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Fractal time series substantially differs from conventional one in its statistic properties. For
instance, it may have a heavy-tailed probability distribution function (PDF), a slowly decayed
autocorrelation function (ACF), and a power spectrum function (PSD) of 1/f type. It may have
the statistical dependence, either long-range dependence (LRD) or short-range dependence (SRD),
and global or local self-similarity. This article will give a tutorial review about those concepts.
Note that a conventional time series can be regarded as the solution to a differential equation of
integer order with the excitation of white noise in mathematics. In engineering, such as mechanical
engineering or electronics engineering, engineers may usually consider it as the output or response
of a differential system or filter of integer order under the excitation of white noise. In this paper, a
fractal time series is taken as the solution to a differential equation of fractional order or a response
of a fractional system or a fractional filter driven with a white noise in the domain of stochastic
processes.

1. Introduction

Denote by R
n the n-dimensional Euclidean space for n ∈ Z+, where Z+ is the set of positive

integers. Then, things belonging to R
n for n = 1, 2, 3 are visible, such as a curve for n = 1, a

picture for n = 2, and a three-dimensional object for n = 3.
Denote an element belonging to R

n by f(x1, . . . , xn) and xn ∈ R. Denote a regularly
orthogonal coordinate system inR

n by {e1, e2, . . . , en}. Then, the inner product (el, em) is given
by

(el, em) =

⎧
⎨

⎩

1, l = m,

0, l /=m.
(1.1)
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Then,

f =
n∑

l=1

(
f, el
)
el. (1.2)

In the domain of the Hilbert space, n → ∞ is allowed (Griffel [1], Liu [2]). Unfortunately,
due to the limitation of the eyes of human being, a high-dimensional image of f , for example,
n > 4, is invisible unless some of its elements are fixed. One can only see an image f for n > 4
partly. For example, if we fix the values of xn for n ≥ 3, f(x1, x2, x3, . . . , xn) is visible. Luckily,
human being has nimbus such that people are able to think about high-dimensional objects
in R

n even in the case of n → ∞.
Note that the nature is rich and colorful (Mandelbrot [3], Korvin [4], Peters [5],

Bassingthwaighte et al. [6]). Spaces of integer dimension are not enough. As amatter of factor,
there exist spaces with fractional dimension, such asR

n+d,where 0 < d < 1 is a fraction. There-
fore, even in the low-dimensional case of n = 1, 2, 3, those in R

n+d are not completely visible.
We now turn to time series. Intuitively, we say that x(t) is a conventional series if

x(t) ∈ R
1 � R. On the other side, x(t) is said to be a fractal time series if it belongs to R

1+d for
0 < d < 1. A curve of x ∈ R

1+d we usually see, such as a series of stock market price, is only its
integer part belonging toR.However, it is the fractional part of x(t) thatmakes it substantially
differ from a conventional series in the aspects of PDF, ACF, and PSD, unless d is infinitesimal.

The theory of conventional series is relatively mature; see, for example, Fuller [7], Box
et al. [8], Mitra and Kaiser [9], Bendat and Piersol [10], but the research regarding fractal
time series is quite academic. However, its applications to various fields of sciences and
technologies, ranging from physics to computer communications, are increasing, for instance,
coastlines, turbulence, geophysical record, economics and finance, computer memories (see,
e.g., Mandelbrot [11]), network traffic, precision measurements (Beran [12], Li and Borgnat
[13]), electronics engineering, chemical engineering, image compression; see, for example,
Levy-Vehel et al. [14], physiology; see, for example, Bassingthwaighte et al. [6], just naming
a few. The goal of this paper is to provide a short tutorial with respect to fractal time series.

The remaining article is organized as follows. In Section 2, the concept of fractal time
series from the point of view of systems of fractional order will be addressed. The basic
properties of fractal time series are explained in Section 3. Some models of fractal time series
are discussed in Section 4. Conclusions are given in Section 5.

2. Fractal Time Series: A View from Fractional Systems

A time series can be taken as a solution to a differential equation. In terms of engineering, it is
often called signal while a differential equation is usually termed system, or filter. Therefore,
without confusions, equation, system, or filter is taken as synonyms in what follows.

2.1. Realization Resulted from a Filter of Integer Order

A stationary time series can be regarded as the output y(t) of a filter under the excitation of
white noise w(t). Denote by g(t) the impulse function of a linear filter. Then,

y(t) =
∫ t

0
g(t − τ)w(τ)dτ. (2.1)
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On the other side, a nonstationary random function can be taken as the output of a filter
under the excitation of nonstationary white noise. In general, filters with different g(t)’s may
yield different series under the excitation of w(t). Hence, conventionally, one considers w(t)
as the headspring or root of random series; see, for example, Press et al. [15]. In this paper,
we only consider stationary series.

