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Scattering of electromagnetic plane waves from a coated perfect electromagnetic conductor
(PEMC) circular cylinder placed under perfect electric conducting (PEC) wide double wedge is
presented. It is assumed that the distance between the two wedges is large as compared to the
wavelength. Therefore, the field at an observation point can be considered to be composed of the
incident field plus a response field from each of the edges of double wedge and the cylinder. PEMC
cylinder is taken to be infinite along its axis and has been coated with a double positive (DPS) or
double negative (DNG)material. The transmission coefficient and diffraction pattern of PEC wide
double wedge in the presence of both coated and uncoated PEMC cylinder are studied. Results of
special cases for PEMC cylinder, compared with the published work, are found to be in fairly good
agreement. The techniques of Clemmow, and Karp and Russek have been used to investigate the
transmission coefficient and diffraction pattern of the double wedge in the presence of both coated
and un-coated PEMC circular cylinder.

1. Introduction

Scattering from multiple objects has been investigated by many researchers [1–6]. A possible
technique is to use fictitious line sources, located according to the geometry of each scatterers.
This technique was used by Clemmow [7], Karp and Russek [8] for the diffraction of
electromagnetic plane waves by a wide slit. Elsherbeni and Hamid [9, 10] further extended it
for wide double wedge and perfect electric conductor (PEC) cylinder. In this paper the same
technique has been applied to perfect electromagnetic conductor (PEMC) circular cylinder
coated with homogeneous, isotropic, and linear material placed under PEC wide double
wedge.
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The concept of PEMC as the generalization of (PEC) and a perfect magnetic conductor
(PMC) has been studied quite recently by Lindell and Sihvola [11]. It has attracted the
attention of many researchers [12–19]. The PEMC boundary conditions are of the general
form

�n ×
(
�H +M�E

)
= 0 �n ·

(
�D −M�B

)
= 0, (1.1)

whereM denotes the admittance of the PEMC boundary. Here, PMC corresponds toM = 0,
while PEC corresponds to M = ±∞. In the recent years, there has been an increased
interest in different classes of materials called meta materials like Double-Negative (DNG),
Double Positive (DPS), Epsilon Negative (ENG) and Mu Negative (MNG). Veselago [20]
characterized these mediums by negative real part of the permitivity as well as permeability.
Scattering of electromagnetic plane waves by a conducting cylinder coated with meta
material is investigated by Shen and Li [21] and Ahmed and Naqvi [22–26].

The electromagnetic scattering from an infinite PEMC cylinder coated with homoge-
neous, isotropic and linear DPS or DNG material placed under a PEC wide double wedge is
studied. The known solutions for the scattered field by an isolated PECwedge and an isolated
coated PEMC cylinder are utilized. It is assumed that the field at any point is composed of
the incident field and a response field from each of the double wedges and the cylinder. The
response field consists of scattered field by the three scatterers due to the original plane wave
plus an interaction field which will be represented by the three fictitious line sources located
at the wedge edges and at the cylinder. The time dependence is assumed to be exp(jωt) and
it is suppressed throughout the analysis.

2. Formulation of the Problem

For a single wedge, the two half planes of the wedge can be defined as φ = 0 and φ = 2Φ.
The geometry of the problem is shown in Figure 1(a) where two parallel wedges loaded
with coated PEMC cylinder is shown. The radius of the inner cylinder is a and that of
coated cylinder is b. The problem is two-dimensional since all the fields are uniform in the
z-direction. By considering an E-polarized plane wave incident on an isolated PEC wedge
and isolated PEMC cylinder, the known results of scattered field are presented in this section.
The transmission coefficients for both coated and Uncoated cylinder are given. Figure 1(b)
shows the geometry containing an Uncoated PEMC cylinder placed under PEC wide double
wedge.

