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A new method is presented for first-order elastoplastic analysis of framed structures using a
radial return predictor/corrector solution strategy. The proposed method assumes plastic hinge
formation coupled with a yield surface. The yield surface is defined as a general function of axial
force, shear forces, twisting and biaxial bending moments on the cross section of the frame. The
material is regarded as linear and elastic-perfect plastic. The plastic deformations are governed by
the normality criterion. Combining the Newton-Raphson method and the radial return algorithm a
consistent tangent modular matrix is proposed and fast and converging algorithms are presented.
Examples demonstrate the accuracy and effectiveness of the proposed method.

1. Introduction

Over the last few decades, in the context of computational plasticity, efficient algorithms
have been developed for the integration of constitutive models for fragile and ductile
materials. Excellent references on such integration schemes are the books of Simo and
Hughes [1], Crisfield [2, 3], Doltsinis [4], among others. Such references describe in detail
the implicit algorithms formulated in a continuum-based approach, and investigate the
numerical performances of such algorithms in terms of efficiency, precision, robustness and
convergence rate. Also in the literature there are research papers (see e.g., [5–8]) using
implicit algorithms formulated in the stress resultant space for the collapse analysis of
elastoplastic frames.

This paper presents a new method for a first-order elastoplastic analysis (i.e., small
strains and small displacements) of framed structures under loading-unloading cycle based
on the concepts of (a) radial return predictor/corrector algorithm and (b) limit analysis or
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the so-called “plastic hinge” approach. It is noted that the plastic hinge approach is an active
area of research and able to deal with localization analysis [9], strong discontinuity, stress
softening at failure, localized dissipative mechanism [10, 11], and collapse load of reinforced
concrete frames [12]. For the plastic hinge analysis, this research presumes a generalized yield
surface in the six-dimension space of stress resultants or generalized forces. The yield surface
used in the proposed formulation is assumed as a continuous and convex function of the
axial force, shear forces, twisting and biaxial bending moments (six generalized forces) acting
on the structure cross-section. The proposed yield surface is a general expression that takes
care of the different interactions of the generalized forces on the cross-sections. The material
is considered to behave linearly elastic perfectly plastic and presents no strain hardening.
The plastic deformations are governed by the normality principle and are confined to zero-
length plastic zones at the element ends. The end sections can undergo an abrupt transition
from a fully elastic to a fully plastic state. Combined stress resultants that initiate yielding
on the cross-section are assumed to produce full plastification of the whole section. This
paper describes in detail the proposed formulation presenting a new development for the
Single-Vector Return Algorithm (hereafter named 1VRA) and an original Two-Vectors Return
Algorithm (hereafter named 2VRA). The 1VRA is used for simulating one plastic hinge at
one end of the beam element while the 2VRA simulates the appearance of two simultaneous
plastic hinges at the ends of the beam element. The paper also brings the deduction of
the consistent tangent modular matrix which together with the developed algorithms is
fundamental for obtaining accuracy and convergence [1]. At the end of the paper, three
examples are presented and discussed demonstrating the accuracy and effectiveness of the
proposed method.

2. The Yield Surface Concept

For practical problems there are approximate plastic interaction surfaces for each shape of
beam cross-section, for instance, for rectangular and I-shaped sections of steel beams under
bending and axial interaction; see [13, 14]. The derivation of the yield surfaces in terms
of the generalized cross-sectional forces constitutes a difficult task. There are many ways
of transforming the known yield conditions in terms of stress components to the space of
the generalized forces [15]. All of them, however, are approximate in nature. There exists a
vast literature on the subject (e.g., [16, 17]). In this paper, the yield surface is assumed to be
a continuous and convex function of the generalized forces on a cross-section and may be
mathematically represented as
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(2.1)

where |(·)| is the absolute value of (·), Fx is an axial force, and Fy and Fz are shear forces.
Mx is the twisting moment, and My and Mz are bending moments. Fxp is the plastic axial
force, Fyp and Fzp are plastic shear forces, respectively. Mxp is the plastic twisting moment,
and Myp and Mzp are plastic bending moments. The constants αi represent positive real
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numbers which are functions of the geometric shape of the cross-section. As noted earlier,
for practical purposes, the function Φ in (2.1) must be determined taking into account the
cross-section shape. Several possibilities of Φ are considered later on in this paper, but of
special interest, at this moment, is the basic observation that: (1) cross-sections for which the
stress resultants rest inside the yield surface are considered elastic; (2) cross-sections with the
stress resultants on the locus of the yield surface are considered fully plastic, and finally (3)
the stress resultants are not allowed to be outside the yield surface as the material is of elastic-
perfect behavior. To bring the outside stress resultants back to the yield surface a radial return
predictor/corrector solution strategy is applied. Consequently, it is necessary to calculate the
first and second derivatives of the yield function Φ. The derivatives are carried out with
respect to the generalized forces on the cross-section. The following theory is presented for
independent hinges located at ends of the beam. In case the yield surface exhibits corners
(two yield surfaces are active), the 2VRA is used to bring the outside stress resultants back to
the yield surface—for more details see chapter 14, in [3].

