (4.2) in the operator form to
obtain

Ku = f,

HTk,M(u) = Tk,M
(
f
)
.

(4.9)

Combining the latter equations yields

Kek,M = (K−H)Tk,M(u) +
(
f − Tk,M

(
f
))
, (4.10)

where ek,M = u − Tk,M(u). Provided thatK−1 exists, we obtain the error bound:

‖ekM‖ ≤
∥∥∥K−1

∥∥∥∥∥(K−H)TkM(u) +
(
f − TkM

(
f
))∥∥. (4.11)

The error depends, therefore, on the conditioning of the original integral equation, as is
apparent from the term ‖K−1‖, on the fidelity of the finite-dimensional operator H to the
integral operatorK, and on the approximation of TkM(f) to f .
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Suppose that the function f(x), defined on [0, 1], is M times continuously differen-
tiable, f ∈ CM([0, 1]); by using properties of Chebyshev wavelets and similar to [17], we
have

∥∥f(x) − Tk,M(f(x))
∥∥

2 =

(∫1

0

[
f(x) − Tk,M

(
f(x)
)]2dx

)1/2

≤

⎛
⎝2k−1∑

n=1

∫n/2k−1

(n−1)/2k−1

∫1

0
[f(x) − Cn

k,M(f(x))]2dx

⎞
⎠

1/2

≤ 2−kMQ,

(4.12)

where Q = (2/2MM!)sup0≤x≤1|f (M)(x)| and Cn
k,M(f(x)) denotes the polynomial of degree

M which agrees with f at the Chebyshev nodes of the order M on [(n − 1)/2k−1, n/2k−1].
Therefore, if we want to have ‖f(x) − Tk,M(f(x))‖2 < ε, we can choose k as

k =
[

Q

ε ln(2)M

]
+ 1. (4.13)

Evaluating L

For numerical implementation of the method explained in previous part, we need to calculate
matrix L = [Lij]1≤i,j≤2k−1M. For this purpose, by considering i = M(n − 1) + m + 1 and j =
M(n′ − 1) +m′ + 1, we have

Lij =
∫1

0
ψi
(
y
)
ψj
(
y
)
dy. (4.14)

If n/=n′, then ψi(y)ψj(y) = 0, because their supports are disjoint, yielding Lij = 0. Hence, let
n = n′; by substituting 2kx − 2n + 1 = cos θ in (4.14), we obtain

Lij = Cmm′

∫π
0

cosmθ cosm′θ sin θ dθ, (4.15)

where

Cmm′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1
π
, m = m′ = 0,

−2
π
, m/= 0/=m′,

−
√

2
π

, otherwise.

(4.16)
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Now, if |m +m′| = 1, then

∫π
0

cosmθ cosm′θ sin θdθ = 0, (4.17)

implies that Lij = 0, and if |m +m′|/= 1, then

Lij =
Cmm′

4

×
(
−cos(m −m′+1)θ

m −m′+1
+

cos(−m+m′ + 1)θ
−m+m′ + 1

− cos(m +m′−1)θ
m +m′−1

+
cos(−m−m′+1)θ
−m−m′+1

)]π
0
.

(4.18)

Consequently, L has the following form:

L = diag

⎛
⎜⎝A,A, . . . , A︸ ︷︷ ︸

2k−1 times

⎞
⎟⎠, (4.19)

where A = [Amm′] is an M ×M matrix with the elements

Amm′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cmm′

2
(
m2 +m′2 − 1

)

1 +m4 − 2m′2m2 − 2m′2 − 2m2 +m′4
, m +m′ is even,

0, m +m′ is odd.

(4.20)

5. Sparse Representation of the Matrix K

We proceed by discussing the sparsity of the matrix K, as an important issue for increasing
the computation speed.