A stochastic filter can be written by

p∑

i=0

ai
dp−iy(t)
dtp−i

=
q∑

i=0

bi
dq−iw(t)
dtq−i

. (2.2)

Denote the Fourier transforms of y(t), g(t), andw(t) by Y (ω),G(jω), andW(ω), respectively,
where j =

√−1 and ω is angular frequency. Then, according to the theorem of convolution,
one has

Y (ω) = G
(
jω
)
W(ω). (2.3)

Denote the PSDs of y(t) and w(t) by Syy(ω) and Sww(ω), respectively. Then, when one
notices that Sww(ω) =1 if w(t) is the normalized white noise [9, 10], one has

Syy(ω) =
∣
∣G
(
jω
)∣
∣2. (2.4)

Denote the Laplace transform of g(t) by G(s), where s is a complex variable. Then
(Lam [16]),

G(s) =
1 +
∑q

i=1 bis
i

1 +
∑p

i=1 aisi
. (2.5)

If the system is stable, all poles of G(s) are located on the left of s plan. For a stable filter,
therefore, one has (Papoulis [17])

G
(
jω
)
= F
[
g(t)
]
= G(s)|s=jω, (2.6)

where F stands for the operator of the Fourier transform. A basic property of a linear stable
system of integer order is stated as follows.

Note 1. Taking into account b0 = 1 and (2.6), one sees that |G(jω)|2 of a stable system of
integer order is convergent for ω = 0 and so is Syy(ω).

In the discrete case, the system function is expressed by the z transform of g(n). That
is,

G(z) = Z
[
g(n)

]
=

∞∑

n=0

g(n)z−n =
1 +
∑q

i=1 biz
−i

1 +
∑p

i=1 aiz−i
, (2.7)

where Z represents the operator of z transform. There are two categories of digital filters
(Harger [18], Van de Vegte [19], Li [20]). One is in the category of infinite impulse response
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(IIR) filters, which correspond to the case of ai /= 0. The other is in the category of finite
impulse response filters (FIRs), which imply ai = 0 [9, 16], (Harger [18], Van de Vegte [19]).
In the FIR case, one has

G(z) =
q∑

n=0

g(n)z−n = 1 +
q∑

i=1

biz
−i. (2.8)

Thus, an FIR filter is always stable with a linear phase.

Note 2. A realization y(t) resulted from an FIR filter of integer order under the excitation of
w(t) is linear. It belongs to R.

2.2. Realization Resulted from a Filter of Fractional Order

Let v > 0 and f(t) be a piecewise continuous on (0,∞) and integrable on any finite subinterval
of [0,∞). For t > 0, denote by 0D

−v
t the Riemann-Liouville integral operator of order v [21,

page 45]. It is given by

0D
−v
t f(t) =

1
Γ(v)

∫ t

0
(t − u)v−1f(u)du, (2.9)

where Γ is the Gamma function. For simplicity, we write 0D
−v
t by D−v below.

Let vp, vp−1, . . . , v0 and uq, uq−1, . . . , u0 be two strictly decreasing sequences of
nonnegative numbers. Then, for the constants ai and bi, we have

p∑

i=0

ap−iDviy(t) =
q∑

i=0

bq−iDuiw(t), (2.10)

which is a stochastically fractional differential equation with constant coefficients of order vp.
It corresponds to a stochastically fractional filter of order vp. The transfer function of this filter
expressed by using the Laplace transform is given by (Ortigueira [22])

G(s) =
1 +
∑q

i=1 bq−is
−ui

1 +
∑p

i=1 ap−is−vi

. (2.11)

In the discrete case, it is expressed in z domain by (Ortigueira [23, 24], Chen and Moore [25],
Vinagre et al. [26])

G(z) =
1 +
∑q

i=1 bq−iz
−ui

1 +
∑p

i=1 ap−iz−vi

. (2.12)
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Denote the inverse Laplace transform and the inverse z transform by L−1 and Z−1,
respectively. Then, the impulse responses of the filter expressed by (2.10) in the continuous
and discrete cases are given by

g(t) = L−1[G(s)],

g(n) = Z−1[G(z)],
(2.13)

respectively.
Without loss of the generality to explain the concept of fractal time series, we reduce

(2.10) to the following expression:

p∑

i=0

ap−iDviy(t) = w(t). (2.14)

Consequently, (2.11) and (2.12) are reduced to

G(s) = 1 +
q∑

i=1

bq−is−ui ,

G(z) = 1 +
q∑

i=1

bq−iz−ui .

(2.15)

Recall that the realization resulted from such a class of filters can be expressed in the
continuous case by

y(t) = w(t) ∗ g(t), (2.16)

where ∗ implies the operation of convolution, or in the discrete case by

y(n) = w(n) ∗ g(n). (2.17)

Hence, we have the following notes.

Note 3. A realization y(t) resulted from a stochastically fractional differential equation may
be unbelonging to R.

Note 4. For a stochastically fractional differential equation, Note 1 may be untrue.

We shall further explain Note 4 in the next section. As an example to interpret the point
in Note 3, we consider a widely used fractal time series called the fractional Brownian motion
(fBm) introduced by Mandelbrot and van Ness [27].

Replacing v with H + 0.5 in (2.9) for 0 < H < 1, where H is the Hurst parameter, fBm
defined by using the Riemann-Liouville integral operator is given by

0D
−(H+1/2)
t B′(t) =

1
Γ(H + 1/2)

∫ t

0
(t − u)H−1/2dB(u) � BH(t), (2.18)
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where B(t), t ∈ (0,∞), is the Wiener Brownian motion; see, for example, Hida [28] for
Brownian motion. The differential of B(t) is in the sense of generalized function over the
Schwartz space of test functions; see, for example, Gelfand and Vilenkin [29] for generalized
functions. Taking into account the definition of the convolution used by Mikusinski [30], we
have the impulse response of a fractional filter given by

(−t)H−1/2

Γ(H + 1/2)
. (2.19)

Consequently, fBm denoted by BH(t) can be taken as an output of the filter (2.19) under the
excitation dB(t)/dt (Li and Chi [31]). That is,

BH(t) =
dB(t)
dt

∗ (−t)H−1/2

Γ(H + 1/2)
. (2.20)

Therefore, Note 5 comes.