2.1. The First Derivative of the Yield Surface

To obtain the plastic potential function at each end of the beam element, the first derivative
of Φ in (2.1) with respect to the generalized force vector, expressed here in indicial notation
as Fj , can be written as follows:
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(2.2)

where sgn(·) denotes the signal of the components of the vector Fj . In order to obtain a
compact format, these derivatives may be collected in a vector. This vector defines the plastic
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potential flow at the ends of the beam element. This vector may be written, respectively, for
beam element ends 1 and 2 as
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It is noted that the sub indexes i, j, k, l, . . . , and so forth are integers and they vary from 1
to 12; as 12 is the number of degrees of freedom for a 3D beam element. Also observe that
in the last equations the left hand side is in indicial notation while the right-hand side is in
expanded notation for a better understanding of the vector components.

2.2. The Second Derivative of the Yield Surface

The gradient of the plastic potential vector is obtained by the differentiation of each
component of the vectors in (2.3) with respect to the generalized nodal forces. To illustrate,
the second derivatives of the first component ∂Φ/∂Fx with respect to the generalized nodal
forces are expressed as
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(2.4)

In an analogous procedure, the second derivatives of the other components of the vector
{∂Φ/∂Fj} may be obtained. Collecting the second derivatives in a matrix, one can get the
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matrices that contain the gradient of the plastic potential flow at the ends of the beam element.
Such matrices, for ends 1 and 2, are expressed as
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3. A Backward Euler Algorithm

From now on we make use of the indicial notation for a better understanding of the algebraic
operations. Suppose that there is a generalized force vector at node 1 outside the yield surface.
The backward Euler algorithm (see chapter 6 of [2]) is based on the following equation:
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i − λ1Kij
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}
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, λ1 > 0 Ftrial
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(3.1b)

where Fi is the nodal force vector at the last load step that has achieved convergence.The
term KijdUj is the elastic predictor vector. Kij is the stiffness matrix of the 3D beam element.
dUj is an increment in the vector Uj which is defined as the nodal displacement vector. Ftrial

i

is the elastic trial nodal-force; {∂Φ/∂Fj}1 is the plastic potential defined in the trial nodal-
force; λ1 is the plastic multiplier and the term λ1Kij{∂Φ/∂Fj}1 is the plastic corrector. F̂i is the
nodal-force after correction. In (3.1b), L is the element length.A is the cross-section area of the
element. E is the Young modulus. G is the shear modulus. Iy and Iz are moments of inertia
of the cross-section with respect to y axis and z-axis, respectively. Jx is the polar moment of
inertia of the cross-section. The element formulation is based on the Euler-Bernoulli theory. In
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N1

M1

1

Q1

One plastic hinge

N1

M2

2

Q1

(a)

N/NP

Single vector return algorithm

Plastic correctors

Yield surface

F̂1 Ftrial
1

ΔF1 (elastic predicator)
ΔF1 = KΔU

F1 M/MP

F2

(b)

Figure 1: Single-vector return algorithm—one plastic hinge.

(3.1b), the shear deformation is neglected. The element interpolation functions are linear for
axial displacement and twisting. Hermite interpolation is used for bending. Figure 1 shows
the geometric interpretation of the vectors in (3.1a).

Generally, the starting guess Ftrial
i does not satisfy the yield condition. Consequently,

an iterative scheme is necessary to return the force vector outside the yield surface to the
allowable stress resultants located on the yield surface.

3.1. Single-Vector Return Algorithm

When one plastic hinge takes place at one end of the beam element, the Single-Vector Return
Algorithm (1VRA) is applied. In the following equations it is assumes that the sub index “1”
is related to node “1” of the beam element. The 1VRA brings the nodal-force vector back to
the yield surface. To apply the 1VRA scheme, the residual force vector ri is defined as

ri = Fi − F̂i = Fi −
(
Ftrial
i − λ1Kij

{
∂Φ
∂Fj

}
1

)
. (3.2)
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This residual force vector represents the difference between the current force state Fi and
Backward Euler forceF̂i. The trial force Ftrial

i in (3.2) is kept constant during the iteration
process. A first-order Taylor’s series expansion can be applied to (3.2) to obtain an expression
for the new residual force vector rnew

i in terms of the old residual force vector rold
i , therefore

rnew
i = rold

i + dFi + dλ1Kij

{
∂Φ
∂Fj

}
1

+ λ1Kij

[
∂2Φ

∂Fj∂Fk

]
1

dFk, (3.3)

where dFi is an infinitesimal increment of the generalized force vector Fi; dλ1 is the variation
of the plastic multiplier λ1 and [∂2Φ/∂Fj∂Fk]dFk is the change in the potential plastic vector
{∂Φ/∂Fj}1. The goal is to achieve rnew

i = 0 in (3.3). For that reason
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}
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+

(
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]
1

)
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To determine an expression to dFi (the correcting force vector) in (3.4), define the square
matrix Qik as