2.1. PEC Wedge Excited by a Plane Wave

For the plane wave incident on the edge of the wedge at an angle φ0 with respect to the
negative x-axis the incident field is given as

(
Eiz

Hi
z

)
=

(
E0

H0

)
exp
[
jk
(
x cosφ0 + y sinφ0

)]
. (2.1)
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The uniform expression for the field diffracted from a PEC wedge has the form [6]

(
Edz

Hd
z

)
=

exp
[−j(kρ)]
√
ρ

Ds
h

(
ρ, φ, φ0;n

)( Eiz

Hi
z

)
. (2.2)

The diffraction coefficient for the PEC wedge is

Ds
h

(
ρ, φ, φ0;n

)
= −√ρ

{
− sgn

(
sin
(
π + φ − φ0

2n

))
cos
(
π + φ − φ0

2n

)

× F
[√

2kρn
∣∣∣∣sin
(
π + φ − φ0

2n

)∣∣∣∣
]

− sgn

(
sin

(
π − (φ − φ0

)

2n

))
cos

(
π − (φ − φ0

)

2n

)

× F
[√

2kρn

∣∣∣∣∣sin
(
π − (φ − φ0

)

2n

)∣∣∣∣∣

]

± sgn
(
sin
(
π + φ + φ0

2n

))
cos
(
π + φ + φ0

2n

)

× F
[√

2kρn
∣∣∣∣sin
(
π + φ + φ0

2n

)∣∣∣∣
]

± sgn

(
sin

(
π − (φ + φ0

)

2n

))
cos

(
π − (φ + φ0

)

2n

)

×F
[√

2kρn

∣∣∣∣∣sin
(
π − (φ + φ0

)

2n

)∣∣∣∣∣

]}
,

(2.3)

Ds and Dh are the diffraction coefficients of E- and H-polarization, respectively, and n =
2Φ/π . Function sgn(·) is the signum function whereas F(·) is the Fresnel integral defined as

F(x) =
1
π

exp
(
jx2 + j

π

4

)∫∞

x

exp
(
−jμ2

)
dμ. (2.4)

It is assumed that point of observation is far from the edge of the wedge. For large
argument approximation, Fresnel integral simplifies as

F(x) ≈ 1
2
√
πx

exp
[
−j π

4

]
. (2.5)
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Figure 1: (a) Geometry of the Problem-Coated PEMC cylinder placed under PEC wide double wedge. (b)
Uncoated PEMC cylinder placed under PEC wide double wedge.

Hence diffraction coefficient for E-polarized plane wave, incident on the edge of the wedge
simplifies to

D
(
φ, φ0, n

) ≈ sin(π/n)
πn

{[
cos
(
π

n

)
− cos

(
φ − φ0

n

)]−1
−
[
cos
(
π

n

)
− cos

(
φ + φ0

n

)]−1}
.

(2.6)

The angles between the incident and diffracted rays and normal to the screen are φ and φ0,
respectively.

2.2. Circular Cylinder Excited by a Plane Wave

A circular cylinder is defined by the surface ρ = a, while its axis coincides with the z-axis.
The radiated fields due to plane wave incident on a circular cylinder [27] are

ECp =
π

2j
H

(2)
0

(
kρ
)
Gp

(
φ, φ0, a

)
, (2.7)
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where

Gp

(
φ, φ0, a

)
= −2j

π

∞∑
n=0

εn(−1)nTn cos
[
n
(
φ − φ0

)]
, (2.8)

where the Neumann number εn = 1 for n = 0 and 2 for n > 0. In (2.8), Tn is the transmission
coefficient. Its values for both co and cross-polarized components of Uncoated PEMC cylinder
[18] is

Tn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H
(2)
n (ka)J/n (ka) +M2η20Jn(ka)H

(2)/
n (ka)

(
1 +M2η20

)
H

(2)
n (ka)H(2)/

n (ka)
, Copolarized

2Mη0

πka
(
1 +M2η20

)
H

(2)
n (ka)H(2)/

n (ka)
, Cross polarized

(2.9)

whereas the transmission coefficient for coated PEMC cylinder [22] is

Tco =

(
J ′n(k0b)/η0

)
(A) − (Jn(k0b)/η1

)
(B)(

H
(2)
n (k0b)/η1

)
(B) −

(
H

(2)′
n (k0b)/η0

)
(A)

,

Tcross = jMη1

[
H

(1)
n (k1a) − H

(2)
n (k1a)H

(1)′
n (k1a)

H
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n (k1a)
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Jn(k0b)H
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n (k0b)

η0H
(2)
n (k0b)(B) −H(2)′

n (k0b)(A)

]
,

(2.10)

where

A =

[(ac
b

+ d
)
− jMη1

H
(2)
n (k1a)

H
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H
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H
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H

(2)
n (k0b)
η0

− H
(2)
n (k1b)H

(2)′
n (k0b)

