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This article focuses on the problem of parameter estimation of the uncoupled, linear, short-period
aerodynamic derivatives of a “Twin Squirrel” helicopter in level flight and constant speed. A flight
test campaign is described with respect to maneuver specification, flight test instrumentation,
and experimental data collection used to estimate the aerodynamic derivatives. The identification
problem is solved in the time domain using the output-error approach, with a combination of
Genetic Algorithm (GA) and Levenberg-Marquardt optimization algorithms. The advantages of
this hybrid GA and gradient-searchmethodology in helicopter system identification are discussed.

1. Introduction

System identification techniques applied to aerodynamic parameter estimation of fixed and
rotary wing aircrafts are well developed and commonly used in many research centers and
aeronautical industries around the world [1, 2].

More specifically for helicopter parameter estimation, Hamel and Kaletka [3]
presented a general vision of the progress in this field up to 1997 and Padfield [4] described a
comprehensive flight dynamic theoretical model, flight qualities criteria development, flight
test techniques, and several results of this research in the United Kingdom.

More recently, Tischler and Remple [5] described the state of the art in rotorcraft
dynamic system identification in their book Aircraft and Rotorcraft System Identification. In this
reference work, emphasis is given on engineering methods and interpretations of rotorcraft
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flight test results using a system identification software package in the frequency domain,
known as CIFER (Comprehensive Identification from Frequency Responses). The frequency
response methodology is in reality a hybrid method, since accurate mathematical modeling
of the aircraft begins with flight test data collected in the time domain and the reliability of
the identified model is also validated by a time-domain verification method using different
flight test data.

It is important to notice that all above related works use local optimization algorithms
based on gradient search methods such as Gauss-Newton and Levenberg-Marquadt search
methods for finding a local minimum of the prediction error function at the system
output. Concerning the use of global optimization algorithms and, more specifically, Genetic
Algorithms they have been used by Hajela and Lee [6] in rotor blade design, by Wells et
al. [7] in the acoustic level reduction rotor design, and by Zaal et al. [8] in the parameters
estimation of multichannel pilot models, among others.

Regarding helicopter system identification techniques, very few articles have used
Genetic Algorithms for global optimization of a cost function based on the prediction
error. In this framework one can cite Cruz et al. [9, 10] in the longitudinal mode system
identification of the Twin Squirrel helicopter and del Cerro et al. [11] in the identification
of a small unmanned helicopter model. It should be emphasized that previous works
[9, 10] address the short-period dynamics, considering as input data the longitudinal
body axis velocity component, while in this work one deals specifically with the
longitudinal short-period system identification of an helicopter, using the time-domain
output-error approach combined with genetic and Levenberg-Marquardt optimization
algorithms.

The rotorcraft identification methodology used in this work is the well-known
M4V (Quad-MV) methodology, proposed by Jategaonkar [12] and shown schematically in
Figure 1. This methodology takes into account the main elements of rotorcraft system identi-
fication, including the rotorcraft excitation maneuvers, the aerodynamic data measurements,
the mathematical model of the helicopter equations of motion, and the parameter estimation
methods used to minimize the predicted output-error between the model and the real data.
Finally, the identified rotorcraft model validation is done using new data from complimentary
flight test maneuvers. Each one of these elements will be discussed in the following sections
in order to clarify the proposed system identification methodology.

2. Maneuvers and Validation

The choice of the proper flight test maneuvers, by shaping the excitation signals, is of great
importance to minimize the uncertainties in the parameter estimation procedures and to
maximize the flight test data content. The optimization of the excitation signal is realized from
the a priori knowledge of the dynamic content of the system that described the parameters
of interest [13]. These optimization procedures, however, are of difficult application in the
AS355-F2 (Twin Squirrel) helicopter, since no prior studies were available for its aerodynamic
modeling. In this way, the maneuvers had to be specified by applying conventional flight
test procedures and taking into account specific flight safety constraints for this class of
rotorcraft.

A special sequence of sharp-edged pulses known as the 3-2-1-1 [12] was applied to
the longitudinal cyclic inputs to excite the forward short-period flight dynamics with fixed
collective control at an indicated airspeed of 80 kts and 5,000 ft of altitude pressure.
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Figure 1: M4V system identification methodology [12].