Qik = δik + λ1Kij

[
∂2Φ
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]
1

. (3.5)

Now, considering (3.4) and (3.5) and after some algebraic manipulations to solve (3.4) for
dFi, it follows that

dFi = −Q−1
i�

(
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� + dλ1K�j

{
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}
1

)
. (3.6)

A first-order Taylor’s series expansion of the yield function Φ around the final nodal-force
vector Fi is applied. This series expansion is necessary to get a linear approximation to the
new value of the yield function Φnew, therefore

Φnew
1 = Φold

1 +
{
∂Φ
∂Fi

}
1
dFi. (3.7)

Since the expression for dFi is available in (3.6) and for Φnew
1 = 0, the variation of the plastic

multiplier dλ1 is readily found

dλ1 =
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−1
i� r
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�

{∂Φ/∂Fi}1Q
−1
i� K�j

{
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}
1

. (3.8)

This iterative procedure is continued until the yield criterion Φ = 0 is satisfied at the final

force state; that is, rnorm =
√
|ri|/|Ftrial

i | < TOL and Φnorm = |Φ| < TOL, where rnorm is a
norm for the residual force vector. Φnorm is defined as the residual yield norm and TOL is a
tolerance for convergence. In this paper, it is assumed that TOL = 10−10.
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N1

M1

1

Q1

Two plastic hinge

N1

M2

2

Q1

(a)

N/NP
Plastic correctors

Two vectors return algorithm

Yield surface

F̂1 Ftrial
1

ΔF1 (elastic predicator)

F1

M/MP

F2 ΔF2 (elastic predicator)

Ftrial
2

F̂2

Plastic correctors

(b)

Figure 2: Two-Vectors return algorithm—two plastic hinges.

3.2. Two-Vectors Return Algorithm

When two plastic hinges occur at the ends of the beam element, the Two-Vector Return
Algorithm (2VRA) is applied. This algorithm is used so that the nodal-force vector at
both ends of the beam element can be brought back to the yield surface. The geometric
interpretation of this algorithm is illustrated in Figure 2. The Backward Euler force obtained
with the 2VRA may be defined by the following expression:

F̂i = Ftrial
i − λ1Kij

{
∂Φ
∂Fj

}
1

− λ2Kij

{
∂Φ
∂Fj

}
2

, with λ1 > 0, λ2 > 0. (3.9)

To derive a scheme for 2VRA, the residual force vector ri is defined as

ri = Fi − F̂i = Fi −
(
Ftrial
i − λ1Kij

{
∂Φ
∂Fj

}
1

− λ2Kij

{
∂Φ
∂Fj

}
2

)
. (3.10)
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This residual force vector represents the difference between the current force state Fi and the
Backward Euler force F̂i. Analogous to the 1VRA, the trial force Ftrial

i is kept constant during
the iteration process. A first-order Taylor’s series expansion can be applied to (3.10) to obtain
an expression for the new residual force vector rnew

i in terms of the old residual force vector
rold
i , therefore

rnew
i = rold

i + dFi+dλ1Kij

{
∂Φ
∂Fj

}
1

+λ1Kij

[
∂2Φ

∂Fj∂Fk

]
1

dFk+dλ2Kij

{
∂Φ
∂Fj

}
2

+λ2Kij

[
∂2Φ

∂Fj∂Fk

]
2

dFk.

(3.11)

Making rnew
i = 0 in (3.11), it follows that

0 = rold
i + dλ1Kij

{
∂Φ
∂Fj

}
1

+dλ2Kij

{
∂Φ
∂Fj

}
2

+

(
δik + λ1Kij

[
∂2Φ

∂Fj∂Fk

]
1

+ λ2Kij

[
∂2Φ

∂Fj∂Fk

]
2

)
dFk.

(3.12)

To determine an expression to dFi (the correcting force vector) in (3.12), define the square
matrix Qik as

Qik = δik + λ1Kij

[
∂2Φ

∂Fj∂Fk

]
1

+ λ2Kij

[
∂2Φ

∂Fj∂Fk

]
2

. (3.13)

Now considering (3.13) and (3.12) and after some algebraic manipulations to solve (3.12) for
dFi, it follows that

dFi = −Q−1
i�

(
rold
� + dλ1K�j

{
∂Φ
∂Fj

}
1

+ dλ2K�j

{
∂Φ
∂Fj

}
2

)
. (3.14)

First-order Taylor’s series expansions of the yield function at node 1, Φ1, and at node 2, Φ2,
around the final force vector Fi are now developed. These series expansions generate linear
approximations of the new values of the yield functions Φnew

1 and Φnew
2 as

Φnew
1 = Φold

1 +
{
∂Φ
∂Fi

}
1
dFi, Φnew

2 = Φold
2 +

{
∂Φ
∂Fi

}
2
dFi. (3.15)

Since the expression for dFi is available in (3.14) and the goal is to achieve both Φnew
1 = 0 and

