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This paper concerns active vibration damping of a frictionless physical inverted pendulum with a
radially moving mass. The motion of the inverted pendulum is restricted to an admissible set.
The proposed Proportional Derivative linear controller damps the inverted pendulum (which
is anchored by a torsion spring to keep it in a stable upright position), exerting a force on the
radially moving mass. The controller design procedure, which follows a traditional Lyapunov-
based approach, tailors the energy behavior of the system described in Euler-Lagrange terms.

1. Introduction

Vibrating mechanical systems constitute an important class of dynamical systems. In fact
buildings, bridges, car suspensions, pacemakers, wind generators, and hi-fi speakers (or
even the mammalian middle ear) are common examples of this type of systems. In physical
terms all vibrating systems consist of an interplay between an energy-storing component
and an energy-carrying component. Thus, the behavior of the system can be described in
terms of energy changes, that is, the motion of the system results from energy conversions.
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For theoretical and technological reasons, the control of vibrating mechanical systems is
an important domain of research, which has provided technological solutions to several
problems concerning oscillatory behaviors of some important classes of dynamical systems,
for example, active control of vibrations is applied to attenuate undesired oscillations in
buildings affected by external forces such as strong winds and earthquakes (see, e.g., [1–
5] and the references therein), and computer-based active suspension is now common in
cars as a means to improve road handling. It must be pointed out that in these examples
control pursuits the elimination of the oscillatory behavior; however, in some applications
the control purpose is to make the system vibrate in a convenient way (e.g., mechanical
vibrations have been considered a potential choice for power-harvesting technologies for
low-power electronic devices like MEMS; see, e.g., [6]).

As far as mathematical tools are concerned, the control of vibrations has mainly been
tackled via frequency-domain techniques, which are essentially restricted to linear systems
(see, e.g., [7, 8]). When the vibrating systems are nonlinear, or when they oscillate too far
away from their equilibrium points, frequency-domain techniques are not suitable. In the
case of nonlinear systems characterized by small domains of attraction of the equilibrium
points, the linear approach is not very effective. Hence, modern approaches prefer to follow
time-domain nonlinear control strategies, which lie in ordinary differential equations, when
lumped systems are concerned.

This paper focuses on active control of underdamped lumped nonlinear underactu-
ated vibrating mechanical systems following an Energy-based approach, that is, the control
of the vibratory behavior is tackled via the shaping of the energy flow which characterizes
the system in dynamical terms. The control of vibrations is then considered in terms of
the solution of a particular asymptotic stabilizing feedback control problem, around a
selected equilibrium point. A stabilizing controller is then obtained following an Energy-
based Lyapunov approach, which exploits the physical properties of the involved mechanical
system. In this way conservative control strategies based either on high gains or on cancelled
nonlinear terms are avoided. It must be pointed out that standard nonlinear strategies
such as sliding modes control and feedback linearization are frequently characterized by
conservativeness (see, e.g., [9, 10]). Intuitively speaking, Energy-based Lyapunov control
shapes, via feedback control, the potential and kinetic energies of the controlled system
in order to ensure a motion which guarantees the control objective (see, e.g., [11]). This
approach requires the total energy of the concerned system to be a nonincreasing function.
Moreover, the total energy function is also required to be at least locally positive definite
around the selected equilibrium point (see, e.g., [5, 12–14]).

The main objective of this paper is to propose an asymptotic stabilizing controller,
for the active vibration damping in a nonlinear underactuated and frictionless mechanical
system, only which is restricted to move inside a predefined admissible set. This nonlinear
mechanical system consists of a physical inverted pendulum, which rotates around a pivot
located in the lower end of the pendulum arm, and an actuated auxiliary mass that moves,
forward and backward, along of the pendulum arm. To keep the structure in the stable
upright position (but not asymptotically stable) a restoring torsion spring is included.

The rest of the paper is organized as follows. Section 2 deals with the mathematical
characterization of the dynamic behavior of the concerned system. The nonlinear mathe-
matical model of the pendulum is obtained via the Euler-Lagrange approach. The proposed
Proportional Derivative (PD) linear control law is exposed in Section 3, while Section 4
deals with some simulation of the closed-loop system. The paper concludes with some final
comments in Section 5.
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Figure 1: Inverted pendulum with a radially moving mass. The pendulum is anchored to the pivot
point using a restoring torsion spring, which maintains the system in a stable upright position (but not
asymptotically stable).