Note 5. FBm is a special case as a realization of a fractional filter driven with dB(t)/dt.

Other articles discussing fBm from the point of view of systems or filters of fractional
order can be seen in Ortigueira [32], Ortigueira and Batista [33, 34], and Podlubny [35]. In the
end of this section, I use another equation to interpret the concept of fractal time series. The
fractional oscillator or fractional Ornstein-Uhlenbeck process is the solution of the fractional
Langevin equation given by

(aDt +A)αy(t) = w(t), α > 0, (2.21)

where A is a positive constant, and w(t) is the white noise (Lim et al. [36, 37]). Obviously,
the fractal time series y(t) in (2.21) is a realization resulted from a fractional filter under the
excitation w(t). More about this will be discussed in Section 4.

3. Basic Properties of Fractal Time Series

Fractal time series has its particular properties in comparison with the conventional one. Its
power law in general is closely related to the concept of memory. A particular point, which
has to be paid attention to, is that there may usually not exist mean and/or variance in
such a series. This may be a main reason why measures of fractal dimension and the Hurst
parameter play a role in the field of fractal time series.

3.1. Power Law in Fractal Time Series

Denote the ACF of x(t) by rxx(τ), where rxx(τ) = E[x(t)x(t + τ)]. Then, x(t) is called SRD if
rxx is integrable (Beran [12]), that is,

∫∞

0
rxx(τ)dτ < ∞. (3.1)
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On the other side, x(t) is LRD if rxx is nonintegrable, that is,

∫∞

0
rxx(τ)dτ = ∞. (3.2)

A typical form of such an ACF for rxx being nonintegrable has the following asymptotic
expression:

rxx(τ) ∼ c|τ |−β (τ −→ ∞), (3.3)

where c > 0 is a constant and 0< β <1. The above expression implies a power law in the ACF
of LRD fractal series.

Denote the PSD of x(t) by Sxx(ω). Then,

Sxx(ω) =
∫∞

−∞
rxx(t)e−jωtdt. (3.4)

In the LRD case, the above Sxx(ω) does not exist as an ordinary function but it can be regarded
as a function in the domain of generalized functions. Since

F
(
|τ |−β

)
= 2 sin

(
πβ

2

)

Γ
(
1 − β

)|ω|β−1 (3.5)

see, for example, [29] and Li and Lim [38, 39], the PSD of LRD series has the property of
power law. It is usually called 1/f noise or 1/fα (α > 0) noise (Mandelbrot [40]). Thus,
comes Note 6.

Note 6. The PSD of an LRD fractal series is divergent for ω = 0. This is a basic property of
LRD fractal time series, which substantially differs from that as described in Note 1.

Denote the PDF of x(t) by p(x). Then, the ACF of x(t) can be expressed by

rxx(τ) =
∫∞

−∞
x(t)x(t + τ)p(x)dx. (3.6)

Considering that rxx is nonintegrable in the LRD case, one sees that a heavy-tailed PDF is an
obvious consequence of LRD series; see, for example, Li [41, 42], Abry et al. [43].

Denote μx the mean of x(t). Then,

μx =
∫∞

−∞
xp(x)dx. (3.7)

The variance of x(t) is given by

Var(x) =
∫∞

−∞

(
x − μx

)2
p(x)dx. (3.8)
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One thing remarkable in LRD fractal time series is that the tail of p(x)may be so heavy
that the above integral either (3.7) or (3.8) may not exist. To explain this, we recall a series
obeying the Pareto distribution that is a commonly used heavy-tailed distribution. Denote
pPareto(x) the PDF of the Pareto distribution. Then,

pPareto(x) =
ab

xa+1
, (3.9)

where x ≥ a. The mean and variance of x(t) that follows pPareto(x) are respectively given by

μPareto =
ab

a − 1
,

Var (x)Pareto =
ab2

(a − 1)2(a − 2)
.

(3.10)

It can be easily seen that μPareto and Var(x)Pareto do not exist for a = 1. That fractal time series
with LRD may not have its mean and or variance is one of its particular points [6].

Note that μx implies a global property of x(t)while Var(x) represents a local property
of x(t). For an LRD x(t), unfortunately, in general, the concepts of mean and variance are
inappropriate to describe the global property and the local one of x(t). We need other
measures to characterize the global property and the local one of LRD x(t). Fractal dimension
and the Hurst parameter are utilized for this purpose.

3.2. Fractal Dimension and the Hurst Parameter

In fractal time series, one, respectively, uses the fractal dimension and the Hurst parameter of
x(t) to describe its local property and the global one ([3], Li and Lim [39, 44]). In fact, if rxx
is sufficiently smooth on (0,∞) and if

rxx(0) − rxx(τ) ∼ c1|τ |α for |τ | −→ 0, (3.11)

where c1 is a constant and α is the fractal index of x(t), the fractal dimension of x(t) is
expressed by

D = 2 − α

2
; (3.12)

see, for example, Kent and Wood [45], Hall and Roy [46], and Adler [47].
On the other side, expressing β in (3.3) by the Hurst parameter 0.5 < H < 1 yields

β = 2 − 2H. (3.13)

Therefore,

rxx(τ) ∼ c|τ |2H−2 (τ −→ ∞). (3.14)
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Different from those in conventional series, we, respectively, useD andH to characterize the
local property and the global one of LRD x(t) rather than mean and variance (Gneiting and
Schlather [48], Lim and Li [49]).