Figure 2: “Squirrel” AS355-F2 helicopter and installed nose boom.

The validation procedure was done with a second 3-2-1-1 test sequence and also of
a sinusoidal frequency sweep of the longitudinal cyclic inputs at the same airspeed and
altitude, as described in more detail in Section 6.

3. Flight Test Measurements

The tested helicopter was equipped with the Aydin Vector Data Acquisition System
(AVDAS), ATD-800 digital recorder, and a flight-test air data system, mounted on a nose
boom, as depicted in Figure 2. This systemmeasures a total of thirty-five different parameters
with sampling rates varying from 18 to 72Hz.

Some of the measured data channels include fuel quantity in each tank, nose boom
static and dynamic pressures, external stagnation temperature, aerodynamic angle of attack
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(α) and sideslip (β), roll, pitch, and yaw rates (p, q, and r, resp.), load factors, longitudinal
(θ) and lateral (φ) body attitudes, heading, collective, longitudinal and lateral cyclic, and
pedal command deflections (δc, δB, δA, and δP, resp.).

The Earth axis speeds (u0, v0, and w0) are obtained with the aid of a Z12 Differential
Global Positioning System (DGPS), from Astech, whose antenna is fixed in the top of the
vertical fin. The DGPS and AVDAS data synchronization is made by inserting a simultaneous
event in both systems. The DGPS data is represented with the same AVDAS data sampling
rate by means of linear interpolation procedure.

The wind direction and intensity are obtained comparing the body axis speeds with
the aerodynamic speed from the flight-test air data system, mounted on a nose boom, at trim
conditions. Consequently, the body axis speeds (u, v, and w) are easily calculated adding
wind vector to the Earth axis speeds.

Thus, the observation vector (y) is given by (3.1), where x is the state vector and
yref is a constant vector included in order to compute offsets in steady state due to sensor
misalignments errors and other interfering influences:

y = x + yref. (3.1)

4. Helicopter Longitudinal Model

The helicopter equations of motion are deduced from direct application of Newton’s
law for translational and rotational movements, as given by Prouty [14] and Cooke and
Fitzpatrick [15]. This work deals only with the estimation of the aerodynamic parameters
of the longitudinal motion. In this particular case, the longitudinal dynamic equations are
decoupled and given as [14]

FX = GWsin θ +
GW
m

(
u̇ +wq

)
,

FZ = −GWcosφ cos θ +
GW
m

(
ẇ − uq

)
,

MY = Iyq̇,

(4.1)

where FX and FZ represent the longitudinal and vertical forces, respectively; MY is the pitch
moment and Iy corresponds to the moment of inertia of a rotating body. The kinematic
relation for the pitch rate about the Y -axis is written as

θ̇ = q cosφ. (4.2)

These equations of motion are clearly nonlinear, but a meaningful analysis can be
realized by converting them into linear differential equations, by considering only small
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perturbations about a trimmed equilibrium point (represented by subscript 0) in the
rotorcraft flight envelope. In matrix notation, the linearized dynamic equations are given by
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Δẇ
Δq̇
Δθ̇

⎤

⎥
⎥
⎦ =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xu

m

Xw

m

Xq

m
−w0 −g

Zu

m

Zw

m

Zq

m
+ u0 0

Mu

Iy

Mw

Iy

Mq

Iy
0

0 0 cosφ0 0

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

Δu
Δw
Δq
Δθ

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xδm

m

Xδc

m

Zδm

m

Zδc

m

Mδm

Iy

Mδc

Iy

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
Δδm
Δδc

]
. (4.3)

Considering a pure longitudinal cyclic control input, with collective control fixed, and
assuming that the short-period mode takes place at an approximately constant speed, the
above equations are simplified to:

⎡
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⎦, (4.4)

which can be written as a state space equation:

ẋ = Ax + Bu(t − τ) + ẋbias, (4.5)

where ẋbias is the constant and unknown bias vector that was included in the state-
space equation in order to provide a first-order correction for the random errors due to
nonmeasured inputs such as turbulences and noise, as proposed by Tischler and Remple [5].