η1H
(2)′
n (k1b)

,
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b =
1
η1

[
H

(1)
n (k1b) − H

(2)
n (k1b)H

(2)′
n (k1b)

H
(2)′
n (k1b)

]
,

c = H(1)
n (k1a) − H

(2)
n (k1a)H

(1)′
n (k1b)

H
(2)′
n (k1b)

,

d =
H

(2)
n (k1a)H

(2)′
n (k0b)

H
(2)′
n (k1b)

,

e = jMη1

[
H

(1)′
n (k1a) − H

(1)′
n (k1b)H

(2)′
n (k1a)

H
(2)′
n (k1b)

]
,

f = jMη1
H

(2)′
n (k0b)H

(2)′
n (k1a)

H
(2)′
n (k1b)

.

(2.11)

In above equations Jn(·) is the Bessel function of order n and Hn(·) is the Hankel
function of second kind of order n. Primes indicate the derivative with respect to the whole
argument.

3. Cylindrical Wave Incident

In this section, the known solutions due to a line source excitation for scattered fields from
isolated PEC wedge and from coated PEMC cylinder are presented. The purpose is to get the
interaction contribution from each of the two wedges and a coated PEMC cylinder using the
known solutions and by incorporating the techniques used by Clemmow [7], and Karp and
Russek [8].

3.1. PEC Wedge Excited by a Cylindrical Wave

The field of a line source in the presence of a conducting wedge whose edge is parallel to the
source is well known. If the source is of unit amplitude and is located at (ρ0, φ0) parallel to
the z-axis, its field in the absence of the wedge is given as

Ei =
π

2j
H

(2)
0 (kR), (3.1)

where R is the distance between the line source and the field point, k is the wave number,
andH(2)

0 (·) is the Hankel function of the second kind of order zero. The diffracted field in the
presence of the wedge is given asymptotically in [28]. Here the asymptotic expression of the
Hankel function is replaced by the Hankel function itself, therefore, the diffracted field has
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the appearance of cylindrical wave emanating from a line source located at the edge of the
wedge expressed in the form

E =
π

2j
H

(2)
0

(
kρ
)
F
(
φ, ρ0, φ0, n

)
, (3.2)

where

F
(
φ, ρ0, φ0, n

) ≈ H
(2)
0

(
kρ0
)
exp
[−j(π/2)] sin(π/n)
πn

×
{[

cos
(
π

n

)
− cos

(
φ − φ0

n

)]−1
−
[
cos
(
π

n

)
− cos

(
φ + φ0

n

)]−1}
.

(3.3)

Here, again the angles between the incident and diffracted rays and normal to the screen are
φ and φ0, respectively.

3.2. PEMC-Coated Circular Cylinder Excited by a Cylindrical Wave

The scattered field due to cylindrical wave incident on circular cylinder [27] is

ECl =
π

2j
H0
(
kρ
)
Gl

(
φ, ρ0, φ0, a

)
, (3.4)

where

Gl

(
φ, ρ0, φ0, a

)
= −

∞∑
n=0

εnj
nTnHn

(
kρ0
)
cos
[
n
(
φ − φ0

)]
, (3.5)

where Tn is the transmission coefficient. Its values for co and cross-polarized components of
both Uncoated and coated PEMC cylinders are given by (2.9) and (2.10).

4. Interaction Contributions of the Geometry

There are two conducting wedges separated by a distance 2s, where 2ks � 1 and a coated
PEMC circular cylinder of radius b whose axis is parallel to the edges of two parallel wedges
as shown in Figure 1(a). All the three bodies are considered to be illuminated by a plane
wave of unit amplitude. The field at any point is considered to be composed of the incident
field plus a response field from each of the two wedges and the cylinder. The response field
consists of scattered field by the three scatterers due to the original plane wave (the non-
interaction field) plus an interaction field which will be represented by three fictitious line
sources located at the wedge edges and at the cylinder in order to take into account multiple
interaction between three objects. Consider, for example, edge of wedge A which is excited
by direct plane wave plus line source fields of edge B (the second wedge)and edge C (the
cylinder axis). The interaction can be conveniently expressed in terms of the response of edge
A to the line source at the opposite edge and at the cylinder axis.
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Figure 2: (a) Slit transmission coefficient for θ0 = 0, kd = 0, ka = 0.5. (b) Slit transmission coefficient for
θ0 = 0, kd = 5, ka = 0.5.