In passing, we mention that the estimation of H and/or D becomes a branch of
fractal time series as can be seen from [11, 12]. Various methods regarding the estimation
of fractal parameters are reported; see, for example, Taqqu et al. [50], methods based on
ACF regression (Li and Zhao [51] and Li [52]), periodogram regression method (Raymond
et al. [53]), generalized linear regression (Beran [54, 55]), scaled and rescaled windowed
variance methods ([56–58], Schepers et al. [59], Mielniczuk and Wojdłło [60], Cajueiro and
Tabak [61]), dispersional method (Raymond and Bassingthwaighte [62, 63]), maximum
likelihood estimation methods (Kendziorski et al. [64], Guerrero and Smith [65]), methods
based on wavelet [66–72], fractional Fourier transform (Chen et al. [73]) and detrended
method (Govindan [74]).

In the end of this section, we note that self-similarity of a stationary process is a concept
closely relating to fractal time series. Fractional Gaussian noise (fGn) is an only stationary
increment process with self-similarity (Samorodnitsky and Taqqu [75]). In general, however,
a fractal time series may not be globally self-similar. Nevertheless, a series that is not self-
similar may be locally self-similar [47].

4. Some Models of Fractal Time Series

Fractal time series can be classified into two classes from a view of statistical dependence.
One is LRD and the other is SRD. It can be also classified into Gaussian series or nonGaussian
ones. I shall discuss the models of fractal time series of Gaussian type in Sections 4.1–4.4, and
4.6. Series of nonGaussian type will be described in Section 4.5.

4.1. Fractional Brownian Motion (fBm)

FBm is commonly used in modeling nonstationary fractal time series. It is Gaussian (Sinai
[76, 77]). The definition of fBm described in (2.18) is called the Riemann-Liouville type since
it uses the Riemann-Liouville integral; see, for example, [27], Sithi and Lim [78], Muniandy
and Lim [79], and Feyel and de la Pradelle [80]. Its PSD is given by

SBH,RL(t, ω) =
πωt

ω2H+1
[JH(2ωt)HH−1(2ωt) − JH−1(2ωt)HH(2ωt)], (4.1)

where JH is the Bessel function of order H (G.A. Korn and T.M. Korn [81]), HH is the Struve
function of order H, and the subscript on the left side implies the type of the Riemann-
Liouville integral, see [78] for details. The ACF of the fBm of the Riemann-Liouville type
is given by

rBH,RL(t, s) =
tH+1/2sH−1/2

(H + 1/2)Γ(H + 1/2)2
2F1

(
1
2
−H, 1,H +

1
2
,
t

s

)

, (4.2)

where 2F1 is the hypergeometric function.
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Note that the increment process of the fBm of the Riemann-Liouville type is
nonstationary (Lim and Muniandy [82]). Therefore, another definition of fBm based on the
Weyl integral [27] is usually used when considering stationary increment process of fBm.

The Weyl integral of order v is given for v > 0 by [21]

W−vf(t) =
1

Γ(v)

∫∞

t

(u − t)v−1f(u)du. (4.3)

Thus, the fBm of the Weyl type is defined by

BH(t) − BH(0) =
1

Γ(H + 1/2)

{∫0

−∞

[
(t − u)H−0.5 − (−u)H−0.5

]
dB(u) +

∫ t

0
(t − u)H−0.5dB(u)

}

.

(4.4)

It has stationary increment. Its PSD is given by (Flandrin [83])

SBH,W(t, ω) =
1

|ω|2H+1

(
1 − 21−2H cos 2ωt

)
, (4.5)

Its ACF is expressed by

rBH,W(t, s) =
VH

(H + 1/2)Γ(H + 1/2)

[
|t|2H + |s|2H − |t − s|2H

]
, (4.6)

where VH is the strength of the fBm and it is given by

VH = Var[BH(1)] = Γ(1 − 2H)
cosπH
πH

. (4.7)

The basic properties of fBm are listed below.

Note 7. Either the fBm of the Riemann-Liouville type or the one of the Weyl type is
nonstationary as can be seen from (4.1) and (4.5).

Note 8. Both the fBm of the Riemann-Liouville type and the one of the Weyl type are self-
similar because they have the property expressed by

BH(at) ≡ aHBH(t), a > 0, (4.8)

where ≡ denotes equality in the sense of probability distribution.

Note 9. The PSD of fBm is divergent at ω = 0, exhibiting a case of 1/fα noise.

Note 10. The process fBm reduces to the standard Brownian motion whenH = 1/2, as can be
seen from (2.18) and (4.4).
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Note 11. A consequence of Note 10 is

SB1/2,RL(t, ω) = SB1/2,W(t, ω) =
1
ω2 (1 − cos 2ωt), (4.9)

which is the PSD of the standard Brownian motion [78].