In the state equation above, the time-delay τ can be associated with unmodeled
dynamics, such as actuator dynamics, control linkages, and transient rotor dynamics, for
instance.

Therefore, taking into account yref, there are a total of thirteen parameters to be
estimated, as collected in the following vector of unknown parameters:

Θ =

⎡

⎢
⎣

Zw

m
,
Zq

m
,
Mw

Iy
,
Mq

Iy
,
Zδm

m
,
Mδm

Iy
,Δẇbias,Δq̇bias,

Δθ̇bias,Δwref,Δqref,Δθref, τ

⎤

⎥
⎦. (4.6)

5. Parameter Estimation Method

5.1. Output Error Approach

The output error method was applied to estimate the aerodynamic parameters and the time
delay between the cyclic inputs and the helicopter response. As shown in Figure 1, the basic
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principle of this methodology is to minimize a quadratic cost function related to the error
between the in-flight measured responses and the simulated responses obtained with the
identified mathematical model submitted to the same measured inputs. The cost function to
be minimized is a function of the parameters of the dynamic model, such as the helicopter
aerodynamic stability and control derivatives, sensor bias, and sensitivities.

Therefore, a cost function is defined which measures the matching of the real and
simulated data, when a certain group of aerodynamic parameters (e.g., the coefficients of
the proposed dynamic model) is varied. An iterative search method is employed to vary
this group of parameters such as to minimize the adopted cost function, usually taken as a
quadratic function of the predicted matching error.

Let f be the cost function, and consider Θ as being the vector of parameters
to be estimated with M elements, u the input vector of the system, y the vector of
observations (sensor measurements), and let ysim(xi; Θ1 · · ·ΘM), where i = 1, . . . ,N, be the
N simulated outputs of the proposed model. Then, the problem becomes how to determine
the vector of adjustable parameters Θ such that it minimizes the cost function given by
f = f(ysim(xi; Θ1 · · ·ΘM), y).

There are many methods to calculate the cost function, including the maximum
likelihood (MLE) and the least-square method. The least-square optimization procedure is
basically a minimization of sum of the squared error at each measured point, given by

f =
N∑

i=1

[
yi − ysim

(
xi; �Θ

)] [
yi − ysim

(
xi; �Θ

)]T
. (5.1)

On the other hand, the MLE method takes into account the measurement noise
variance to weight the system outputs during the optimization procedure through the
measurement noise covariance matrix.

Suppose that each output value, yi, has an associated random measurement error
with a normal distribution around the “true” value (yi)sim. Then, the conditional probability
density function p((�y − �ysim) | �Θ) is given by

p
((

�y − �ysim
) | �Θ

)

=
1

(2π)M/2|FFT |N/2
· exp

{

−1
2

N∑

i=1

[
yi − ysim

(
xi; �Θ

)]T[
FFT

]−1 [
yi − ysim

(
xi; �Θ

)]}

,

(5.2)

where FF is the covariance matrix given as

FFT =
1
N

N∑

i=1

[
yi − ysim

(
xi, �Θ

)][
yi − ysim(xi, �Θ)

]T
. (5.3)
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From the equation of conditional probability density function given by (5.2), there can
be obtained a modified cost function, applying the negative of the natural log on both sides:

f
(
�Θ
)
=

1
2

{
N∑

i=1

[
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(
xi, �Θ

)]T[
FFT

]−1[
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(
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)]
+ ln

∣
∣
∣FFT

∣
∣
∣

}

. (5.4)

Equation (5.4) shows that the parameter identification problem becomes a quadratic
function minimization problem, since the maximization of the likelihood function is
equivalent to the minimization of a weighted least-square equation.

Taking into account that the covariance matrix is constant, the cost function can be
simplified to the following form:

f
(
�Θ
)
=

1
2

{
N∑

i=1

[
yi − ysim

(
xi, �Θ

)]T[
FFT

]−1[
yi − ysim

(
xi, �Θ

)]}

. (5.5)

The determination of a parameter vector Θ that minimizes the cost function given by
(5.5) is equivalent to finding a parameter vector that maximizes the probability of measuring,
yi = (yi)sim, i = 1, . . . ,N.