2. Equation of Motion

The dynamic system consists of a physical pendulum of mass M, which rotates about its
pivot point O. Along the arm of the pendulum there is an auxiliary mass m that can slide
towards or away from the pivot. To keep the structure in a stable upright position a restoring
moment is produced by a torsion spring with the spring constant denoted by κ1, as we can
see in Figure 1 (the system is assumed to be stable in the Lyapunov sense). The moment of
inertia of the pendulum about the pivot is given by I0, and its center of mass C is located
at the distance rc from the pivot. The mass m is moved by a force f applied on a direction
parallel to OC. That is, f is the control input that acts directly on the mass m.

In order to describe the pendulum motion, the origin of the inertial frame is chosen at
point O. The x-axis and y-axis are set in the horizontal and vertical directions, respectively.
Let the generalized coordinates be denoted by a two-dimensional vector q := [r, θ]T where r
is the radial displacement of the mass m measured from the fixed pivot O, and θ denotes the
angle formed by the y-axis and OC. It is easy to show that both the total kinetic energy Kc

and the total potential energy Kp of the system are given by

Kc =
1
2
I0θ̇

2 +
1
2
m
(
ṙ2 + r2θ̇2

)
,

Kp = Mgrc(cos θ − 1) +mgr cos θ +
κ1

2
θ2,

(2.1)
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respectively. Thus, the Lagrangian function L(q, q̇) is given by

L
(
q, q̇

)
= Kc −Kp. (2.2)

Therefore, the corresponding Euler-Lagrange equations, that is, (d/dt)((∂L/∂q̇)(q,
q̇)) − (∂L/∂q)(q, q̇) = Q, are given by

mr̈ −mrθ̇2 +mg cos θ = F,

(
mr2 + I0

)
θ̈ + 2mrṙθ̇ − g(Mrc +mr) sin θ + κ1θ = 0,

(2.3)

with the vector corresponding to the external forces being Q = [F, 0]T . After applying the
following feedback:

F = mg + v. (2.4)

into system (2.3), we can express the above set of differential equations as

M
(
q
)
q̈ + C

(
q, q

)
q̇ +∇qKi

(
q
)
= Gv, (2.5)

where

M
(
q
)
=

[
m 0

0 mr2 + I0

]
, C

(
q, q̇

)
=

[
0 −mrθ̇

mrθ̇ mrṙ.

]
, G =

[
1

0

]
,

Ki

(
q
)

:= −κ3(1 − cos θ) − κ2r(1 − cos θ) +
κ1

2
θ2.

(2.6)

Here κ2 := mg and κ3 := Mgrc.
It is quite obvious that system (2.5) satisfies the followings properties:

(P1) M(q) is positive definite;

(P2) matrix H:=Ṁ(q) − 2C(q, q̇) is a skew-matrix given by:

H =

[
0 −mrθ̇

mrθ̇ 0

]
, (2.7)

that is, zTHz = 0 for any z ∈ R
2;

(P3) The operator v → ṙ is passive, since the time derivative of the total stored
energy function E(q, q̇) = (1/2)q̇TM(q)q̇ +Ki(q) is given after using the mentioned
properties that Ė = vṙ.

Remark 2.1. Note that, if v = 0, θ ∈ (−π/2, π/2) and r > 0, then system (2.5) has a set of
equilibrium points defined by (r = r, θ = 0, ṙ = 0, θ̇ = 0), where r is a positive constant.
These points are stable in the sense of Lyapunov but they are not asymptotically stable.
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In what follows we use the symbols x and x to denote

x =
(
q, q̇

)
=
(
r, θ, ṙ, θ̇

)
, x =

(
q, 0

)
= (r, 0, 0, 0) (2.8)

with r > 0. On the other hand we use z0 to indicate z(0).

3. PD Linear Control

The above system is an underactuated and poorly damped mechanical system, since it
has two degrees of freedom and it does not have one dissipative force in the nonactuated
coordinate θ. So that, this system is very sensible to external perturbations. In order to
attenuate the undesirable effect of the external perturbations, we propose a stabilizing
controller that makes the closed-loop system asymptotically stable around the origin x.

Before establishing the control objective we introduce a necessary assumption:

(A1) the structural parameters of the original system satisfy the following relation:

κ1 > κ3 + κ2(r + ε). (3.1)

Remark 3.1. The inequality (3.1) means that the force produced by the spring is greater than
the gravity force produced over the system, for any position of m. That is, (A1) is a structural
condition related to the internal rigidities of the system.