Note 12. The fractal dimension of fBm is given by

DfBm = 2 −HfBm. (4.10)

4.2. Generalized Fractional Brownian Motion with Holder Function

Recall that the fractal dimension of a sample path represents its self-similarity. For fBm,
however, DfBm is linearly related to HfBm (4.10). On the other hand, (4.8) holds for all
time scales. Hence, (4.8) represents a global self-similarity of fBm. This is a monofractal
character, which may be too restrictive for many practical applications. Lim and Muniandy
[82] replaced the Hurst parameterH in (4.4) by a continuously deterministic functionH(t) to
obtain a form of the generalized fBm. The functionH(t) satisfiesH : [0,∞) → (0, 1). Denote
the generalized fBm by X(t), instead of BH(t), so as to distinguish it from the standard one.
Then,

X(t) =
1

Γ(H(t) + 1/2)

{∫0

−∞

[
(t − u)H(t)−0.5 − (−u)H(t)−0.5

]
dB(u) +

∫ t

0
(t − u)H(t)−0.5dB(u)

}

.

(4.11)

By using H(t), one has a tool to characterize local properties of fBm. The following
ACF holds for τ → 0:

E[X(t)X(t + τ)] =
VH(t)

(H(t) + 1/2)Γ(H(t) + 1/2)

[
|t|2H(t) + |t + τ |2H(t) − |τ |2H(t)

]
. (4.12)

The self-similarity expressed below is in the local sense as H(t) is time varying

X(at) ≡ aH(t)X(t), a > 0. (4.13)

Assume thatH(t) is a β-Holder function. Then, 0 < inf[H(t)] ≤ sup[H(t)] < min(1, β).
Therefore, one has the following local Hausdorff dimension of x(t) for [a, b] ⊂ R

+ :

dim{X(t), t ∈ [a, b]} = 2 −min{H(t), t ∈ [a, b]}. (4.14)

The above expression also exhibits the local self-similarity of X(t).
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Based on the local growth of the increment process, one may write a sequence ex-
pressed by

Sk

(
j
)
=

m

N − 1

j+k∑

j=0
|X(i + 1) −X(i)|, 1 < k < N, (4.15)

where m is the largest integer not exceeding N/k. Then, H(t) at point t = j/(N − 1) is given
by

H(t) = −
log
(√

π/2Sk

(
j
))

log(N − 1)
; (4.16)

see Peltier and Levy-Vehel [84, 85] for the details. Li et al. [86] demonstrate an application
of this type of fBm to network traffic modeling, and Muniandy et al. [87] in financial
engineering.

4.3. Fractional Gaussian Noise (fGn)

The continuous fGn is the derivative of the smoothed fBm that is in the domain of generalized
functions. Its ACF denoted by CH(τ ; ε) is given by

CH(τ ; ε) =
VHε2H−2

2

[( |τ |
ε

+ 1
)2H

+
∣
∣
∣
∣
|τ |
ε

− 1
∣
∣
∣
∣

2H

− 2
∣
∣
∣
∣
τ

ε

∣
∣
∣
∣

2H
]

, τ ∈ R, (4.17)

where H ∈ (0, 1) is the Hurst parameter and ε > 0 is used by smoothing fBm so that the
smoothed fBm is differentiable [27].

FGn includes three classes of time series. When H ∈ (0.5, 1), CH(τ ; ε) is positive and
finite for all τ. It is nonintegrable and the corresponding series is LRD. For H ∈ (0, 0.5), the
integral of CH(τ ; ε) is zero and CH(0; ε) diverges when ε → 0. In addition, CH(τ ; ε) changes
its sign and becomes negative for some τ proportional to ε in this parameter domain [27,
page 434]. FGn reduces to the white noise whenH = 0.5.

The PSD of fGn is given by (Li and Lim [38])

SfGn(ω) = σ2 sin(Hπ)Γ(2H + 1)|ω|1−2H. (4.18)

Denote the discrete fGn by dfGn. Then, the ACF of dfGn is given by

rdfGn(k) =
σ2

2

[
(|k| + 1)2H + ||k| − 1|2H − 2|k|2H

]
. (4.19)
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Its PSD, see Sinai [77], is given by

SdfGn(ω) = 2Cf(1 − cosω)
∞∑

n=−∞
|2πn +ω|−2H−1, ω ∈ [−π,π], (4.20)

where Cf = σ2(2π)−1 sin(πH)Γ(2H + 1).
Note that the expression 0.5[(k + 1)2H − 2k2H + (k − 1)2H] is the finite second-order

difference of 0.5(k)2H . Approximating it with the second-order differential of 0.5(k)2H yields

0.5
[
(k + 1)2H − 2k2H + (k − 1)2H

]
≈ H(2H − 1)(k)2H−2. (4.21)

The above approximation is quite accurate for k > 10 [11]. Hence, taking into account (3.12)
and (3.13), the following immediately appears (Li and Lim [44]):

DfGn = 2 −HfGn. (4.22)

Hence, we have the following notes.

Note 13. The fGn as the increment process of the fBm of the Weyl type is stationary. It is
exactly self-similar with the global self-similarity described by (4.22).

Note 14. The PSD of the fGn is divergent at ω = 0.