If the plane wave is restricted such that the incident field does not illuminate the lower
faces of the half planes, the total field in the forward direction is given by [10]

Et = Ei + Es, (4.1)

where
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PEMC cylinder cross-polarized component forMη0 =∞
Unloaded slit
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Figure 3: Slit transmission coefficient for θ0 = 0, kd = 0, ka = 0.

Es = Es1 + Es2 + Es3,

Es1 =
π

2j
H0
(
kρ1
)[
exp
(−jks sin θ0

)]
D
(
φ1, φ01, n1

)
+ c3F

(
φ1, s1, φ31, n1

)
+ c2F

(
φ1, 2s, φ21, n1

)
,

Es2 =
π

2j
H0
(
kρ2
)[
exp
(
+jks sin θ0

)]
D
(
φ2, φ02, n1

)
+ c3F

(
φ1, s1, φ32, n1

)
+ c2F

(
φ1, 2s, φ12, n2

)
,

Es3 =
π

2j
H0
(
kρ3
)[
exp
(−jkd cos θ0

)]
D
(
φ3, φ03, a

)
+ c1G

(
φ3, s1, φ13, a

)
+ c2G

(
φ3, s2, φ23, a

)
,

(4.2)

where n1 = (2π − α)/π and n2 = (2π − β)/π and c1, c2 and c3 are the unknown strengths of
the line sources at wedge edges and along the cylinder axis, respectively. Let the incoming
plane wave be incident from above the slit and the observation point be below. Further, let
θ0 between the incoming plane wave and the normal to the plane of the screen (measured
from the positive y-axis), and let θ represent the angle between the observation point and
normal to the screen (measured from the negative y-axis). All angles are considered positive
if measured counterclockwise with respect to the normal and negative if clockwise. When
the observation point is far from the edges as compared to the width of double wedge
kρ/2s � 1, approximate relations between them can be simply stated. Therefore, well-
known far field conditions are used in which φ0 = φ01 = φ03 = π/2 + θ0, φ02 = π/2 − θ0,
φ1 = φ3 � 3π/2 + θ, φ2 � 3π/2 − θ, φ12 = φ21 � π , φ13 = ψ � tan−1(d/s), φ31 =
φ32 � π + ψ, φ23 � π − ψ, ρ1 � ρ − s sin θ, ρ2 � ρ + s sin θ, ρ3 � ρ − d cos θ, and
s1 and s2 are the distances between the edges of the two wedges and the cylinder axis,
respectively.
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Figure 4: (a) Slit transmission coefficient for θ0 = 0, kd = 0, ka = 0.5. (b) Slit transmission coefficient for
θ0 = 0, kd = 5, ka = 0.5.

To determine c1, c2 and c3, the analysis of Karp and Russek [8] has been followed by
imposing the requirement that the fields scattered by the two wedges and the cylinder be
consistent with one another

2c1 − c2
[
F
(
φ31, 2s, φ21, n1

)
+ F
(
φ21, 2s, φ21, n1

)] − c3
[
F
(
φ31, s1, φ31, n1

)
+ F
(
φ21, s1, φ31, n1

)]

= exp
(−jks sin θ0

)[
D
(
φ31, φ01, n1

)
+D
(
φ21, φ01, n1

)]
,

2c2 − c1
[
F
(
φ32, 2s, φ12, n2

)
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(
φ12, 2s, φ12, n2

)] − c3
[
F
(
φ32, s2, φ32, n2

)
+ F
(
φ12, s2, φ32, n2

)]

= exp
(
jks sin θ0

)[
D
(
φ32, φ02, n2

)
+D
(
φ12, φ02, n2

)]
,
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Figure 5: (a) Slit transmission coefficient for θ0 = 0, kd = 0, ka = 0.5. (b) Slit transmission coefficient for
θ0 = 0, kd = 5, ka = 0.5.

2c3 − c1
[
G
(
φ13, s1, φ13, a

)
+G
(
φ23, s1, φ13, a

)] − c2
[
G
(
φ13, s2, φ23, a

)
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(
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= exp
(−jkd cos θ0

)[
D
(
φ13, φ03, a

)
+D
(
φ23, φ03, a

)]
.

