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We suggest and analyze some new iterative methods for solving the nonlinear equations f(x) = 0
using the decomposition technique coupled with the system of equations. We prove that new
methods have convergence of fourth order. Several numerical examples are given to illustrate the
efficiency and performance of the new methods. Comparison with other similar methods is given.

1. Introduction

It is well known that a wide class of problem which arises in several branches of pure
and applied science can be studied in the general framework of the nonlinear equations
f(x) = 0. Due to their importance, several numerical methods have been suggested and
analyzed under certain conditions. These numerical methods have been constructed using
different techniques such as Taylor series, homotopy perturbation method and its variant
forms, quadrature formula, variational iteration method, and decomposition method; see, for
example, [1–19]. To implement the decomposition method, one has to calculate the so-called
Adomian polynomial, which is itself a difficult problem. Other technique have also their
limitations. To overcome these difficulties, several other techniques have been suggested and
analyzed for solving the nonlinear equations. One of the decompositions is due to Daftardar-
Gejji and Jafari [6]. In this paper, we use this decomposition method to construct some new
iterative methods. To apply this technique, we first use the new series representation of the
nonlinear function, which is obtained by using the quadrature formula and the fundamental
theorem of calculus. We rewrite the nonlinear equation as a coupled system of nonlinear
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equations. Applying the decomposition of Daftardar-Gejji and Jafari [6], we are able to
construct some new iterative methods for solving the nonlinear equations. Our method of
construction of these iterative methods is very simple as compared with other methods. We
also prove convergence of the proposed methods, which is of order four. Several numerical
examples are given to illustrate the efficiency and the performance of the new iterative
methods. Our results can be considered as an important improvement and refinement of the
previously results.

2. Iterative Methods

Consider the nonlinear equation

f(x) = 0. (2.1)

Using the quadrature formula and the fundamental theorem of calculus, (2.1) can be
written as

f(x) = f
(
γ
)
+
(
x − γ

)
[
f ′(γ

)
+ 2f ′((γ + x

)
/2
)
+ f ′(x)

4

]

= 0, (2.2)

where γ is an initial guess sufficiently close to α, which is a simple root of (2.1). We can rewrite
the nonlinear equation (2.1) as a coupled system

f
(
γ
)
+
(
x − γ

)
[
f ′(γ

)
+ 2f ′((γ + x

)
/2
)
+ f ′(x)

4

]

+ g(x) = 0, (2.3)

g(x) = f(x) − f
(
γ
) − (x − γ

)
[
f ′(γ

)
+ 2f ′((γ + x

)
/2
)
+ f ′(x)

4

]

. (2.4)

From (2.3), we have

x = γ − 4

[
f
(
γ
)
+ g(x)

f ′(γ
)
+ 2f ′((γ + x

)
/2
)
+ f ′(x)

]

= c +N(x), (2.5)

where

c = γ, (2.6)

N(x) = −4
[

f
(
γ
)
+ g(x)

f ′(γ
)
+ 2f ′((γ + x

)
/2
)
+ f ′(x)

]

. (2.7)

It is clear that the operator N(x) is nonlinear. We now construct a sequence of higher-order
iterative methods by using the decomposition technique, which is mainly due to Daftardar-
Gejji and Jafari [6]. This decomposition of the nonlinear functionN(x) is quite different from
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that of Adomian decomposition. In this method, one does not have to calculate the so-called
the Adomian polynomial, which is another advantage of this decomposition. The main idea
of this technique is to look for a solution having the series form

x =
∞∑

i=0

xi. (2.8)

The nonlinear operator N can be decomposed as

N(x) = N(x0) +
∞∑

i=1

⎧
⎨

⎩
N

⎛

⎝
i∑

j=0

xj

⎞

⎠ −N

⎛

⎝
i−1∑

j=0

xj

⎞

⎠

⎫
⎬

⎭
. (2.9)

Combining (2.5), (2.8), and (2.9), we have

∞∑

i=0

xi = c +N(x0) +
∞∑

i=1

⎧
⎨

⎩
N

⎛

⎝
i∑

j=0

xj

⎞

⎠ −N

⎛

⎝
i−1∑

j=0

xj

⎞

⎠

⎫
⎬

⎭
. (2.10)

Thus, we have the following iterative scheme:

x0 = c,

x1 = N(x0),

x2 = N(x0 + x1) −N(x0),

...

xm+1 = N

⎛

⎝
m∑

j=0

xj

⎞

⎠ −N

⎛

⎝
m−1∑

j=0

xj

⎞

⎠, m = 1, 2, . . .