Again, we remark that the fGn may be too strict for modeling a real series in practice.
Hence, generalized versions of fGn are expected. One of the generalization of fGn is to replace
H byH(t) in (4.19) ([82]) so that

rdfGn(k;H(t)) =
σ2

2

[
(|k| + 1)2H(t) + ||k| − 1|2H(t) − 2|k|2H(t)

]
. (4.23)

Another generalization by Li [88] is given by

rdfGn(k;H,a) =
σ2

2

(∣
∣|k|a + 1

∣
∣2H − 2

∣
∣|k|a∣∣2H +

∣
∣|k|a − 1

∣
∣2H
)
, 0 < a ≤ 1. (4.24)

In (4.23), if H(t) = const, the ACF reduces to that of the standard fGn. On the other side,
rdfGn(k;H,a) in (4.24) becomes the ACF of the standard fGn if α = 1.

4.4. Generalized Cauchy (GC) Process

As discussed in Section 2, we use two parameters, namely,D andH, to respectively measure
the local behavior and the global one of fractal time series instead of variance and mean.
More precisely, the former measures a local property, namely, local irregularity, of a sample
path while the latter characterizes a global property, namely, LRD. The parameter 1 < D < 2
is independent of 0 < H < 1 in principle as can be seen from [3]. By using a single parameter
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model, such as fGn and fBm,D andH happen to be linearly related. Hence, a single parameter
model fails to separately capture the local irregularity and LRD. To release such relationship,
two-parameter model is needed. The GC process is one of such models.

A seriesX(t) is called the GC process if it is a stationary Gaussian centred process with
the ACF given by

CGC(τ) = E[X(t + τ)X(t)] =
(
1 + |τ |α)−β/α, (4.25)

where 0 < α ≤ 2 and β > 0. The ACF CGC(τ) is positive-definite for the above ranges of α and
β and it is a completely monotone for 0 < α ≤ 1, β > 0. When α = β = 2, one gets the usual
Cauchy process that is modeled by its ACF expressed by

C(τ) =
(
1 + |τ |2

)−1
, (4.26)

which has been applied in geostatistics; see, for example, Chiles and Delfiner [89].
The function CGC(τ) has the asymptotic expressions of (3.11) and (3.14). More

precisely, we have

CGC(τ) ∼ |τ |α, τ −→ 0,

CGC(τ) ∼ |τ |−β, τ −→ ∞.
(4.27)

According to (3.12) and (3.13), therefore, one has

DGC = 2 − α

2
, (4.28)

HGC = 1 − β

2
. (4.29)

When considering the multiscale property of a series, one may utilize the time varying
DGC and HGC on an interval-by-interval basis. Denote the fractal dimension and the Hurst
parameter in the Ith interval by DGC(I) and HGC(I), respectively. Then, we have the ACF in
the Ith interval given by

CGC(τ ; I) =
(
1 + τα(I)

)−β(I)/α(I)
, τ ≥ 0. (4.30)

Consequently, we have

DGC(n) = 2 − α(n)
2

,

HGC(n) = 1 − β(n)
2

.

(4.31)
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Denote Sa(ω) = (sinω)/ω. Then, the PSD of the GC process is given by (Li and Lim [39])

SGC(ω) =
∞∑

k=0

(−1)kΓ[(β/α) + k
]

πΓ
(
β/α
)
Γ(1 + k)

I1(ω) ∗ Sa(ω)

+
∞∑

k=0

(−1)kΓ[(β/α) + k
]

πΓ
(
β/α
)
Γ(1 + k)

[πI2(ω) − I2(ω) ∗ Sa(ω)],

(4.32)

where

I1(ω) = −2 sin
(
αkπ

2

)

Γ(αk + 1)|ω|−αk−1,

I2(ω) = 2 sin

[(
β + αk

)
π

2

]

Γ
[
1 − (β + αk

)]|ω|(β+αk)−1.
(4.33)

In practice, the asymptotic expressions of SGC(ω) for small frequency and large one
may be useful. The PSD of the GC process for ω → 0 is given by

SGC(ω) ∼ 1
Γ
(
β
)
cos
(
βπ/2

) |ω|β−1, ω −→ 0, (4.34)

which is actually the inverse Fourier transform of CGC(τ) for τ → ∞. On the other hand,
SGC(ω) for ω → ∞ is given by

SGC(ω) ∼ βΓ(1 + α) sin(απ/2)
πα

|ω|−(1+α), ω −→ ∞; (4.35)

see [49] for details. As shown in (4.34) and (4.35), one may easily observe the power law that
SGC(ω) obeys.

Note 15. The GC process is LRD if 0 < β < 1. It is SRD if 1 < β. Its statistical dependence is
measured by H (4.29).

Note 16. The GC process has the local self-similarity measured by DGC expressed by (4.28).

Note 17. The GC process is nonMarkovian since CGC(t1, t2) does not satisfy the triangular
relation given by

CGC(t1, t3) =
CGC(t1, t2)CGC(t2, t3)

CGC(t2, t2)
, t1 < t2 < t3, (4.36)

which is a necessary condition for a Gaussian process to be Markovian (Todorovic [90]). In
fact, up to a multiplicative constant, the Ornstein-Uhlenbeck process is the only stationary
Gaussian Markov process (Lim and Muniandy [91], Wolpert and Taqqu [92]).
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The above discussions exhibit that the GC model can be used to decouple the local
behavior and the global one of fractal time series, flexibly better agreement with the real
data for both short-term and long-term lags. Li and Lim gave an analysis of the modeling
performance of the GC model in Hilbert space [93]. The application of the GC process to
network traffic modeling refers to [44], and Li and Zhao [94]. Recently, Lim and Teo [95]
extended the GCmodel to describe the Gaussian fields and Gaussian sheets. Vengadesh et al.
[96] applied it to the analysis of bacteriorhodopsin in material science.

