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This study investigates the inherent irreversibility associated with the Couette flow of a reacting
variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations
of momentum and energy governing the flow system are solved both analytically using a
perturbation method and numerically using the standard Newton Raphson shooting method
along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and
temperature distributions which essentially expedite to obtain expressions for volumetric entropy
generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.

1. Introduction

In fluid dynamics, Couette flow refers to the laminar flow of a viscous fluid in the space
between two parallel plates, one of which is moving relative to the other. This type of flow
is named in honor of Maurice Marie Alfred Couette, a Professor of Physics at the French
University of Angers in the late 19th century [1, 2]. Couette flow occurs in fluid machinery
involving moving parts and is especially important for hydrodynamic lubrication [3]. If
the surfaces are smooth and flat with constant fluid properties, the solution is the simple
linear velocity distribution, with a drag proportional to the relative velocity and inversely
proportional to the gap width [1, 4]. It is an important classical example of exact solutions for
Navier-Stokes equation. However, most fluids used in engineering and industrial systems
like coal slurries, polymer solutions or melts, drilling mud, hydrocarbon oils, grease, and
so forth are chemically reactive and can be subjected to extreme conditions, such as high
temperature, pressure, and shear rate during processing [5, 6]. In fact, viscous heating
produced due to friction between the fluid and the surrounding walls coupled with high
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shear rates and Arrhenius kinetics can lead to high temperature being generated within the
fluid [7]. This may have a significant effect on the fluid properties. It is well known that
the most sensitive fluid property to temperature rise is the viscosity [3, 5]. For instance, the
viscosity of various lubricants used in engineering systems like polymer solutions, mineral
oils with polymeric additives, and so forth varies with temperature. This variation in the
fluid viscosity due to temperature may affect the flow characteristics as well as the efficient
operation of industrial machinery where lubrication is important [1, 7]. Hence, it is necessary
to ensure that the viscosity of such lubricants is at all times maintained at optimum levels.

From the application point of view, the determination of thermal criticality in a flow
system is extremely important. For example, special attention must be paid to the heating
of lubricant by the frictional force and Arrhenius kinetics since viscosity is temperature
dependent. Thermal criticality occurs when the rate of heat generation within the flow system
exceeds the heat dissipation to the surroundings [2, 6]. This condition is incipient thermal
runaway or ignition in the flow system [7, 8]. A primary objective of thermal criticality
analysis is the prediction of the critical or unsafe flow conditions in order to avoid them
[9]. One method of accomplishing this is to cycle the lubricant through a cooling reservoir in
order to maintain the desired viscosity of the fluid. Another way of handling the excessive
heat generation problem is to use commercially available additives to decrease the viscosity’s
temperature dependence.

Meanwhile, efficiency calculation of heat exchange systems has been very much
restricted to the first law of thermodynamics. Calculations using the second law of
thermodynamics, which is related to entropy generation, are more reliable than first
law-based calculations. Therefore, the second law of thermodynamics can be applied to
investigate the entropy generation rate in the flow system due to fluid friction and heat
transfer. The determination of entropy generation is also important in upgrading the system
performance because the entropy generation is the measure of the destruction of the available
work of the system [4]. As entropy generation takes place, the quality of energy decreases. It
is important to study the distribution of the entropy generation within the fluid volume for
preserving the quality of energy in fluid flow processes or reducing the entropy generation.
Entropy generation method as a measure of system performance was first introduced by
Batchelor [1] and Bejan [10]. Thereafter, considerable research works were carried out by
several authors on the application of the second law of thermodynamics to various aspects
of fluid flow and heat transfer problems [4, 10–17]. Moreover, to the best of our knowledge,
no study has focused on the combined effects of temperature-dependent fluid viscosity and
Arrhenius kinetics on thermal stability and entropy generation in flow systems which are
of great importance in many engineering fields such as heat exchangers, cooling of nuclear
reactors, automobile lubrication, energy storage systems, and cooling of electronic devices.

In this study, the variable viscosity reactive Couette flow is considered and the inherent
irreversibility together with thermal criticality in the flow system is investigated. The plan
of this paper is as follows: in Section 2 we describe the theoretical analysis of the problem
with respect to the fluid velocity and temperature fields. In Sections 3–5 we introduce and
apply some rudiments of perturbation technique coupled with Hermite-Padé approximation
procedure and standard Newton Raphson shooting method along with a fourth-order Runge
Kutta integration algorithm in order to obtain the fluid velocity temperature profiles as well
as criticality conditions in the system. Section 6 describes the volumetric entropy generation
rate, irreversibility distribution ratio, and the Bejan number. The results are presented
graphically and discussed quantitatively with appropriate physical explanations in Section 7.
Finally, the conclusion is outlined in Section 8.
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Figure 1: Schematic diagram of the problem.

2. Problem Formulation

The configuration of the problem studied in this paper is depicted in Figure 1. The fluid
is assumed to be viscous, incompressible, reactive, and flowing steadily in the x-direction
between two parallel plates of width H and length L. The upper plate is moving with
constant velocity U while the lower plate is kept stationary. Following [3, 8], the temperature-
dependent viscosity (μ) and the chemical reaction kinetic (G) functions can be expressed in
Arrhenius type [18] as

μ = μ0e
E/RT , G = QC0Ae−E/RT , (2.1)

where E is the activation energy, R is the universal gas constant, Q is the heat of reaction, A
is the rate constant, C0 is the initial concentration of the reactant species, and μ0 is the fluid
reference dynamic viscosity at a very large temperature (i.e., as T → ∞).