(2.11)

Then,

x1 + x2 + · · · + xm+1 = N(x0 + x1 + · · · + xm), m = 1, 2, . . . , (2.12)

x = c +
∞∑

i=1

xi. (2.13)

It can be shown that the series
∑∞

i=0 xi converges absolutely and uniformly to a unique
solution of (2.6). see [6].

From (2.7) and (2.12), we have

x0 = c = γ. (2.14)
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From (2.4), (2.8) and using the idea of Yun [19], we obtain

g(x0) = 0,

x1 = N(x0) = −4
[

f
(
γ
)
+ g(x0)

f ′(γ
)
+ 2f ′((γ + x0

)
/2
)
+ f ′(x0)

]

= −4
[

f
(
γ
)

f ′(γ
)
+ 2f ′((γ + x0

)
/2
)
+ f ′(x0)

]

.

(2.15)

Note that x is approximated by

Xm = x0 + x1 + x2 + · · · + xm, (2.16)

where limm→∞Xm = x.
For m = 0,

x ≈ X0 = x0 = c = γ. (2.17)

For m = 1,

x ≈ X1 = x0 + x1 = γ − 4

[
f
(
γ
)

f ′(γ
)
+ 2f ′((γ + x0

)
/2
)
+ f ′(x0)

]

= x0 −
f(x0)
f ′(x0)

. (2.18)

This formulation allows us to suggest the following one-step iterative method for solving the
nonlinear equation (2.1).

Algorithm 2.1. For a given x0, compute the approximate solution xn+1 by the following
iterative scheme:

xn+1 = xn −
f(xn)
f ′(xn)

, f ′(xn)/= 0, n = 0, 1, 2, . . . . (2.19)

It is a well-known Newton method for solving nonlinear equations (2.1), which has second-
order convergence.

From (2.1), we have

x0 + x1 − γ = − f
(
γ
)

f ′(γ
) . (2.20)
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From (2.4), (2.8) and using the idea of Yun [19], we have

g(x0 + x1) = f(x0 + x1) − f
(
γ
) − (x0 + x1 − γ

)
[
f ′(γ

)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

4

]

= f(x0 + x1) − f
(
γ
)
+

f
(
γ
)

4f ′(γ
)
[
f ′(γ

)
+ 2f ′

(
γ + x0 + x1

2

)
+ f ′(x0 + x1)

]
,

x1 + x2 = N(x0 + x1) = −4
[

f
(
γ
)
+ g(x0 + x1)

f ′(γ
)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

]

= − f
(
γ
)

f ′(γ
) − 4f(x0 + x1)

f ′(γ
)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

.

(2.21)

For m = 2,

x ≈ X2 = x0 + x1 + x2 = c +N(x0 + x1)

= γ − f
(
γ
)

f ′(γ
) − 4f(x0 + x1)

f ′(γ
)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

.
(2.22)

Using this relation, we can suggest the following two-step iterative method for solving
nonlinear equation (2.1).

Algorithm 2.2. For a given x0, compute the approximate solution xn+1 by the iterative
following scheme:

yn = xn −
f(xn)
f ′(xn)

,

xn+1 = yn −
4f
(
yn

)

f ′(xn) + 2f ′((xn + yn

)
/2
)
+ f ′(yn

) , n = 0, 1, 2, . . . .

(2.23)

From (2.22), we obtain

x0 + x1 + x2 − γ = − f
(
γ
)

f ′(γ
) − 4f(x0 + x1)

f ′(γ
)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

. (2.24)
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From (2.4), (2.8) and using the idea of Yun [19], we get

g(x0 + x1 + x2)

= f(x0 + x1 + x2) − f
(
γ
) − (x0 + x1 + x2 − γ

)

×
[
f ′(γ

)
+ 2f ′((γ + x0 + x1 + x2

)
/2
)
+ f ′(x0 + x1 + x2)

4

]

= f(x0 + x1 + x2) − f
(
γ
)

− 1
4

(

− f
(
γ
)

f ′(γ
) − 4f(x0 + x1)

f ′(γ
)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

)

×
[
f ′(γ

)
+ 2f ′

(
γ + x0 + x1 + x2

2

)
+ f ′(x0 + x1 + x2)

]
,

x1 + x2 + x3

= N(x0 + x1 + x2) = −4
[

f
(
γ
)
+ g(x0 + x1 + x2)

f ′(γ
)
+ 2f ′((γ + x0 + x1 + x2

)
/2
)
+ f ′(x0 + x1 + x2)

]

= − f
(
γ
)

f ′(γ
) − 4f(x0 + x1)

f ′(γ
)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

− 4f(x0 + x1 + x2)
f ′(γ

)
+ 2f ′((γ + x0 + x1 + x2

)
/2
)
+ f ′(x0 + x1 + x2)

.