Comparing (5.1) and (5.5), it can be concluded that the least squares cost function,
except for the multiplication factor, is given by (5.5), replacing FF by the identity matrix.
Therefore, in order to implement the weighted least-square cost function, it is enough to
replace FF by a diagonal matrix to consider different weights to each state. In this work,
a Matlab program was developed to minimize the cost function defined by both weighted
least square and MLE errors.

5.2. Genetic Algorithm Optimization

Classic methods to solve the maximum likelihood minimization problem are Levenberg-
Marquardt, Gauss-Newton, and Newton-Raphson, among others. This article proposes a
hybrid search-gradient approach by using the Matlab Genetic Algorithm (GA) and the Direct
Search Toolbox in order to estimate the helicopter longitudinal short-period derivatives
combined with the Levenberg-Marquardt optimization algorithm, as shown schematically
in Figure 3.

In case there is no a priori information available, this hybrid search-gradient
methodology states that there should be applied initially the genetic algorithm and after
that a classic method to solve (5.5). As large initial errors may lead to parameter estimation
divergence, this method is especially important since the parameters estimation procedure
becomes less sensitive to these initial values. Besides, another interesting characteristic is that
the solution obtained by the genetic algorithm is globally optimal when the nonlinear model
is used.

Based on biological evolution principles, the genetic algorithms are structured random
search techniques for optimization. Therefore, they utilize concepts such as population size,
individual characterization and processes related to selection, reproduction, crossover, and
mutation of the individuals.
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The GA optimization process starts by creating a matrix, representing an initial
population IP, with each line formed by randomly chosen individual with fixed-length
character strings (nΘ), as shown in the following:

IP =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

θ1
1 θ1

2 θ1
3 · · · θ1

nθ

θ2
1 θ2

2 θ2
3 · · · θ2

nθ

θ3
1 θ3

2 θ3
3

... θ3
nθ

...
...

... · · · ...

θnind
1 θnind

2 θnind
3 . . . θnind

nθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (5.6)

where nΘ represents a thirteen-component vector as shown in (4.6). This work uses two
hundred individuals at each generation due to adequate computation time and convergence
of the fitness function.

The following step is to assign a fitness value to each individual in the population
using a fitness measure, represented by the cost function of (5.5). A new population is created
by applying three genetic operations, depicted in Figure 4, to each individual string of the
current generation. The individuals generated by the genetic processes are as follows

(i) elite: formed by individuals in the current generation that are copied to the new
generation based on their fitness properties;
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(ii) crossover: new individuals, created by genetically recombining two substrings,
using the crossover operation at a randomly chosen crossover point; the newly
created individual inherits the characteristics from the original chosen pair;

(iii) mutation: new individuals are created by randomly changing a few strings chosen
at random positions in the original string.

The GA iteratively performs the above steps until a termination criterion is satisfied.
In this work, the maximum number of generations was used for this purpose.

Concerning the GA implementation in the Matlab environment, each current
generation is composed of 2 elite individuals, with the rest of the population formed by
crossover and mutation processes in the proportion of 80% and 20%, respectively.

The functions that create the initial population and produce mutation children were
developed from a uniform distribution of random numbers, generated on a specified interval:
±100% of the BO-105 derivatives presented by Heffley et al. [16].

The output function is evaluated over a subdomain of individuals that satisfies the
limits associated with bounds and stability constraints. While the bounds constraints refer to
the above interval of the BO-105 derivatives, the real parts of the eigenvalues of A (stability
matrix presented on (4.5)), must be negatives (stability constraint) since the short-period
dynamics is known to be stable on this helicopter.