The control objective is then posed as follows.

Problem 3.2. Find a smooth feedback v that forces the system (2.5) to be asymptotically stable
around the equilibrium point x, restricted to move inside of an admissible set Q ⊂ R2, defined
by

Q =
{
q = (r > 0, θ) : |r − r| < ε, |θ| < θ

}
, (3.2)

where ε, θ, and r are strictly positive constant, with θ < π/2.

Remark 3.3. We must emphasize that the physical restrictions included in the formulation
of the control problem are necessary to guarantee that the inverted pendulum can only
moves inside a fraction of the upper half plane while the mass m remains on the arm of
the pendulum. That is, the auxiliary mass m has to move along the pendulum length, and
the angular position of the pendulum is restricted to move inside of a given interval defined
by (−θ, θ). In other words, we ask for the auxiliary mass m to move along the pendulum arm
and at the same time we ask the pendulum angular displacement to be confined to a vicinity
near to the vertical top position.

In what follows we tackle the solution of the stabilizing feedback control problem.



6 Mathematical Problems in Engineering

3.1. Energy-Based Control

Consider the following candidate Lyapunov function:

ET (x) = ET

(
q, q̇

)
=

1
2
q̇TM

(
q
)
q̇ +Km

(
q
)
, (3.3)

where Km(q) is the modified potential energy stated as

Km

(
q
)
= Ki

(
q
)
+
kp

2
(r − r)2, (3.4)

with kp > 0.

Remark 3.4. Under assumption (A1), the modified potential energy Km(q) has a local
minimum at q = (r, 0). This follows from the fact that

Km

(
q
)
= 0, ∇qKm

(
q
)
= 0, ∇2

qKm

(
q
)
> 0. (3.5)

That is, Km(q) is a convex function around q. Hence, the level curves of Km(q) are constituted
by a set of closed-loop curves around q. This property allows us to define a compact invariant
set, that we will use for the convergence analysis.

Taking into account the passivity properties of system (2.5), the first time derivative of
ET along the trajectories of the system is given by

ĖT

(
q, q̇

)
= vṙ + kp(r − r)ṙ. (3.6)

Since this derivative needs to be definite negative, the following Proportional Derivative
linear control law is proposed:

v = −kp(r − r) − kdṙ, (3.7)

which leads to

ĖT

(
q, q̇

)
= −kdṙ2, (3.8)

with kd > 0.
As ET is strictly positive definite and ĖT is negative semidefinite, we can conclude the

stability of the closed-loop system in the Lyapunov sense. That is, q and q̇ are bounded. To
ensure that the closed-loop solution asymptotically converges to the origin x we need to use
the LaSalle invariance theorem.

Before applying the well-known LaSalle invariance theorem (see, e.g., [15]), we need
to introduce a useful Lemma which allows us to select the constant kp provided that all the
solutions of the obtained closed-loop system remain inside of the admissible set Q.



Mathematical Problems in Engineering 7

Lemma 3.5. Consider the closed-loop system (see (2.5) and (3.7)). Under assumption (A1) and the
restriction of parameter kp, given by

κ2

kp

(
1 − cos θ

)
< ε, (3.9)

if the initial conditions x0 = (q0,q̇0) with q0 ∈ Q, satisfying:

ET (x0) ≤ E, (3.10)

where the bound E is defined as

E=̂max
{
c > 0 : Km

(
q
)
= c, with q ∈ Q

}
(3.11)

and can be estimated solving equality

E = Km

(
r +

ε

λ
, θ
)
= λεκ2

(
1 − cos θ

)
, (3.12)

where λ > 1, then one guarantees that

ET

(
q(t), q̇(t)

)
≤ ET (x0) ≤ E, (3.13)

with q(t) ∈ Q, t ≥ 0 (see the appendix).

Now we are ready to apply the LaSalle invariance theorem. Let us define a compact
set Ω

Ω =
{
x =

(
q, q̇

)
: ET (x) < E

}
, (3.14)

where E > 0 is selected according to Lemma 3.5.

Remark 3.6. The set Ω has the property that all the solutions of the closed-loop system that
start in Ω remain in Ω for all future time. In particular, all initial conditions x0 = (q0, q̇0) such
that ET (x0) < E, with q0 ∈ Q imply that q(t) ∈ Q, for all future.