(2.25)

For m = 3,

x ≈ X3 = x0 + x1 + x2 + x3 = c +N(x0 + x1 + x2)

= γ − f
(
γ
)

f ′(γ
) − 4f(x0 + x1)

f ′(γ
)
+ 2f ′((γ + x0 + x1

)
/2
)
+ f ′(x0 + x1)

− 4f(x0 + x1 + x2)
f ′(γ

)
+ 2f ′((γ + x0 + x1 + x2

)
/2
)
+ f ′(x0 + x1 + x2)

.

(2.26)

Using this formulation, we can suggest the following three-step iterative method for solving
nonlinear equation (2.1).
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Algorithm 2.3. For a given x0, compute the approximate solution xn+1 by the iterative follow-
ing scheme.

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
4f
(
yn

)

f ′(xn) + 2f ′((xn + yn

)
/2
)
+ f ′(yn

) ,

xn+1 = zn −
4f(zn)

f ′(xn) + 2f ′((xn + zn)/2) + f ′(zn)
, n = 0, 1, 2, . . . .

(2.27)

3. Convergence Analysis

In this section, we consider the convergence criteria of the iterative methods developed in
Section 2. In a similar way, one can consider the convergence of other algorithms.

Theorem 3.1. Let α ∈ I be a simple zero of sufficiently differentiable function f : I ⊆ R → R for an
open interval I. If x0 is sufficiently close to α, then the iterative methods defined by Algorithm 2.3 has
fourth-order convergence.

Proof. Let α be a simple zero of f. Then, by expanding f(xn) and f ′(xn) in Taylor’s Series about
α, we have

f(xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + c4e

4
n +O

(
e5n

)]
, (3.1)

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e2n + 4c4e3n + 5c5e4n +O

(
e5n

)]
, (3.2)

where ck = (1/k!)(f (k)(α)/f ′(α)), k = 2, 3, . . . and en = xn − α.
From (3.1) and (3.2), we have

f(xn)
f ′(xn)

= en − c2e
2
n + 2

(
c22 − c3

)
e3n +

(
7c2c3 − 4c32 − 3c4

)
e4n +O

(
e5n

)
. (3.3)

From (3.3), we get

yn = α + c2e
2
n + 2

(
c3 − c22

)
e3n −

(
7c2c3 − 4c32 − 3c4

)
e4n +O

(
e5n

)
. (3.4)
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Expanding f(yn),f ′(yn),f ′((xn + yn)/2) in Taylor’s Series about α and using (3.4), we have

f
(
yn

)
= f ′(α)

[
c2e

2
n +
(
−2c22 + 2c3

)
e3n +

(
5c32 − 7c2c3 + 3c4

)
e4n +O

(
e5n

)]
, (3.5)

f ′(yn

)
= f ′(α)

[
1 + 2c22e

2
n + 4

(
c2c3 − c32

)
e3n +

(
−11c22c3 + 6c2c4 + 8c42

)
e4n +O

(
e5n

)]
,

(3.6)

f ′
(
xn + yn

2

)
= f ′(α)

[
1 + c2en +

(
c22 +

3
4
c3

)
e2n +

(
7
2
c2c3 +

1
2
c4 − 2c32

)
e3n

+
(
9
2
c2c4 + 4c42 −

37
4
c22c3 + 3c23 +

5
16

c5

)
e4n +O

(
e5n

)]
.

(3.7)

From (3.2), (3.6), and (3.7), we have

f ′(xn) + 2f ′
(
xn + yn

2

)
+ f ′(yn

)

= f ′(α)
[
4 + 4c2en +

(
4c22 +

9
2
c3

)
e2n +

(
11c2c3 + 5c4 − 8c32

)
e3n

+
(
6c23 −

59
2
c22c3 + 16c42 +

45
8
c5 + 15c2c4

)
e4n +O

(
e5n

)]
.