Φnew
2 = 0, then

Φold
1 −

{
∂Φ
∂Fi

}
1
Q−1
i� r

old
� = dλ1

{
∂Φ
∂Fi

}
1
Q−1
i� K�j

{
∂Φ
∂Fj

}
1

+ dλ2

{
∂Φ
∂Fi

}
1
Q−1
i� K�j

{
∂Φ
∂Fj

}
2

,

Φold
2 −

{
∂Φ
∂Fi

}
2
Q−1
i� r

old
� = dλ1

{
∂Φ
∂Fi

}
2
Q−1
i� K�j

{
∂Φ
∂Fj

}
1

+ dλ2

{
∂Φ
∂Fi

}
2
Q−1
i� K�j

{
∂Φ
∂Fj

}
2

.

(3.16)
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The two previous expressions form a system of equations in dλ1 and dλ2. By introducing
auxiliary variables

[
a11 a12

a21 a22

]{
dλ1

dλ2

}
=
{
b1

b2

}
(3.17)

and now using Cramer’s rule for the previous system of equations, the variations of the
plastic multiplier dλ1 and dλ2 are readily found by the expressions

dλ1 =
b1a22 − b2a12

a11a22 − a12a21
, dλ2 =

b2a11 − b1a21

a11a22 − a12a21
, (3.18)

where the auxiliary variables are defined as

b1 = Φold
1 −

{
∂Φ
∂Fi

}
1
Q−1
i� r

old
� ,

b2 = Φold
2 −

{
∂Φ
∂Fi

}
2
Q−1
i� r

old
� ,

a11 =
{
∂Φ
∂Fi

}
1
Q−1
i� K�j

{
∂Φ
∂Fj

}
1

,

a12 =
{
∂Φ
∂Fi

}
1
Q−1
i� K�j

{
∂Φ
∂Fj

}
2

,

a21 =
{
∂Φ
∂Fi

}
2
Q−1
i� K�j

{
∂Φ
∂Fj

}
1

,

a22 =
{
∂Φ
∂Fi

}
2
Q−1
i� K�j

{
∂Φ
∂Fj

}
2

.

(3.19)

This iterative procedure is continued until the yield conditions Φ1 = 0 and Φ2 = 0 are

satisfied at the final force vector state, that is, when rnorm =
√
|ri|/|Ftrial

i | < TOL, Φnorm
1 = |Φ1| <

TOL and Φnorm
2 = |Φ2| < TOL.

4. Consistent Tangent Stiffness Matrix

The final objective in deriving the backward Euler scheme for integration of elastoplastic
constitutive equations is to use the previous algorithms (1VRA and 2VRA) in finite element
computations. If the Newton-Raphson iterative scheme is used on a global equilibrium base,
then the use of the so-called traditional elastoplastic stiffness matrix KEP

ij puts at risk the
quadratic rate asymptotic convergence of the iterative process. In order to preserve the
quadratic rate of convergence, a consistent stiffness matrix may be derived. In what follows,
two derivations of consistent stiffness matrices are presented, respectively, for the 1VRA and
2VRA. Once the convergence criterion is satisfied and all the force points have returned to the
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yield surface, the consistent tangent stiffness matrices for any yielded element are updated
before the start of the next loading cycle.

4.1. Single-Vector Return Algorithm

Starting from the Backward Euler equation (3.1a) and noting that vector F̂i is outside the
yield surface and vector Fi is on the yield surface, (3.1a) can be rewritten as

Fi = Ftrial
i − λ1Kij

{
∂Φ
∂Fj

}
1

, with λ1 > 0. (4.1)

The term dFtrial
i = KijdUj represents the elastic trial nodal-force increment and is associated

with the nodal displacement increment dUj . The differential of (4.1) gives the following
expression;

dFi = KijdUj − dλ1Kij

{
∂Φ
∂Fj

}
1

− λ1Kij

[
∂2Φ

∂Fj∂Fk

]
1

dFk. (4.2)

After some algebraic treatment,

(
δik + λ1Kij

[
∂2Φ

∂Fj∂Fk

]
1

)
dFk = KijdUj − dλ1Kij

{
∂Φ
∂Fj

}
1

. (4.3)

Using matrix Qik as defined by (3.5) and denoting the reduced stiffness matrix as Rij =
Q−1
i�
K�j , (4.3) changes into the following equation:

dFi = Rij

(
dUj − dλ1

{
∂Φ
∂Fj

}
1

)
. (4.4)

It turns out that the form of (4.4) is similar to the nonconsistent form except for the change
in Kij to Rij = Q−1

i�
K�j and for the fact that the normal to the yield surface is evaluated at

the final force position. Assuming that the full consistency condition holds at the final force
position, that is; Φ = 0, the differentiation of Φ with respect to the generalized force vector,
considering (4.4), is