4.5. Alpha-Stable Processes

As previously mentioned, two-parameter models are useful as they can separately
characterize the local irregularity and global persistence. The CG process is one of such
models and it is Gaussian. In some applications, for example, network traffic at small scales,
a series is nonGaussian; see, for example, Scherrer et al. [97]. One type of models that are of
two-parameter and nonGaussian in general is α-stable process.

Stable distributions imply a family of distributions. They are defined by their
characteristic functions given by [75, page 5], for a random variable Y ,

Φ(θ) = E
(
ejθY
)
=

⎧
⎨

⎩

exp
{
jμθ − |σθ|α

[
1 + jβ sign(θ) tan

(πα

2

)]}
, α /= 1,

exp
{
jμθ − |σθ|[1 + jβ sign(θ) ln(|θ|)]}, α = 1.

(4.37)

The expression Y ∼ S
(α)
σ,β,μ

implies that Y follows Φ(θ).
The parameters in Φ(θ) are explained as follows.

(i) The parameter 0 < α ≤ 2 is characteristic exponent. It specifies the level of local
roughness in the distribution, that is, the weight of the distribution tail.

(ii) The parameter −1 ≤ β ≤ 1 specifies the skewness. Its positive values correspond to
the right tail while negative ones to the left.

(iii) The parameter σ ≥ 0 is a scale factor, implying the dispersion of the distribution.

(iv) μ ∈ R is the location parameter, expressing the mean or median of the distribution.

Note 18. The family of α-stable distributions does not have a closed form of expressions in
general. A few exceptions are the Cauchy distribution and the Levy one.

Note 19. The property of heavy tail is described as follows. E[|Y |p] < ∞ for p ∈ (0, α), and
E[|Y |p] = ∞ for p ≥ α.

When α = 2, the characteristic function (4.37) reduces to that of the Gaussian
distribution with the mean denoted by μ and the variance denoted by 2σ2. That is,

Φ(θ) = E
(
ejθY
)
= exp

[
jμθ − (σθ)2

]
. (4.38)

In this case, the PDF of Y is symmetric about the mean.
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Alpha-stable processes are in general nonGaussian. They include two. One is linear
fractional stable noise (LFSN) and the other log-fractional stable noise (Log-FSN).

The model of linear fractional stable motion (LFSM) is defined by the following
stochastic integral [75, page 366]. Denote by Lα,H(t) the LFSM. Then,

Lα,H(t) =
∫∞

−∞

{
a
[
(t − u)H−1/α

+ − (−u)H(t)−1/α
+

]
+ b
[
(t − u)H−1/α

− − (−u)H(t)−1/α
−

]}
Mdu,

(4.39)

where a and b are arbitrary constants, M ∈ R is a random measure, and H the Hurst
parameter. The range of H is given by

H =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 1], α ≥ 1,
(

0,
1
α

]

, α < 1.
(4.40)

Denote by Loα,H(t) the Log-FSM. Then,

Loα(t) =
∫∞

−∞
[ln|t − Y | − ln|Y |]Mdu. (4.41)

LSFN is the increments process of LSFM while Log-FSN is the increment process of
Log-FSM. Denote the LSFN and Log-FSN respectively by Nα,H(i) and NLoα,H(i). Then,

Nα,H(i) = Lα,H(i + 1) − Lα,H(i), i ∈ Z,

NLoα,H(i) = Loα(i + 1) − Loα(i), i ∈ Z.
(4.42)

LSFN is nonGaussian except α =2. It is stationary self-similar with the self-similarity
measured byH and the local roughness characterized by α [75]. However, two parameters are
not independent because the LRD condition ([75], Karasaridis and Hatzinakos [98]) relates
them by

αH > 1. (4.43)

4.6. Ornstein-Uhlenbeck (OU) Processes and Their Generalizations

In the above subsections, the series may be LRD. We now turn to a type of SRD fractal time
series called OU processes.
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4.6.1. Ordinary OU Process

Following the idea addressed by Uhlenbeck and Ornstein [99], the ordinary OU process is
regarded as the solution to the Langevin equation (see, e.g., [91, 92], Lu [100], Valdivieso et
al. [101]), which is a stochastic differential equation given by

(
d

dt
+ λ

)

X(t) = w(t),

X(0) = X0,

(4.44)

where λ is a positive parameter, w(t) is the white noise with zero mean, and X0 is a random
variable independent of the standard Brownian motion B(t). The stationary solution to the
above equation is given by

X(t) = X0e
−λt +

∫ t

−∞
eλuw(u)du. (4.45)

Denote the Fourier transforms ofw(t) andX(t), respectively, byW(ω) andX(ω). Note
that the system function of (4.44) in the frequency domain is given by

GOU(ω) =
1

λ + jω
. (4.46)

Then, according to the convolution theorem, one has

X(ω) = GOU(ω)W(ω). (4.47)

Since the PSD of the normalizedw(t) equals to 1, that is, |W(ω)|2 = 1, we immediately obtain
the PSD of the OU process given by

SOU(ω) =
1

λ2 +ω2
. (4.48)

Consequently, the ACF of the OU process is given by

E[X(t)X(t + τ)] = F−1[SOU(ω)] =
e−λ|τ |

2λ
, (4.49)

where F−1 is the operator of the inverse Fourier transform.
The ordinary OU process is obviously SRD. It is one-dimensional. What interests

people in the field of fractal time series is the generalized OU processes described hereinafter.
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4.6.2. Generalized Version I of the OU process