5.3. Levenberg-Marquardt Optimization Algorithm

After genetic search verification (with a certain number of generations taken so that the
fitness function tends to converge), the Levenberg-Marquardt optimization algorithm as
presented by Mulder et al. [17] and Press et al. [18] is initialized. Therefore, the cost function
given by (5.5) continues to be minimized iteratively according to

Θ̂(j) = Θ̂(j−1) + λ(j−1)ξ(j−1), (5.7)
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where Θ̂(j) represents the estimate vector at jth iteration, λ(j−1) is the scalar chosen in
accordance with the algorithm proposed by Press et al. [18] for a reduced value of f(�Θ),
and ξ(j−1) is based on information about the cost function acquired at previous iterations.
Numerically, ξ(j−1) is often obtained using the values of the first- and the second-order
gradients of f (�Θ)with respect to parameters vector Θ, according to

ξ(j−1) = −
[
f ′′

(
�Θ(j−1)

)]−1
f ′
(
�Θ(j−1)

)
= −

⎡

⎢
⎣

∂2f
(
�Θ
)

∂�Θ ∂�ΘT

⎤

⎥
⎦

−1
∂f

(
�Θ
)

∂�Θ

∣
∣
∣
∣
∣
∣
∣
�Θ=Θ̂(j−1)

. (5.8)

A difficulty with (5.8) is that Hessian matrix f ′′(�Θ) may not be positive definite and
thus not point in a “downhill” direction. Mulder et al. [17] propose to replace the f ′′(�Θ) by its
expectation R, known as the Fisher information matrix, that can be shown to be nonnegative
definite. Therefore, (5.7) becomes

Θ̂(j) = Θ̂(j−1) − λ(j−1)R−1
(
Θ̂(j−1)

)
f ′
(
Θ̂(j−1)

)
. (5.9)

The first-order gradient of the likelihood function in (5.9) can be derived from (5.5) as

f ′
(
Θ̂(j−1)

)
=

N∑

i=1

∂
[
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(
xi, �Θ
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(
xi, Θ̂(j−1)

)]
.

(5.10)

Applying the following equivalency presented by Goodwin and Payne [19]

E
{
f ′′

(
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ld

)}
= E

{
f ′
(
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) [
f ′
(
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)] T
}
, (5.11)

the Fisher information matrix may be obtained as

R
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∂�Θ
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.

(5.12)

The Levenberg-Marquardt algorithm is an iterative technique that can be thought of as
a combination of steepest descent and the Gauss-Newton method. When the current solution
is far from the correct one, the algorithm behaves like a steepest descent method: slow, but
guaranteed to converge. When the current solution is close to the correct solution, it becomes
a Gauss-Newton method. Therefore, the iteration starts with initial estimates of all unknown
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parameters and computes parameter updates according to (5.9) based on (5.10) and (5.12).
Assuming initially a modest value for λ, as 0.001, on (5.9), the cost function is evaluated, and
if its value is greater than or equal to the last value, then λ is increased by a factor of 10 and
the program returns to evaluate the cost function until the attainment of a value lower than
the last value. Also necessary is a condition for stopping; so all these procedures repeat until
the cost function values reach at least five significant digits in accordance with the last value.

6. Parameter Estimation Results

The 3-2-1-1 excitation maneuver using longitudinal cyclic inputs with fixed collective input
was implemented in the flight test, under a nominal flight operation point of 80 kt and 5,000 ft.

Figure 5 shows the measured deflection inputs and Figure 6 presents the measured
and simulated responses of vertical body axis speed w, pitch rate q, and horizontal attitude θ.

As shown in Figure 5, five 3-2-1-1 maneuvers were performed in sequence in order to
ensure a persistent signal and consequently to increase the signal power density spectrum at
low frequencies.

The correlation coefficient between measured (y) and simulated data (ysim), defined
as the normalized cross-covariance function ρyysim , is given by (Bendat and Piersol [20])

ρyysim =

∑N
i=1

[(
yi(t) − (1/N)

∑N
i=1 yi(t)

)(
ysimi(t) − (1/N)

∑N
i=1 ysimi(t)

)]

√
∑N

i=1

[(
yi(t) − (1/N)

∑N
i=1 yi(t)

)2
]√

∑N
i=1

[(
ysimi(t) − (1/N)

∑N
i=1 ysimi(t)

)2
]

(6.1)

can be used to estimate how well the estimated signals can reproduce the measured data. If
the correlation coefficient is close to unity, one may conclude that the estimation algorithm
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Figure 6: Results at 80 kt and 5,000 ft.
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can provide a good fit to the experimental data, but on the other hand, if the coefficient is
close to 0, the estimation was poor.