(4.3)

By solving (4.3) for c1, c2, and c3, the scattered field is found and is rewritten in the
form



12 Mathematical Problems in Engineering

2.5

0 5 10 15 20

PEMC cylinder cross-polarized component forMη0 = ±1
PEMC cylinder cross-polarized component forMη0 = 3
PEMC cylinder cross-polarized component forMη0 = 10

2

1.5

1

0.5

0

Tr
an

sm
is
si
on

co
effi

ci
en

t

ks

Figure 6: Slit transmission coefficient for θ0 = 0, kd = 0, ka = 0.5.
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Figure 7: Slit transmission coefficient for θ0 = 0, kd = 0, ka = 0.5.

Es =
exp
(−jkρ)√
πkρ

E(θ, s, d, n1, n2, a), (4.4)

where the scattered field pattern E(θ, s, d, n1, n2, a) is obtained from (4.4).
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Figure 8: (a) Slit transmission coefficient for kd = 0, ka = 0.1. (b) Slit transmission coefficient for kd = 0,
ka = 0.1.

The transmission coefficient T for plane wave incidence is calculated using the
expression given by Karp and Russek [8] as

T =
Re
[(
1 − j)Ẽ

]

2ks
, (4.5)

where Ẽ is E(θ, s, d, n1, n2, a) in the limit as θ approaches θ0.
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Figure 9: (a) Slit transmission coefficient for kd = 0, ka = 0.1. (b) Slit transmission coefficient for kd = 0,
ka = 0.1.

5. Results and Discussion

Figure 1(a) shows the geometry which consists of PEC double wedge and a coated PEMC
circular cylinder whereas Figure 1(b) contains an Uncoated PEMC cylinder placed under
PEC wide double. In these figures, d represents the distance of the PEMC cylinder from the
edge of PEC wedge. In the first part of discussion, a comparison of transmission coefficients
(Tc) for PEC double wedge with zero wedge angle, loaded with PEC cylinder is made with
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Figure 10: (a) Slit diffraction pattern for θ0 = 00, kd = 0, ka = 0.5, ks = 8. (b) Slit diffraction pattern for
θ0 = 00, kd = 0, ka = 0.5, ks = 8.

the transmission coefficient for the slit when a uncoated PEMC cylinder is placed under the
slit. Comparison of Tc with both the copolarized (Tco) and cross-polarized (Tcross) components
of uncoated PEMC cylinder is studied. In all the cases cylinder radius (ka) is taken as 0.5.
Figures 2(a) and 2(b) show the comparison of Tc with Tco when the cylinder is located at
kd = 0 and kd = 5 from the slit, respectively. It can be observed that Tco, in both the cases,
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Figure 11: Slit diffraction pattern for θ0 = 00, kd = 0, ka = 0.5, ks = 8.

show exactly the same behavior as that of Tc whenMη0 = ∞. These results are in fairly good
agreement with the Elsherbeni’s results [10]. Therefore, it is quite obvious that the uncoated
PEMC cylinder behaves like PEC cylinder at Mη0 = ∞. In Figure 3, a comparison of Tcross
has been made with the transmission coefficient (T) for the slit when the cylinder radius
ka = 0, that is, an unloaded slit. It can be observed that the two coefficients have the same
behavior. It is because the cross-polarized component of PEMC cylinder is zero at Mη0 = 0.
In Figures 4 and 5, a comparison of Tco and Tcross for Mη0 = 0 and Mη0 = ±1 at kd = 0 and
kd = 5 are presented, respectively. In Figure 4(a), it can be seen that when the cylinder, with
Mη0 = 0, is at kd = 0, Tco is less than that of Tcross, but when it is shifted below the center of the
aperture plane, say at kd = 5, Tco becomes larger than Tcross which is obvious from Figure 4(b).
Moreover, the transmission coefficients oscillate with decreasing amplitude as expected and
tend to unity as the slit width ks tends to infinity. But, contrary to this effect, Tcross remains
larger at kd = 5 when Mη0 = ±1, as shown in Figure 5(b), whereas at kd = 0Tcross is less
than Tco as shown in Figure 5(a). Moreover, it can be seen that when kd = 0, Tco shows
almost similar behavior as that of Tc but Tcross is larger than Tc. When the cylinder is shifted
to kd = 5, both T(co) and T(cross) are larger than Tc. To further highlight the effect of Mη0
on Tcross, Figure 6 shows that Tcross is maximum when Mη0 = ±1 and decreases for other
values of Mη0. Similarly Figure 7 shows the effect of variation of ka on Tcross at Mη0 = ±1.
Obviously the value of Tcross is larger for ka = 0.5 and decreases for smaller values of ka. Both
these figures are for kd = 0. The behavior of Tco and Tcross for obliquely incident plane wave
at θ0 = 150 and θ0 = 300 for ka = 0.1, kd = 0 and Mη0 = ±1 is shown in Figures 8(a) and
8(b). At θ0 = 150, Tcross is higher than unity in the lower range of ks (ks ≤ 3) and is larger
than Tco. For the same cylinder parameters but with θ0 = 300, both Tco and Tcross becomes
less than unity. However, Tcross oscillates with greater amplitude as compared to Tco. Hence
incident angle effects the peak locations of Tco and Tcross. To see the effect of interior wedge
angle on the transmission coefficients forMη0 = ±1, ka = 0.1, it is observed that as the wedge
angle is increased, the amplitude of oscillation in both Tco and Tcross is increased, that is, the
interior wedge angle effects the levels of maxima and minima of the oscillation in both the
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Figure 12: (a) Slit diffraction pattern for θ0 = 00, kd = 0, ka = 0.5. (b) Slit diffraction pattern for θ0 = 00,
kd = 0, ka = 0.5.