Let Γ be defined as follows:

Γ =
{
x ∈ Ω : ĖT (x) = 0

}
= {x ∈ Ω : ṙ = 0}, (3.15)

and let M be the largest invariant set in Γ. The LaSalle invariance theorem guarantees that
every solution starting in a compact set Ω approaches M as t → ∞ [15]. Let us then compute
the largest invariant set M in Γ. On the set Γ, we have that r̈ = 0 and r = r, where r is a fixed
constant, such that |r − r| < ε (for simplicity,we use the symbol x to denote that (d/dt)x =
0). Suppose that in Γ, r /= r. Then, from the definition of v (3.7), we have that v = −kp(r−r)/= 0,
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which leads to a contradiction since a constant force will eventually produce a displacement
of the auxiliary mass m and state r cannot be bounded (see first equation of (2.5)). Hence, in
the set Γ, r = r. Thus, in the set Γ system (2.5) becomes

−mrθ̇2 + κ2(cos θ − 1) = 0, (3.16)
(
mr2 + I0

)
θ̈ − (κ3 + κ2r) sin θ + κ1θ = 0. (3.17)

From the two previous equations we must have that the single trajectory that satisfies (3.16)
is given by θ̇ and θ which are equal to zero in the set Γ, because |θ| < θ < π/2, κ2 > 0, r > 0.
Therefore, we concluded that the largest invariant set contained in Γ ⊂ Ω, that is, M, is given
by the single equilibrium point x = (r = r, θ = 0, ṙ = 0, and θ̇ = 0). According to the LaSalle
invariance theorem, all trajectories that start in Ω asymptotically converge towards the largest
invariant set M, which is given by the single point x.

This section concludes with the following proposition.

Proposition 3.7. Under the assumptions of Lemma 3.5. Let the system (2.3) in closed loop, with

F = mg − kp(r − r) − kdṙ. (3.18)

Then the origin of the closed-loop system is locally asymptotically stable with a computable domain of
attraction defined by the inequality (3.13). Besides the closed-loop solution is restricted to move inside
of the admissible set Q.

Remark 3.8. It is easy to check that if assumption (A1) is relaxed, we can assure asymptotic
stability of the closed-loop system. However, we cannot assure that x(t) belongs to Q, for all
t > 0. On the other hand, if the physical parameters do not satisfy (A1), we then have three
equilibrium points, and we only can assure stability in the Lyapunov sense.

In order to illustrate the proposed energy-based feedback (PD linear) control law, we
perform in the following section some computer-based simulations.

4. Simulations

4.1. Simulation Settings

In order to carry out the simulation of the closed-loop system, we set the system parameters
to be

m = 1
(
kg

)
, M = 4

(
kg

)
, I0 = 0.5

(
kg ·m2

)
, rc = 0.5 (m),

r = 0.5 (m), ε = 0.45 (m), θ = 0.8 (rad), κ1 = 31.25.
(4.1)

Of course, in this case κ2 = 9.8 and κ3 = 19.6, and, evidently, the physical system satisfies the
structural assumption (A1).
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The parameter value of kp has to be chosen according to restriction (3.9), which
produces

7.34 < kp. (4.2)

Note that the admissible set is given by

Q = {(r > 0, θ) : |r − 0.5| < 0.4, |θ| < 0.8}. (4.3)

To ensure that the initial condition vector is within the maximal domain of attraction, we set
the parameters λ = 4.1 and kp = 30.46 according to relations (3.12) and (A.5), respectively.
Hence, to maintain the closed-loop motion inside the domain of attraction the condition given
by ET (q0, q̇0) < E =̃ 2.43, with q0 ∈ Q, must be satisfied.

4.2. Comments on the Simulations

We simulate the closed-loop behavior of the nonlinear mechanical system using the Matlab +
SimulinkTM computational platform.

We choose as the initial conditions vector q0 = (0.6 (m), 0.8 (rad)), with zero velocity
states, satisfying ET (q0, 0) = 2.36 (vector q0 is selected very close to one of the extreme points in
the direction of θ that belong to ∂Q, the set of all boundary points of Q). Figure 2 shows the
transient behavior of the position and the velocity variables resulting from the chosen initial
conditions vector. As we can see the position variables are inside of set Q, since the initial
conditions vector belongs to the domain of attraction of the closed-loop system.