(3.8)

From (3.5) and (3.8), we obtain

4f
(
yn

)

f ′(xn) + 2f ′((xn + yn

)
/2
)
+ f ′(yn

)

= c2e
2
n +
(
−3c22 + 2c3

)
e3n +

(
3c4 + 7c32 −

81
8
c2c3

)
e4n +O

(
e5n

)
.

(3.9)

From (3.4) and (3.9), we have

zn = α + c22e
3
n +
(
−3c32 +

25
8
c2c3

)
e4n +O

(
e5n

)
. (3.10)

Expanding f(zn),f ′(zn),f ′((xn + zn)/2) in Taylor’s Series about α and using (3.10), we obtain

f(zn) = f ′(α)
[
c22e

3
n +
(
−3c32 +

25
8
c2c3

)
e4n +O

(
e5n

)]
, (3.11)

f ′(zn) = f ′(α)
[
1 + 2c32e

3
n +
(
−6c42 +

25
4
c22c3

)
e4n +O

(
e5n

)]
, (3.12)

f ′
(xn + zn

2

)
=f ′(α)

[
1+c2en+

3
4
c3e

2
n+
(
1
2
c4 + c32

)
e3n+
(
−3c42 +

37
8
c22c3 +

5
16

c5

)
e4n+O

(
e5n

)]
.

(3.13)
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From (3.2), (3.12), and (3.13), we have

f ′(xn) + 2f ′
(xn + zn

2

)
+ f ′(zn)

= f ′(α)
[
4 + 4c2en +

9
2
c3e

2
n +
(
5c4 + 4c32

)
e3n +

(
−12c42 +

31
2
c22c3 +

45
8
c5

)
e4n +O

(
e5n

)]
.

(3.14)

From (3.11) and (3.14), we obtain

4f(zn)
f ′(xn) + 2f ′((xn + zn)/2) + f ′(zn)

= c22e
3
n +
(
−4c32 +

25
8
c2c3

)
e4n +O

(
e5n

)
. (3.15)

From (3.10) and (3.15), we have

xn+1 = α + c32e
4
n +O

(
e5n

)
. (3.16)

Thus, we have

en+1 = c32e
4
n +O

(
e5n

)
. (3.17)

Error equation (3.17) shows that the Algorithm 2.3 is fourth-order convergent.

4. Numerical Results

We now present some examples to illustrate the performance of the newly developed two-
step and three-step iterative methods in this paper. We compare Newton method (NM),
method of M. A. Noor et al. [9] (NNT), method of Chun [3] (CM), Algorithm 2.2 (NR1), and
the Algorithm 2.3 (NR2) introduced in this paper. We used ε = 10−15. The following stopping
criteria is used for computer programs:

(i) |xn+1 − xn| < ε,

(ii) |f(xn)| < ε.

The computational order of convergence p approximated by means of

p ≈ ln(|xn+1 − xn|/|xn − xn−1|)
ln(|xn − xn−1|/|xn−1 − xn−2|) . (4.1)



10 Mathematical Problems in Engineering

Ta
b
le

1:
N
um

er
ic
al

ex
am

p
le
s.

IT
x
n

f
(x

n
)