The fitting index, represented by the normalized correlation coefficient, is depicted in
Figure 7. In this figure, each group of parameters represents the fitting index of the estimated
outputs (w, q, and θ), obtained with three different types of maneuver at same airspeed
and altitude: (a) 3-2-1-1 sequence with longitudinal cyclic inputs used to estimate the flight
derivatives (b) second 3-2-1-1 sequence and (c) sinusoidal sequence at increasing frequencies.
The (b) and (c) groups of fitting index correspond to complementary flight data used only to
validate the estimated parameters.
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Table 1: AS355-F2 inertia and mass data.

Parameter Data
Mass (kg) 2200
Iy (kg · m2) 1.1996e+004

Table 2: Stability and control derivatives of the uncoupled short-period mode at 80 kt and 5,000 ft.

Flight derivatives Identified parameters CRLB Normalized CRLB (%)
Zw

m
[1/s] 0.4710 0.0188 4.0

Zq

m
[m/s · rad] 13.2213 0.2062 1.6

Mw

Iy
[rad/m · s,] −0.0675 0.0014 2.1

Mq

Iy
[1/s] −2.9808 0.0375 1.3

Zδm

m
[m/s2 · cm] −1.8862 0.0329 1.7

Mδm

Iy
[rad/s2 · cm] 0.2308 0.0035 1.5

Considering the assumptions and limitations of the theoretical helicopter dynamic
model with 2 degrees of freedom (DOF), it can be concluded that the obtained results are
satisfactory, reaching fitting coefficients for the observed response in excess of 80% for all of
cases, despite the lack of a priori knowledge about the stability and control derivatives of the
vehicle.

This conclusion is confirmed analyzing the time response of all parameters and the
Cramér-Rao Lower Bound (CRLB). It expresses a lower bound on the variance of each
estimated parameter and, as presented by Tischler and Remple [5], normalized CRLB lower
than 20% suggests a satisfactory estimation.

As all flight derivatives identified are dimensional, Table 1 presents the mass and
inertia parameters used.

The estimated aerodynamic derivatives of the AS355-F2 short-period longitudinal
mode at 80 kt and 5,000 ft and the respective CRLB are given in Table 2.

The CRLB presented in Table 2 was calculated considering that the time delay τ , the
bias vector ẋbias, and the vector yref, also identified, are constants inserted in the model.
Therefore their values are written in Table 3 without CRLB. Finally, it should be noticed that
the time delay, as shown by (4.5), was identified as the shift of the outputs measurements
that minimizes the cost function given by (5.5).

In order to show the advantages obtained by the hybrid methodology described in
this work, the optimization results with and without the parameter estimation using genetic
algorithm (GA) are compared in Table 4, considering, as initial estimate, the derivatives of
stability and control of BO-105.

The hybrid method, as shown in Table 4, improves the results in terms of the average
correlation function coefficient of the three states identified and substantially reduces the cost
function.
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Table 3: Other identified parameters at 80 kt and 5,000 ft.

Parameter Identified value
ẇbias [m/s] −0.1745
q̇bias [rad/s] 0.1804
θ̇bias [rad] 0.1764
wref [m/s] 0.3580
qref [rad/s] −0.0003
θref [rad] 0.0038
τδm [s] 0.2590

Table 4: Performance of optimization algorithms.

Approach Simulation time (s) Average correlation coefficient (%) Cost function
Levenberg-Marquadt 19.22 91.269 58011
Levenberg-Marquadt (after GA) 2356.248 93.068 3125

Table 5: Stability and control derivatives of the uncoupled short-period mode at 80 kt and 5,000 ft using
only Levenberg-Marquadt approach.

Flight derivatives Identified parameters CRLB Normalized CRLB (%)
Zw

m
[1/s] −0.7135 0.0155 2.2

Zq

m
[m/s · rad] 0.0967 0.193 199.6

Mw

Iy
[rad/m · s,] −0.0283 0.0007 2.5

Mq

Iy
[1/s] −1.6821 0.0237 1.4

Zδm

m
[m/s2 · cm] −1.8328 0.0307 1.7

Mδm

Iy
[rad/s2 · cm] 0.2549 0.0023 0.9

Finally, Table 5 presents the same estimated aerodynamic derivatives showen at
Table 2 and the respective CRLB using only Levenberg-Marquardt approach.