{
∂Φ
∂Fi

}
1
dFi = 0 =⇒

{
∂Φ
∂Fi

}
1
Rij

(
dUj − dλ1

{
∂Φ
∂Fj

}
1

)
= 0, (4.5)

and, therefore, the change in the plastic multiplier dλ1may be expressed as

dλ1 =
{∂Φ/∂Fi}1RijdUj

{∂Φ/∂Fi}1Rij

{
∂Φ/∂Fj

}
1

. (4.6)
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Finally, using (4.4) and (4.6), the elastoplastic consistent stiffness matrix KAL
ij may be

determined by

KAL
ij = Rij −

Rim{∂Φ/(∂Fm)}1{∂Φ/(∂Fn)}1Rnj

{∂Φ/(∂Fm)}1Rmn{∂Φ/(∂Fn)}1
. (4.7)

4.2. Two-Vector Return Algorithm

Starting from the Backward Euler equation for the Two-Vector Return Algorithm, one can
write the following expression analogous to (3.9):

Fi = Ftrial
i − λ1Kij

{
∂Φ
∂Fj

}
1

− λ2Kij

{
∂Φ
∂Fj

}
2

, with λ1 > 0, λ2 > 0. (4.8)

Differentiating (4.8) and performing algebraic manipulations, it follows that

(
δik+λ1Kij

[
∂2Φ

∂Fj∂Fk

]
1

+λ2Kij

[
∂2Φ

∂Fj∂Fk

]
2

)
dFk=KijdUj−dλ1Kij

{
∂Φ
∂Fj

}
1

−dλ2Kij

{
∂Φ
∂Fj

}
2

.

(4.9)

Using matrix Qik as defined by (3.13) and denoting the reduced stiffness matrix as Rij =
Q−1
i�
K�j , we can rewrite the above equation as

dFi = Rij

(
dUj − dλ1

{
∂Φ
∂Fj

}
1

− dλ2

{
∂Φ
∂Fj

}
2

)
. (4.10)

Again, it is assumed that the full consistency conditions should hold at the final force point,
that is, Φ1 = 0 and Φ2 = 0. Differentiating these two conditions and introducing the expression
for dFi taken from (4.10), one can get

{
∂Φ
∂Fi

}
1
dFi = 0 =⇒

{
∂Φ
∂Fi

}
1
Rij

(
dUj − dλ1

{
∂Φ
∂Fj

}
1

− dλ2

{
∂Φ
∂Fj

}
2

)
= 0,

{
∂Φ
∂Fi

}
2
dFi = 0 =⇒

{
∂Φ
∂Fi

}
2
Rij

(
dUj − dλ1

{
∂Φ
∂Fj

}
1

− dλ2

{
∂Φ
∂Fj

}
2

)
= 0.

(4.11)

Alternatively, by collecting terms algebraically, (4.11) are transformed in

{
∂Φ
∂Fi

}
1
RijdUj = dλ1

{
∂Φ
∂Fi

}
1
Rij

{
∂Φ
∂Fj

}
1

+ dλ2

{
∂Φ
∂Fi

}
1
Rij

{
∂Φ
∂Fj

}
2

,

{
∂Φ
∂Fi

}
2
RijdUj = dλ1

{
∂Φ
∂Fi

}
2
Rij

{
∂Φ
∂Fj

}
1

+ dλ2

{
∂Φ
∂Fi

}
2
Rij

{
∂Φ
∂Fj

}
2

.

(4.12)
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The previous two expressions represent a system of equations with dλ1 and dλ2 as unknowns.
Introducing auxiliary variables c1, c2, b11, b12, b21 and b22 as

c1 =
{
∂Φ
∂Fi

}
1
RijdUj, c2 =

{
∂Φ
∂Fi

}
2
RijdUj, b11 =

{
∂Φ
∂Fi

}
1
Rij

{
∂Φ
∂Fj

}
1

,

b12 =
{
∂Φ
∂Fi

}
1
Rij

{
∂Φ
∂Fj

}
2

, b21 =
{
∂Φ
∂Fi

}
2
Rij

{
∂Φ
∂Fj

}
1

, b22 =
{
∂Φ
∂Fi

}
2
Rij

{
∂Φ
∂Fj

}
2

.

(4.13)

With the help of Cramer’s rule, the system in (4.12) is solved for dλ1 and dλ2

dλ1 =
c1b22 − c2b12

b11b22 − b12b21
, dλ2 =

c2b11 − c1b21

b11b22 − b12b21
(4.14)

or alternatively

dλ1 =
(
b22{∂Φ/∂Fm}1 − b12{∂Φ/∂Fm}2

b11b22 − b12b21

)
RmndUn,

dλ2 =
(
b11{∂Φ/∂Fm}2 − b21{∂Φ/∂Fm}1

b11b22 − b12b21

)
RmndUn.