Consider the following fractional Langevin equation with a single parameter β >0:

(
d

dt
+ λ

)β

X1(t) = w(t). (4.50)

Denote by gX1(t) the impulse response function of the above system. Then, it is the solution
to the following equation:

(
d

dt
+ λ

)β

gX1(t) = δ(t), (4.51)

where δ(t) is the Dirac-δ function. Doing the Fourier transforms on the both sides on the
above equation yields

GX1(ω) =
1

(
λ − jω

)β
, (4.52)

where GX1(ω) is the Fourier transform of gX1(t).
Note that the PSD of X1(t) is equal to

SX1(ω) = GX1(ω)[GX1(ω)]∗, (4.53)

where [GX1(ω)]∗ is the complex conjugate of GX1(ω). Then,

SX1(ω) =
1

(λ2 +ω2)β
, (4.54)

which is the solution to (4.50) in the frequency domain. The solution to (4.50) in the time
domain, therefore, is given by

CX1(τ) = E[X1(t)X1(t + τ)] = F−1[SX1(ω)] =
λ−2v

2v
√
πΓ(v + 1/2)

|λτ |vKv(|λτ |), (4.55)

where v = β−1/2 andKv is themodified Bessel function of the second kind of order v [29, 91].
Let v = H ∈ (0, 1). Then, one has

SX1(ω) =
1

(λ2 +ω2)H+1/2
, (4.56)

which exhibits that X1(t) is SRD because its PSD is convergent for ω → 0.
Keep in mind that the Langevin equation is in the sense of generalized functions since

we takew(t) as the differential of the standard Brownian motion B(t), which is differentiable
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if it is regarded as a generalized function only. In the domain of generalized functions and
following [17, page 278], there is a generalized limit given by

lim
ω→∞

cosωt = 0. (4.57)

Therefore, the PSD of the fBm of the Weyl type (see (4.5)) has the following asymptotic
property:

lim
ω→∞

SBH,W(t, ω) ∼ 1

|ω|2H+1
for ω −→ ∞. (4.58)

On the other hand, from (4.56), we see that the PSD of X1(t) has the asymptotic expression
given by

SX1(ω) ∼ 1

|ω|2H+1
for ω � λ. (4.59)

Therefore, we see that SX1(ω) has the approximation given by

SX1(ω) ∼ SBH,W(t, ω) for ω −→ ∞. (4.60)

Hence, we have Note 20.

Note 20. The generalized OU process governed by (4.50) can be taken as the locally stationary
counterpart of fBm.

According to (3.5), we have

F−1
(

1

|ω|2H+1

)

∼ |τ |2H. (4.61)

Therefore, we obtain

CX1(τ) ∼ cX1 |τ |2H for τ −→ 0, (4.62)

where cX1 is a constant. Following (3.11) and (3.12), we have the fractal dimension of X1(t)
given by

DX1 = 2 −H. (4.63)
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4.6.3. Generalized Version II of the OU Process (Lim et al. [37])

We now further extend the Langevin equation by indexing it with two fractions α, β > 0 so
that

(
−∞Dα

t + λ
)β
X2(t) = w(t), (4.64)

where −∞Dα
t is the operator of the Weyl fractional derivative. Denote by gX2(t) the impulse

response function of the above system. Then,

(
−∞Dα

t + λ
)β
gX2(t) = δ(t). (4.65)

The Fourier transform of gX2(t), which is denoted by GX2(ω), is given by

GX2(ω) =
1

(
λ +
(−jω)α)β

. (4.66)

Therefore, the PSD of X2(t) is given by

SX2(ω) = GX2(ω)[GX2(ω)]∗ =
1

∣
∣λ + (jω)α

∣
∣2β

. (4.67)

Note that

SX2(ω) ∼ 1
ω2αβ

for ω −→ ∞. (4.68)

In addition,

F−1
(

1

|ω|2αβ
)

∼ |τ |2αβ−1. (4.69)

Thus, the ACF of X2(t) has the asymptotic expression given by

CX2(τ) ∼ cX2 |τ |2αβ−1 for τ −→ 0, (4.70)

where cX2 is a constant. Hence, the fractal dimension of X2(t) is given by

DX2 =
5
2
− αβ. (4.71)

In the above, 1/2 < αβ < 3/2, which is a condition to assure 1 < DX2 < 2.

Note 21. The local irregularity of series relies on the fractal dimension instead of the statistical
dependence. The local irregularity of an SRD series may be strong if its fractal dimension is
large.
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5. Conclusions

The concepts, such as power law in PDF, ACF, and PSD in fractal time series, have been
discussed. Both LRD and SRD series have been explained. Several models, fBm, fGn, the GC
process, alpha-stable processes, and generalized OU processes have been interpreted. Note
that several models revisited above are a few in the family of fractal time series. There are
others; see, for example, [78, 102–112]. As a matter of fact, the family of fractal time series is
affluent but those revisited might yet be adequate to describe the fundamental of fractal time
series from the point of view of engineering in the tutorial sense.
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Springer, New York, NY, USA, 1995.
[103] R. N. Mantegna and H. E. Stanley, “Stochastic process with ultraslow convergence to a Gaussian:
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