Theorem 5.1. Suppose thatKij is the Chebyshev wavelet coefficient of the continuous kernelK(x, y),
where i =M(n−1)+m+1 and j =M(n′−1)+m′+1. If mixed partial derivative is ∂4K(x, y)/∂x2∂y2

bounded byN andm,m′ > 1, then one has

∣∣Kij

∣∣ < πN

24(nn′)5/2(m2 − 1)
(
m′2 − 1

) . (5.1)
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Proof. From (2.13), we obtain

∣∣Kij

∣∣ = 2k
∣∣∣∣∣
∫n/2k−1

(n−1)/2k−1

∫n′/2k−1

(n′−1)/2k−1
K
(
x, y
)
T̃m
(

2kx − 2n + 1
)
w
(

2kx − 2n + 1
)

×T̃m′
(

2ky − 2n′ + 1
)
w
(

2ky − 2n′ + 1
)

dy dx

∣∣∣∣∣.
(5.2)

Now, let 2kx − 2n + 1 = cos θ and 2ky − 2n′ + 1 = cosα; then

∣∣Kij

∣∣ = 2
2kπ

∣∣∣∣
∫∫π

0
K

(
cos θ + 2n − 1

2k
,

cosα + 2n′ − 1
2k

)
cosmθ cosm′αdαdθ

∣∣∣∣. (5.3)

Similar to the proof of Theorem 3.2, since m,m′ > 1, we obtain

∣∣Kij

∣∣ ≤ 1
25k+1πmm′

∣∣∣∣∣
∫∫π

0

∂4K
(
(cos θ + 2n − 1)/2k, (cosα + 2n′ − 1)/2k

)
∂t2∂s2

hm(θ)hm′(α)dαdθ

∣∣∣∣∣

≤ N

25k+1πmm′

∫π
0
|hm(θ)|dθ

∫π
0
|hm′(α)|dα

<
πN

24(nn′)5/2(m2 − 1)
(
m′2 − 1

) .
(5.4)

Remark 5.2. As an immediate conclusion from Theorem 5.1, when i or j → ∞, it follows that
|Kij | → 0 and accordingly by increasing k or M, we can make K sparse which concludes the
sparsity of the coefficient matrix of system (4.6). For this purpose, we choose a threshold ε0

and get the following system of linear equations whose matrix is sparse:

KLU = F, (5.5)

where K = [Kij]2k−1M×2k−1M with the entries

Kij =

⎧⎨
⎩
Kij ,

∣∣Kij

∣∣ ≥ ε0,

0, otherwise.
(5.6)

Now, we can solve (5.5) instead of (4.6).

6. Numerical Examples

In order to test the validity of the present method, three examples are solved and the
numerical results are compared with their exact solution [11, 14, 15]. In addition, in Examples
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Table 1: Some numerical results for Example 6.1.

x Exact solution Approximate solution
k = 2,M = 2, ε0 = 10−5

Approximate solution
k = 2,M = 4, ε0 = 10−4 Legendre wavelets [15]

0.0 0.0000000000 0.0000000002 −0.0000080915 −0.0000623203
0.1 0.1000000000 0.0999467145 0.0999919084 0.0999399803
0.2 0.2000000000 0.1998628369 0.1999919083 0.1999422810
0.3 0.3000000000 0.2997789593 0.2999919083 0.2999445816
0.4 0.4000000000 0.3996950817 0.3999919082 0.3999468823
0.5 0.5000000000 0.4994017104 0.4999821126 0.5000836748
0.6 0.6000000000 0.5996197220 0.5999908426 0.6000583321
0.7 0.7000000000 0.6994489377 0.6999914808 0.7000329894
0.8 0.8000000000 0.7992781533 0.7999921190 0.8000076466
0.9 0.9000000000 0.8991073690 0.8999927572 0.8999823039
1.0 1.0000000000 0.9989365847 0.9999933955 0.9999569612

6.1 and 6.2, our results are compared with numerical results in [14, 15]. It is seen that good
agreements are achieved, as dilation parameter a = 2−k decreases.

Example 6.1. As the first example, let

∫1

0
sin
(
xy
)
u
(
y
)
dy =

sin(x) − x cos(x)
x2

, 0 ≤ x ≤ 1, (6.1)

with the exact solution uex(x) = x [15].
Table 1 shows the numerical results for this example with k = 2,M = 2, ε0 = 10−5

and k = 2,M = 4, ε0 = 10−4. Also, the approximate solution for k = 2, M = 4, ε0 = 10−4 is
graphically shown in Figure 1, which agrees with exact solution and results are compared
with those of [15].