(4.15)

If any plastic multiplier is negative, that is, dλ1 < 0, or dλ2 < 0, then this plastic multiplier
is set to zero (i.e., dλ1 = 0 or dλ2 = 0) which corresponds to an initial plastic hinge. Again,
introducing new auxiliary variables

β1 =
b22

b11b22 − b12b21
, β2 =

b12

b11b22 − b12b21
, β3 =

b11

b11b22 − b12b21
, β4=

b21

b11b22 − b12b21
,

(4.16)

Equation (4.15) can be rewritten as

dλ1 =
(
β1

{
∂Φ
∂Fm

}
1
Rmn − β2

{
∂Φ
∂Fm

}
2
Rmn

)
dUn,

dλ2 =
(
β3

{
∂Φ
∂Fm

}
2
Rmn − β4

{
∂Φ
∂Fm

}
1
Rmn

)
dUn.

(4.17)

Finally, using (4.10) and (4.17), the elastoplastic consistent stiffness matrix KAL
ij is obtained by

the following expression:

KAL
ij = Rij −

(
β1Rim

{
∂Φ
∂Fm

}
1

{
∂Φ
∂Fn

}
1
Rnj − β2Rim

{
∂Φ
∂Fm

}
1

{
∂Φ
∂Fn

}
2
Rnj

)

−
(
β3Rim

{
∂Φ
∂Fm

}
2

{
∂Φ
∂Fn

}
2
Rnj − β4Rim

{
∂Φ
∂Fm

}
2

{
∂Φ
∂Fn

}
1
Rnj

)
.

(4.18)
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5. Numerical Examples

Three examples are presented in this section to demonstrate the accuracy and the
effectiveness of the methods proposed and described in the previous sections of this paper.
An incremental iterative method based on the Newton-Raphson method combined with
constant arc length control method is employed for the solution of the nonlinear equilibrium
equations. In the following examples, a tolerance for convergence criterion is set TOL = 10−10.
The examples test the global performance of the Newton solution strategy and the local
performance of the backward Euler integration schemes. The examples are concerned with
a right-angle beam, a two-bay, two-storey frame, and a four-legged jacket frame, all made of
steel. To verify the quadratic ratio of convergence for the radial return algorithm presented in
this paper, the Euclidean norm (see Sections 3.1 and 3.2) of the residual forces vector at the
nodes with plastic hinges is analyzed. This analysis is performed examining the error norm
under a load step arbitrarily chosen as is usually done by many authors [1–3]. Moreover to
verify the quadratic ratio of the convergences on global equilibrium (using the elastoplastic
stiffness consistent matrix) the Euclidean norms of the residual forces and of the energy are
adopted. As before, the monitoring of these two norms was carried out considering load steps
arbitrarily chosen. The elements are analyzed following their number sequence. Since “n”
elements may share a common node, the plastic hinge, if necessary, is attributed to the proper
node of the element consistent with the element analysis succession. To avoid singularity
at the global stiffness matrix, at most (n−1) plastic hinge may be assigned to the common
node.

5.1. Right-Angle Beam

In this example, a right-angle beam under a concentrated load P is analyzed. The geometry,
material properties (EI, bending stiffness and GJ torsional stiffness), load location, and
yield surface equation are shown in Figures 3(a) and 3(b). For this loading condition the
right-angle beam is subjected to both bending and twisting moments. The same problem
was analyzed by Ueda and Yao [18] for small deformations. In the present study, each
of the members of the right-angle beam is modeled by linear grid elements. The first-
order inelastic analysis of this beam is carried out for loading, unloading, and reversal
loading. The progressive development of the plastic hinge formation is indicated by numbers
in Figures 3(d). The load-displacement response for loading-unloading cycle is shown in
Figures 3(e) while in [18, 19] only loading is reported. For the collapse load, the result
is an excellent agreement with the value reported by Ueda and Yao [18] and Hodge
[19].

The values of the residual force and residual yield norms for a typical load step
are summarized in Table 1 for the Single-Vector Return Algorithm and in Table 2 for the
Two-Vectors return algorithm. Note that, for Table 1, load steps 47 and 445 were arbitrarily
chosen while for Table 2, load steps 106 and 450 were selected. The quadratic rate asymptotic
convergence of the backward Euler integration scheme is exhibited in these results. Note that
the Euclidian norm of the residual force and residual yield norm are very similar during the
iterative process.

The values of the energy and residual norms for typical load step are summarized in
Table 1 for the 1VRA strategy and in Table 2 for the 2VRA approach. The quadratic rate of the
asymptotic convergence of the backward Euler integration scheme is exhibited by the results
presented here (see Table 2).
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Figure 3: A right angle bent of circular section. (a) Geometry and loading. (b) Material properties and yield
function. (c) Finite element mesh. (d) Plastic hinge formation sequence. (e) Load-displacement response.

The values of the energy and residual norms, for each iteration, are summarized in
Table 3. The quadratic rate of the asymptotic convergence of the Newton iterative scheme
is exhibited by the results here presented (see Table 3). In addition, it is observed that the
Euclidian norm of the residuals lags behind the energy norm in the iterative process – see
Table 3. This fact is explained because energy is a scalar product between residual forces
and displacement increments. Those quantities decreases along the convergence process and
accordingly their product (energy) decrease in a faster ratio.