When choosing x0 = (0.7 (m), 0.6 (rad), 0, 2 (rad/s)) with ET (x0) = 3.75 > E (i.e., q may
go out of Q), we obtain the behavior shown in Figure 3. In this particular case, even when
the initial conditions vector belongs to the admissible set Q, the closed-loop responses are
outside of the restricted set Q since ET (x0) > E (see that θ 	 1 (rad), when t = 2 (s)).

5. Concluding Remarks

In this work, we presented a Lyapunov-based approach for the asymptotic stabilization of a
frictionless inverted physical pendulum (which is maintained in the stable upright position,
in the Lyapunov sense, via the inclusion of a torsion spring which anchors the pendulum to
the pivot) with a radially moving mass. The motion of the pendulum is restricted to be in an
admissible set Q (3.2), which characterizes physical restrictions. The proposed Proportional
Derivative control strategy exploits the underlying physical properties of the original system,
which have been used to shape the total energy of the closed-loop system.

The stability analysis of the closed-loop system has been carried out by using the
well-known LaSalle invariance theorem. It is worth mentioning that if a damping force
is considered in the nonactuated coordinate then asymptotically stability of this device is
reinforced.

Concerning the applicability of the proposed control law, the nonlinear mechanical
system chosen here models, in a simplified way, the dynamics of rigid buildings restricted
to oscillate in the plane (when affected by external excitations). We are interested in the
attenuation of the effects of unknown disturbances (seismic forces) on the behavior of civil
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Figure 2: Simulation of the closed-loop system starting from q(0) = (0.6, 0.8) and q̇(0) = 0.
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Figure 3: Closed-loop response of the nonlinear system, when the initial condition is stated as x0 =
(0.7, 0.6, 0, 2).

structures via smooth active control. In the considered model the radially moving mass is
proposed as an active control element; the potentiality of such an actuator must be clarified
via the evaluation of the energy consumption characteristics of the control law.
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Appendix

Proof of Lemma 3.5. In the fist part we estimate the bound E, defined in (3.11). The idea behind
it is to build the largest level curve contained in the admissible set Q.

First of all we define the set Sc as follows:

Sc :=
{
q ∈ Q : Km

(
q
)
≤ c > 0

}
. (A.1)

Note that from assumption (A1) and Remark 3.6, Sc is a convex set. Computing the extreme
points in the direction of θ and r of the set Sc, we have the following relations:

∂Km

∂θ

(
q
)
= −(κ3 + κ2r) sin θ + κ1θ = 0, (A.2)

∂Km

∂r

(
q
)
= −κ2(1 − cos θ) + kp(r − r) = 0. (A.3)

From (A1) we conclude that the single solution of (A.2) is given by θ = 0.
Consequently, the extreme points in the direction of θ are given by q1 = (r + ε, 0) and
q2 = (r − ε, 0). If we desire that q1 and q2 belong to ∂Q, then we must have that Km(q1) =
Km(q2) = kpε

2/2 (∂Q denotes the set of all boundary points of Q). Analogously, the other
extreme points in the direction of r that belong to ∂Q are given by q3 = (r + ε/λ, θ) and
q4 = (r + ε/λ, θ), where the parameter λ is selected as (note that in order to guarantee that q3

and q4 belong to ∂Q we must have that λ > 1.)

Km

(
q3
)
= Km

(
q4
)
= λk2

(
1 − cos θ

)
ε =

kp

2
ε2. (A.4)

Indeed, after solving (A.3) and forcing that the two solutions belong to ∂Q, it follows that
q = (r∗,±θ) ∈ ∂Q, where r∗ = r + κ2(1 − cos θ∗)/kp. Thus, defining kp as

kp =
λk2

(
1 − cos θ

)

ε
, (A.5)

with λ > 1 and E = kpε
2/2, we have that the values of r∗ and E can be rewritten as

r∗ = r +
ε

λ
; E = λk2

(
1 − cos θ

)
ε. (A.6)

And, evidently, there is a λ > 1 satisfying (3.12).
Now, since ET is a nonincreasing function, it follows that if x0 = (q0, q̇0) with q0 ∈ Q

and ET (x0) ≤ E, then we have

Km

(
q(t)

)
≤ Km

(
q(t)

)
+

1
2
q̇T (t)Mq̇(t) ≤ ET (x(t)) ≤ ET (x0) ≤ E, ∀t ≥ 0. (A.7)
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From the above inequality we have that q(t) ∈ SE ⊂ Q, for all t ≥ 0. Hence, Lemma 3.5
is fulfilled.
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