cases, however this effect is more dominant in Tcross as compared to Tco as shown in Figures
9(a) and 9(b).

In the second part of discussion, normalized diffraction pattern of the slit loaded
with PEC cylinder (Dc) compared with the corresponding normalized diffraction patterns
in the presence of uncoated PEMC cylinder is presented. Comparison between copolarized
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Figure 13: Slit diffraction pattern for θ0 = 00, kd = 1.5, ka = 0.5, ks = 8.

(D(co)) and cross-polarized (D(cross)) components of PEMC cylinder for different values of
Mη0 is made. In all the cases cylinder radius ka is taken as 0.5. Figure 10(a) presents Dc

compared with D(co) for kd = 0 and ks = 8. The solid curve in the figure represents Dc.
It is observed that D(co) shows similar behavior as that of Dc for Mη0 = ∞. Moreover, in
Figure 10(b) it can be observed that D(cross) for both Mη0 = 0 and Mη0 = ∞ gives the same
diffraction patterns as that of an unloaded slit (D) which is in good agreement with the
published work [6]. This shows that cross-polarized component exists only for Mη0 = ±1
and becomes zero for other values of Mη0. To further investigate the effect of Mη0 on D(co)

and D(cross), Figure 11 shows the comparison of both these diffraction patterns forMη0 = ±1.
It can be seen that the beam width for cross-polarized component is less than the beam
width of copolarized component. To see the effect of slit width on D(co) and D(cross), the
plots for different values of ks with kd = 0 and Mη0 = ±1 are shown in Figures 12(a)
and 12(b). It is observed that the number of side lobes increases with the increase in slit
width for both D(co) and D(cross). When the cylinder is shifted to kd = 1.5 for ks = 8 and
Mη0 = ±1, comparison of D(co) and D(cross) shown in Figure 13, reflects almost the similar
behavior.

In the third part of discussion, the transmission coefficient of coated PEMC cylinder is
presented. Behavior of both copolarized (Tc(co)) and cross-polarized (Tc(cross)) components of
coated PEMC cylinder is discussed. In all the plots radius of Uncoated cylinder is taken as
a = 0.2 cm and that of coated cylinder as b = 0.3 cm. The validity of the code has been checked
by making the coating equal to zero. Results are found to be in agreement with Uncoated
PEMC cylinder. Comparison of Tcco and T

c
cross forMη1 = ±1 at kd = 0 and kd = 5 with relative

permitivity εr = −1.5 and relative permeability μr = −1, are shown in Figures 14(a) and 14(b),
respectively. It can be seen that in both the cases, Tcco is larger than T

c
cross, which is contrary to

Uncoated PEMC cylinder in which Tco remains less than Tcross forMη0 = ±1. Furthermore, it
is observed that the transmission coefficient is large in the presence of coated PEMC cylinder
as compared to PC cylinder. In both the cases Tcco and T

c
cross are greater than unity whereas Tc,

in general, remains less than unity. The variation in the radius of coated cylinder also effects
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Figure 14: (a) Slit diffraction pattern for θ0 = 00, kd = 0, a = 0.2 cm, b = 0.3 cm. (b) Slit diffraction pattern
for θ0 = 00, kd = 5, a = 0.2 cm, b = 0.3 cm.