5.2. Two-Bay, Two-Storey Fame

A two-bay, two-storey rigid frame is now analyzed. Its geometric and material properties, the
external loading conditions and the yield function are shown in Figure 4. The same problem
was analyzed by Argyris et al. [17] for small deformation and large deformation using
the computer program LARSTRAN; and by Halder and Ming [20] for large deformation.
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Figure 4: A two-bay, two-storey rigid frame. (a) Geometry and loading. (b) Material properties and yield
function. (c) Finite element mesh. (d) Plastic hinge formation sequence. (e) Load-displacement response.

In the present study, each member is modeled using linear 2D beam elements. The first-
order inelastic analysis is undertaken for loading and unloading conditions. The progressive
development of the plastic hinges and the load-displacement response are shown in
Figure 4(d). The results are in good agreement with the results presented by Argyris et al.
[17].
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Figure 5: A Four-legged jacket. (a) Geometry and loading. (b) Material properties, and yield function. (c)
Plastic hinge formation sequence. (d) Load-displacement response.
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Table 1: Residual force and residual yield norms for typical load steps during the formation of the second
plastic hinge.

Single-vector return algorithm
Residual force
norm rnorm

Residual yield
norm Φnorm

Residual force
norm rnorm

Residual yield
norm Φnorm

Step 47 Step 47 Step 445 Step 445
1.47597039E-03 1.3055981E-03 8.56514641E-05 9.37779227E-05
1.48013748E-06 4.26512984E-07 5.9731394E-09 2.21160446E-09
3.72157338E-13 4.59632332E-14 9.21947265E-17 2.22044605E-16

Table 2: Residual force and residual yield norms for typical load steps during the formation of first and
third plastic hinges.

Two-vector return algorithm
Residual force
norm rnorm

Residual yield
norm Φnorm

1

Residual yield
norm Φnorm

2

Residual force
norm rnorm

Residual yield
norm Φnorm

1

Residual yield
norm Φnorm

2

Step 106 Step 106 Step 106 Step 450 Step 450 Step 450
1.65303075E-03 1.20357837E-05 1.47408979E-05 3.87694523E-03 6.19251038E-04 4.56960163E-03
1.89552293E-06 1.23009056E-07 5.42558567E-07 1.60549380E-05 7.05089222E-07 5.25607314E-06
5.81448484E-13 1.04360964E-14 7.37188088E-14 4.57042787E-11 2.61368704E-12 7.06168457E-12

Table 3: Error norms for Newton iterative scheme on global equilibrium.

Single-vector return algorithm
Residual norm Energy norm Residual norm Energy norm

Step 16 Step 16 Step 250 Step 250
0.11634E-04 0.10000E+01 0.21960E-03 0.10000E+01
0.18054E-08 0.41898E-12 0.18174E-07 0.19603E-10
0.74031E-16 0.93424E-24 0.18630E-14 0.65129E-23

The values of the residual force and residual yield norms for load steps arbitrarily
chosen are summarized in Table 4 for the Single-Vector Return Algorithm. Again the
quadratic rate of the asymptotic convergence of the backward Euler integration scheme is
exhibited by these results.

The values of the energy and residual norms, for each iteration, are summarized in
Table 5. Once more, the quadratic rate of the asymptotic convergence of the Newton iterative
scheme is exhibited by theses results. Note that the Euclidian norm of the residual lags behind
the energy norm in the iterative process for the same reason as explained in the former
example.

5.3. Four-Legged Jacket Type

This example is concerned with a four-legged jacket. It is a type of platform structure
often used for off-shore industries. The geometry and dimensions of the structure, loading
condition, and material properties are specified in Figure 5. Two different structural systems
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Table 4: Residual force and residual yield norms for typical load steps during the formation of the first
plastic hinge.

Single-vector return algorithm
Residual force
norm rnorm

Residual yield
norm Φnorm

Residual force
norm rnorm

Residual yield
norm Φnorm

Step 11 Step 11 Step 60 Step 60
1.20935377E-04 2.41865226E-07 8.93804269E-04 6.25601990E-06
3.45076307E-11 6.60402844E-11 6.22404505E-09 9.11217879E-09
8.02626977E-17 0.0 5.12166402E-17 0.0

Table 5: Error norms for Newton iterative scheme on global equilibrium.

Single-vector return algorithm
Residual norm Energy norm Residual norm Energy norm

Step 16 Step 16 Step 250 Step 250
0.80063E-02 0.10000E+01 0.23954E-01 0.10000E+01
0.18017E-03 0.24336E-06 0.14595E-01 0.82672E-03
0.15248E-08 0.50571E-13 0.15491E-15 0.11855E-08
0.49717E-13 0.39726E-23 0.87519E-13 0.28146E-19

denoted here as bracing type 1 and bracing type 2 are considered. The dimensions of the four-
legged jackets, type 1 and type 2, are also present in Figure 5. In this work, each member of the
four-legged jacket is modeled by linear 3D beam elements with first-order inelastic analysis
performed considering loading and unloading conditions. This structure was dicretized with
8 nodes and 18 elements. Each structural member corresponds to one finite element. The
development of plastic hinges and load-displacement response for both systems are also
shown in Figure 5. The same example was studied by Shi and Atluri [21]. They performed
a second-order analysis of this problem; therefore, their curves (load-displacement) and the
collapse load represent lower bound limits. Our results are in good qualitative agreement
with them. As expected, the curves in Figure 5 are slightly superior to the curves reported in
[21].