δ
p

f
1,

x
0
=
−1

N
M

7
1.
40
44
91
64
82
15
34
12
26
03

50
86
81

77
9

−1
.0
4e

−5
0

7.
33
e
−2

6
2.
00
00
3

N
N
T

5
1.
40
44
91
64
82
15
34
12
26
03

50
86
81

77
9

0
4.
86
e
−2

9
3.
16
50
1

C
M

5
1.
40
44
91
64
82
15
34
12
26
03

50
86
81

77
9

0
1.
31
e
−1

7
2.
85
84
4

N
R
1

5
1.
40
44
91
64
82
15
34
12
26
03

50
86
81

77
9

0
3.
19
e
−3

2
3.
03
30
0

N
R
2

4
1.
40
44
91
64
82
15
34
12
26
03

50
86
81

77
9

0
1.
50
e
−2

5
4.
31
44
7

f
2,

x
0
=
2

N
M

6
0.
25
75
30
28
54
39
86
07
60
45

53
67
30

49
4

2.
93
e
−5

5
9.
10
e
−2

8
2.
00
05
0

N
N
T

5
0.
25
75
30
28
54
39
86
07
60
45

53
67
30

49
4

1.
00
e
−5

9
1.
77
e
−2

4
2.
82
95
2

C
M

4
0.
25
75
30
28
54
39
86
07
60
45

53
67
30

49
4

0
9.
46
e
−2

9
4.
57
14
3

N
R
1

4
0.
25
75
30
28
54
39
86
07
60
45

53
67
30

49
4

−3
.7
0e

−5
2

2.
24
e
−1

7
3.
57
23
4

N
R
2

4
0.
25
75
30
28
54
39
86
07
60
45

53
67
30

49
4

−1
.0
0e

−5
9

3.
55
e
−4

3
4.
25
11
4

f
3,

x
0
=
3.
5

N
M

8
2

2.
06
e
−4

2
8.
28
e
−2

2
2.
00
02
5

N
N
T

5
2

0
3.
45
e
−2

4
2.
83
48
4

C
M

5
2

0
2.
74
e
−2

4
3.
53
14
4

N
R
1

6
2

0
1.
66
e
−4

0
2.
99
06
3

N
R
2

5
2

0
2.
14
e
−4

2
3.
86
69
7

f
4,
x
0
=
1.
5

N
M

7
2.
15
44
34
69
00
31
88
37
21
75

92
93
56

65
2

2.
06
e
−5

4
5.
64
e
−2

8
2.
00
00
3

N
N
T

5
2.
15
44
34
69
00
31
88
37
21
75

92
93
56

65
2

1.
00
e
−5

8
4.
70
e
−4

3
2.
65
30
0

C
M

5
2.
15
44
34
69
00
31
88
37
21
75

92
93
56

65
2

1.
00
e
−5

8
1.
57
e
−2

2
3.
48
93
2

N
R
1

5
2.
15
44
34
69
00
31
88
37
21
75

92
93
56

65
2

−8
.0
0e

−5
9

1.
45
e
−3

5
3.
01
71
0

N
R
2

4
2.
15
44
34
69
00
31
88
37
21
75

92
93
56

65
2

−8
.0
0e

−5
9

3.
79
e
−2

8
4.
20
82
5

f
5,
x
0
=
−2

N
M

9
−1

.2
07
64
78
27
13
09
18
92
70

09
41

67
58
36

−2
.2
7e

−4
0

2.
73
e
−2

1
2.
00
08
5

N
N
T

5
−1

.2
07
64
78
27
13
09
18
92
70

09
41

67
58
36

8.
00
e
−5

9
1.
53
e
−3

2
2.
22
20
1

C
M

6
−1

.2
07
64
78
27
13
09
18
92
70

09
41

67
58
36

−1
.1
0e

−5
8

2.
15
e
−3

6
3.
88
96
7

N
R
1

6
−1

.2
07
64
78
27
13
09
18
92
70

09
41

67
58
36

−2
.6
5e

−5
6

8.
33
e
−2

0
3.
01
40
0

N
R
2

5
−1

.2
07
64
78
27
13
09
18
92
70

09
41

67
58
36

−1
.1
0e

−5
8

2.
34
e
−2

0
4.
04
25
9

f
6,
x
0
=
3.
5

N
M

13
3

1.
52
e
−4

7
4.
21
e
−2

5
2.
00
02
3

N
N
T

7
3

0
1.
65
e
−3

0
2.
38
56
2

C
M

8
3

0
2.
12
e
−2

3
3.
68
02
4

N
R
1

9
3

0
1.
24
e
−3

7
2.
99
41
0

N
R
2

7
3

0
4.
33
e
−2

3
3.
84
44
9



Mathematical Problems in Engineering 11

We consider the following nonlinear equations as test problems which are the same as M.
Aslam Noor and K. Inayat Noor [10].

f1(x) = sin2x − x2 + 1,

f2(x) = x2 − ex − 3x + 2,

f3(x) = (x − 1)3 − 1,

f4(x) = x3 − 10,

f5(x) = xex
2 − sin2x + 3 cosx + 5,

f6(x) = ex
2+7x−30 − 1.

(4.2)

5. Conclusion

In this paper, we have considered one-step, two-step, and three-step iterative methods for
solving nonlinear equations by using a different decomposition technique. Our method
of derivation of the iterative methods is very simple as compared with the Adomian
decomposition methods. From the Table 1, it is obvious that three-step method introduced in
this paper performs better than the fourth-ordermethod of Chun [3]. Using the technique and
idea of this paper, one can suggest and analyze higher-order multistep iterative methods for
solving nonlinear equations as well as system of nonlinear equations. It is an open problem
to extend the technique and ideas of this paper for solving the obstacle problems associated
with the variational inequalities and related problems see [20–23] and the references therein.
This is another direction for future research.
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