Example 6.2. In this example we solve integral equation

u(x) −
∫1

0
exyu
(
y
)
dy =

ex+1 − 1
x + 1

, 0 ≤ x ≤ 1, (6.2)

by the present method, where the exact solution is uex(x) = ex [11].
Table 2 gives the absolute error for this example with k = 2,M = 3, ε0 = 10−5 and k =

3,M = 4, ε0 = 10−4 where ũ denote the approximation of uex. The approximate solution for k =
3,M = 4, ε0 = 10−4 in collocation points xj = (j−1/2)/50, j = 1, 2, . . . , 50, is graphically shown
in Figure 2 . It is seen that the numerical results are improved, as parameter k increases. Also,
results are compared with those of [14].
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Figure 1: Approximate solution for Example 6.1 with k = 2,M = 4, ε0 = 10−4.

Table 2: Absolute error of exact and approximated solution of Example 6.2.

x |ũ(x) − uex(x)| |ũ(x) − uex(x)| |ũ(x) − uex(x)|
k = 2,M = 3, ε0 = 10−5 k = 3,M = 4, ε0 = 10−4 Haar wavelets [14]

0.0 0.488296e − 3 0.146932e − 4 0.785334e − 2
0.1 0.937569e − 3 0.150830e − 4 0.173943e − 2
0.2 0.265918e − 4 0.173487e − 4 0.569956e − 2
0.3 0.108134e − 2 0.186327e − 4 0.635611e − 2
0.4 0.110062e − 2 0.157720e − 4 0.231400e − 2
0.5 0.125395e − 3 0.658547e − 5 0.129479e − 1
0.6 0.211862e − 2 0.130256e − 5 0.286785e − 2
0.7 0.226888e − 2 0.232601e − 5 0.939698e − 2
0.8 0.728295e − 3 0.152448e − 4 0.104794e − 1
0.9 0.383486e − 3 0.983848e − 5 0.381514e − 2
1.0 0.127610e − 2 0.104492e − 4 0.498723e − 2

Example 6.3. As our final example let

∫1

0

(
y − x

)2
1 + y2

u
(
y
)
dy = 0.179171 − 0.532108x + 0.487495x2, 0 ≤ x ≤ 1, (6.3)

with the exact solution u(x)ex =
√
x [14].
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Figure 2: Approximate solution for Example 6.2 with k = 3,M = 4, ε0 = 10−4.

Table 3: Some error estimates for Example 6.3.

k M ‖u − û‖∞ ‖u − û‖2

2 2 < 0.1500527192 0.2898279425e − 1
2 3 < 0.9003163152e − 1 0.1298595687e − 1
2 4 < 0.6430830822e − 1 0.7461435276e − 2
3 3 < 0.6366197694e − 1 0.6493091346e − 2
3 4 < 0.4547284061e − 1 0.3730718373e − 2
3 5 < 0.3536776479e − 1 0.2438633959e − 2

The proposed method was applied to approximate the solution of Fredholm integral
equation (6.3) with some values of k and M. Table 3 represents the error estimate for
the result obtained of ‖.‖∞ and ‖.‖2. The following norms are used for the errors of the
approximation û(x) of u(x):

‖u − û‖∞ = max{|u(x) − û(x)|, 0 ≤ x ≤ 1},

‖u − û‖2 =

(∫1

0
|u(x) − û(x)|2dx

)1/2

.
(6.4)

Also, the error e(x) = u(x) − û(x)for k = 2, M = 3, and k = 3, M = 4 is graphically shown in
Figures 3 and 4 for [0, 1/2] and [1/2, 1], respectively.
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Figure 3: Error distributions for Example 6.3 with k = 2, M = 3 and k = 3, M = 4 on [0, 1/2].
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Figure 4: Error distributions for Example 6.3 with k = 2, M = 3 and k = 3, M = 4 on [1/2, 1].
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7. Conclusion

Integral equations are usually difficult to solve analytically, and therefore, it is required
to obtain the approximate solutions. In this study we develop an efficient and accurate
method for solving Fredholm integral equation of the first kind. The properties of Chebyshev
wavelets are used to reduce the problem into solution of a system of algebraic equations
whose matrix is sparse. However, to obtain better results, using the larger parameter k is
recommended. The convergence accuracy of this method was examined for several numerical
examples.
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