The values of the residual force and residual yield norms for arbitrary load steps (12
and 41) are summarized in Tables 6 and 7 using the 2VRA for the two different structural
systems considered in this example. Again, the quadratic rate asymptotic convergence of
the Backward Euler integration scheme is exhibited by the reported result. Note that the
Euclidian norm of the residual force and residual yield norm are very similar during
the iterative process. The values of the energy and residual norms along the iterations
are summarized in Table 8 and Table 9 (for load steps 12 and 52) for the two different
structural systems studied. Again for both systems the quadratic rate of the asymptotic
convergence of the Newton iterative scheme is exhibited. In Tables 6 and 7, note the fast
convergence of the radial return algorithms in just 4 iterations. For obtaining the structure
equilibrium, see Tables 8 and 9, only 3 iterations were necessary even using a tight tolerance
(TOL = 10−10) parameter. The same observations can be verified in the examples studied
before.
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Table 6: Four-legged jacket type-1. Residual force and residual yield norms for typical load steps during
the formation of the first and second plastic hinges.

Two-vector return algorithm
Residual force
norm rnorm

Residual yield
norm Φnorm

1

Residual yield
norm Φnorm

2

Residual force
norm rnorm

Residual yield
norm Φnorm

1

Residual yield
norm Φnorm

2

Step 12 Step 12 Step 12 Step 41 Step 41 Step 41
8.03978006E-03 9.81043834E-03 9.79441075E-03 1.36989462E-02 1.79089005E-02 1.78810582E-02
6.24153357E-05 2.38396940E-05 2.37928885E-05 1.96679153E-04 7.88306625E-05 7.86893201E-05
8.85460742E-10 1.48586699E-10 1.44924517E-10 9.31316656E-09 1.60199565E-09 1.58390967E-09
8.20520831E-17 0.0 3.33066907E-16 2.40162583E-17 0.0 0.0

Table 7: Four-legged jacket type-1. Residual force and residual yield norms for typical load steps during
the formation of the first and second plastic hinges.

Two-vector return algorithm
Residual force
norm rnorm

Residual yield
norm Φnorm

1

Residual yield
norm Φnorm

2

Residual force
norm rnorm

Residual yield
norm Φnorm

1

Residual yield
norm Φnorm

2

Step 12 Step 12 Step 12 Step 41 Step 41 Step 41
8.03359176E-03 9.80846569E-03 9.78495657E-03 1.36815406E-02 1.78952610E-02 1.78530190E-02
6.23470796E-05 2.38312272E-05 2.37622611E-05 1.96249346E-04 7.87644610E-05 7.85560337E-05
8.84047353E-10 1.42486467E-10 1.41957335E-10 9.29161239E-09 1.76712267E-09 1.64043112E-09
3.12120416E-18 1.11022302E-16 1.11022302E-16 8.12816025E-17 4.44089210E-16 0.0

Table 8: Four-legged jacket type-1. Error norms for Newton iterative scheme on global equilibrium.

Single-vector return algorithm
Residual norm Energy norm Residual norm Energy norm

Step 12 Step 12 Step 52 Step 52
0.11997E-03 0.10000E+01 0.20903E-03 0.10000E+01
0.16535E-09 0.27673E-12 0.41175E-07 0.43179E-10
0.18777E-15 0.41131E-25 0.36921E-15 0.24472E-22

Table 9: Four-legged jacket type-2. Error norms for Newton iterative scheme on global equilibrium.

Single-vector return algorithm
Residual norm Energy norm Residual norm Energy norm

Step 25 Step 25 Step 45 Step 45
0.34837E-03 0.10000E+01 0.75999E-03 0.10000E+01
0.10245E-05 0.44342E-08 0.81462E-06 0.89862E-08
0.95123E-11 0.12589E-15 0.13896E-11 0.88152E-16

6. Conclusions

In this paper, the radial return algorithms were tested with different yield surfaces given good
results. It is noted that the algorithm formulated provides a way to keep the generalized force
vector always on the yield surface or inside it. The proposed method deals simultaneously
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with two plastic hinges located at the ends of 3D beam finite elements under load-unloading
cycles. Combining the Newton-Raphson method and the radial return method provides a
“consistent” tangent modular matrix, and robust, accurate, and fast converging algorithms.
The use of the “consistent” tangent modular matrix is fundamental for achieving the
quadratic rate of the asymptotic convergence with the Newton’s method. The Single- and
the Two-Vector Return Algorithms have been proposed for simulating, respectively, one and
two plastic hinges at the ends of the beam element.
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