It should be observed that considering, as initial estimate, the derivatives of stability
and control of BO-105, the Levenberg-Marquardt algorithm leads to inadequate CRLB values
as shown in Table 5.

7. Concluding Remarks

From the methodology M4V, it was possible to obtain the longitudinal short-period stability
and control derivatives in forward flight of the AS355-F2 helicopter at 80 kt and 5,000 ft.
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The results showed that the hybrid search-gradient methodology is useful for
parameter estimation problems by the output-error method, especially when the level of
information regarding the studied system is reduced. As stated at previous sections, the
adopted methodology initially estimates the flight derivatives using the genetic optimization
algorithm and then, when the cost function tends to converge, the parameters are improved
using Levenberg-Marquardt algorithm. This approach leads to better results in terms of
correlation function coefficients, cost function, and CRLB values and at the same time
increases the possibility of parameter convergence especially for large errors in the initial
parameter values.

Concerning the GA, the more relevant aspects are as follows:

(i) easiness to implement parameter restrictions: this point is of fundamental impor-
tance in the rotorcraft parameter identification algorithms, since it avoids diver-
gence problems and estimated parameters without physical meaning;

(ii) capacity to deal with the parameter estimation problem with low a priori knowl-
edge level: the genetic algorithm for the stability and control derivative estimation
is a powerful tool as a first parameter estimation approach.

On the other hand, the Levenberg-Marquardt optimization algorithm guides the
parameters to a precise local minimum and also requires less computational time.

However, the helicopter dynamics has nonlinear terms, with parameters that may vary
abruptly with the alteration of the flight conditions, or with helicopter configurations (large
flap hinge-offsets)which require a larger number of degrees of freedom in order to introduce
the rotor dynamics. Thus, in spite of satisfactory results obtained with linear models for the
longitudinal short-period, more complex models will be required to improve curve fitting
and to add other dynamic modes.

This is especially relevant to obtain a full flight simulator model and to develop control
system strategies that depend on a comprehensive knowledge of the rotor and fuselage
dynamic interaction in the entire flight envelope (weight, CG, altitude and airspeed) of the
rotorcraft.

Concerning flight test maneuvers, the need for an appropriate specification of
the inputs is also evident, taking in to account a priori model knowledge as necessary
to maximize the level of information contained in the flight test data, minimizing the
uncertainties associated with the identification process. So, the observed results show that
the 3-2-1-1 sequence was suitable to identify the longitudinal short-period mode.

For the next studies, the following points will be taken in to consideration:

(i) a more complex model will be proposed to include both longitudinal and lateral-
directional dynamic modes;

(ii) application of other optimization techniques such as Levenberq-Marquadt in
conjunction with the maximum likelihood estimation problem and the Extended
Kalman Filter (EKF);

(iii) application of optimization techniques to generate maneuvers in order to maximize
the level of information contained in the flight test data and, consequently, to make
the stability and control derivatives estimation more robust and precise.
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Nomenclature

A, B: State-space representation
CG: Center of gravity
FX , FZ: External force (longitudinal and vertical), N
GW: Gross weight, N
Iy: Moment of inertia about the Y-axis, kg · m2

m: Mass, kg
MY : Pitching moment, N · m
M( ): Dimensional moment stability derivatives, rad/m · s, 1/s, or rad/s2 · cm for

Mw, Mq, and Mδm, respectively
p, q, r: Fuselage angular rates, rad/s
u, v,w: Body axis velocity components, m/s
u: Input vector
X: State vector
ẋbias: Bias vector
Y : Output vector
yref: Output bias vector
Z( ): Dimensional vertical force stability derivatives, 1/s, m/s · rad, or m/s2 · cm

for Zw, Zq, and Zδm, respectively
α: Angle of attack, rad
β: Angle of sideslip, rad
δm: Longitudinal cyclic position, cm or %
δc: Collective position, cm
Δ: Variation from initial trim condition
θ, φ: Fuselage attitudes (pitch and roll), rad
Θ: Identification vector
ρyysim : Correlation function coefficient
τ : Time delay, s
( )0: Initial trim condition
( )sim: Simulated response
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