the behavior of Tcco and Tccross as shown in Figure 15. Figure 15(b) shows that Tcco oscillates
with greater amplitude as the the value of b is increased. However, Tc(cross) does not show
considerable change in behavior with the increase in radius b as hi-lighted in Figure 15(a).
The behavior of Tcco and T

c
cross for oblique incidence is shown in Figure 16 for incident angles

θ0 = 200 and θ0 = 300. Figure 16(a) shows that Tccross gets less than unity as the angle of
incidence is increased from zero, whereas the amplitude of oscillation for Tcco decreases with
the increase of incidence angle θ0 as shown in Figure 16(b). All the plots of Figures 15 and 16
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Figure 15: (a) Slit transmission coefficient for θ0 = 0, kd = 0. (b) Slit transmission coefficient for θ0 = 0,
kd = 0.

are for for Mη1 = ±1. Further, it can be seen in Figure 17 that interior wedge angle effects
the peak-to-peak values of the oscillations both in the case of Tcco and T

c
cross. In case of Tccross, as

shown in Figure 17(a), the oscillations are always around unity and decreases with increasing
ks whereas in case of Tcco as shown in Figure 17(b), the oscillations are larger and are greater
than unity. The plots for DPS-coated cylinder show almost similar behavior as that of DNG
coated cylinder.
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Figure 16: (a) Slit transmission coefficient for θ0 = 0, kd = 0, a = 0.2 cm, b = 0.3 cm. (b) Slit transmission
coefficient for θ0 = 0, kd = 0, a = 0.2 cm, b = 0.3 cm.

In the last part of discussion, diffraction pattern of wide double wedge in the
presence of coated PEMC cylinder is presented. In Figure 18, the effect of Mη1 on the
diffraction pattern is shown. Behavior of both copolarised (Dc

(co)) and cross-polarized
(Dc

(cross)) components of coated PEMC cylinder with εr = 1.5 and μr = 1 for kd = 0 and
ks = 8 is studied. In both the cases, it can be seen that Dc

(co) and D
c
(cross) show slight different
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Figure 17: (a) Slit transmission coefficient for θ0 = 0, kd = 0, a = 0.2 cm, b = 0.3 cm. (b) Slit transmission
coefficient for θ0 = 0, kd = 0, a = 0.2 cm, b = 0.3 cm.

behavior for Mη1 = 1 as compared to other values of Mη1. Figure 19 shows the variation
in Dc

(co) and Dc
(cross) for εr = 1.5, μr = 1 and kd = 0 with respect to the slit width. It

is observed that both Dc
(co) and Dc

(cross) show different behavior for different values of slit
widths.
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Figure 18: (a) Slit diffraction pattern for θ0 = 00, ks = 8, kd = 0, a = 0.2, b = 0.3. (b) Slit diffraction pattern
for θ0 = 00, ks = 8, kd = 0, a = 0.2, b = 0.3.

6. Conclusion

The transmission coefficient and the diffraction pattern of three scatterers, that is, two PEC
parallel wedges in the presence of a coated PEMC cylinder are presented. The results show
that the transmission coefficient has a high value in the presence of a PEMC cylinder as
compared to PEC cylinder. Furthermore, it is observed that the transmission coefficient varies
under particular conditions such as by either shifting the cylinder below the center of the
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Figure 19: (a) Slit diffraction pattern for θ0 = 00, kd = 0, a = 0.2, b = 0.3. (b) Slit diffraction pattern for
θ0 = 00, kd = 0, a = 0.2, b = 0.3.

aperture plane of double wedge or by coating the PEMC cylinder with DPS or DNGmaterials.
Variations in the transmission coefficient with respect to different values of admittance
parameter for Uncoated and coated PEMC cylinder is also studied. It is found that the
behavior of T(co) and T(cross) of an Uncoated PEMC cylinder and Tc(co) and Tc(cross) of coated
PEMC cylinder not only varies with the incident angles of the original plane wave but also
show cosiderable change in the behavior by changing the interior wedge angles.
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