Under these conditions the continuity, momentum, and energy equations governing
the problem in dimensionless form may be written in Cartesian coordinate (x, y) as [1, 2, 5];
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We have employed the following nondimensional quantities in (2.2):
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where μ, ρ, κ are the dynamic viscosity, fluid density, and thermal conductivity, respectively,
T is the fluid temperature, Tw is the plate surface temperature, u is the axial velocity, v is
the normal velocity, cp is the specific heat at constant pressure, p is the pressure, (x, y) are
distances measured in streamwise and normal directions, respectively, U is the velocity scale,
Pe is the Peclet number, β is the activation energy parameter, Br is the Brinkman number,
λ is the Frank-Kamenetski parameter, and Re is the Reynolds number. Since the channel
aspect ratio is small (0 < ε � 1), the lubrication approximation based on an asymptotic
simplification of the governing equation (2.2) is invoked. For Couette flow, the axial pressure
gradient is zero (i.e., ∂p/∂x = 0) and the flow is solely driven by the uniform motion of the
upper plate. Equations (2.2) then become
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where μ = e−T/(1+βT). The appropriate boundary conditions in dimensionless form are given
as follows:

u = 0, T = 0,
(
for a lower fixed impermeable plate

)
at y = 0, (2.8)

u = 1, T = 0,
(
the upper plate is subjected to a uniform motion

)
at y = 1. (2.9)

The boundary conditions, (2.8) and (2.7), can be easily combined to give

du

dy
= meT/(1+βT),

d2T

dy2
+ γeT/(1+βT) = 0, (2.10)

where γ = m2Br + λ and m is a constant to be determined. In the following sections, (2.10) is
solved both analytically using a perturbation method and numerically using the standard
Newton Raphson shooting method along with a fourth-order Runge Kutta integration
algorithm [19].
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3. Perturbation Approach

Due to the nonlinear nature of the velocity and temperature field equations in (2.10), it is
convenient to form a power series expansion both in the parameter γ , that is,
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i. (3.1)

Substituting the solution series in (3.1) into (2.10) and collecting the coefficients of like
powers of γ , we obtained the followings:
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with u2(0) = 0, T2(0) = 0, u2(1) = 0, T2(1) = 0,
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and so on. The above equations for the coefficients of solution series are solved iteratively for
the velocity and temperature fields, and we obtain
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It is noteworthy that, in the limit of γ → 0, the fluid velocity profile obtained in (3.6) reduces
to u(y) = y which corresponds to the classical linear velocity profile for Couette flow with
constant fluid viscosity. Using a computer symbolic algebra package (MAPLE) [19], the first
few terms of the above solution series in (3.5)-(3.6) are obtained. We are aware that these
power series solutions are valid for very small parameter values (of order 10−4). However,
using Hermite-Padé approximation technique, we have extended the usability of the solution
series beyond small parameter values as illustrated in the following section.

4. Hermite-Padé Approximation Technique

From the application point of view, it is extremely important to determine the appearance of
criticality or nonexistence of steady-state solution for certain parameter values. In order to
achieve this, we first derived a special type of Hermite-Padé approximant. Let
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)
, as γ −→ 0, (4.1)

be a given partial sum. It is important to note here that (4.1) can be used to approximate any
output of the solution of the problem under investigation (e.g., the series for the wall heat
flux parameter in terms of Nusselt number Nu = −dT/dy at y = 1), since everything can be
Taylor expanded in the given small parameter. Assume that U(γ) is a local representation of
an algebraic function of γ in the context of nonlinear problems; then we seek an expression of
the form
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of degree d ≥ 2, such that

∂Fd

∂U
(0, 0) = 1, Fd
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= O
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)
, as γ −→ 0. (4.3)

The requirement (4.3) reduces the problem to a system of N linear equations for the
unknown coefficients of Fd. The entries of the underlying matrix depend only on the N given
coefficients an and we will take N = (d2 + 3d − 2)/2, so that the number of equations equals
the number of unknowns. The polynomial Fd is a special type of Hermite-Padé approximant
and is then investigated for bifurcation and criticality conditions using Newton diagram;
Vainberg and Trenogin see [20].

5. Numerical Approach

The numerical technique chosen for the solution of the coupled ordinary differential (2.10)
is the standard Newton Raphson shooting method along with a fourth-order Runge Kutta
integration algorithm. Equation (2.10) is transformed into a system of first-order differential
equations as follows. Let u = x1, T = x2, and T ′ = x3, where the prime symbol represents
derivative with respect to y. Then, the problem becomes

x′
1 = mex2/(1+βx2), x′

2 = x3, x′
3 = −γex2/(1+βx2), (5.1)

subject to the following initial conditions:

x1(0) = 0, x2(0) = 0, x3(0) = s1. (5.2)

The unspecified initial condition s1 and the undetermined constant m are guessed
systematically and (5.1) is then integrated numerically as initial valued problems to the given
terminal point at y = 1. For each set of parameter values for β and γ , the procedure is repeated
until conditions at the y = 1 (i.e., x1(1) = 1, x2(1) = 0) are satisfied and the desired degree of
accuracy (namely, 10−7) of the results obtained is achieved.

6. Entropy Analysis

Flow and heat transfer processes between two parallel plates are irreversible. The
nonequilibrium conditions arise due to the exchange of energy and momentum within the
fluid and at solid boundaries, thus resulting in entropy generation. A part of the entropy
production is due to the heat transfer in the direction of finite temperature gradients and the
other part of entropy production arises due to the fluid friction. The general equation for the
entropy generation per unit volume is given by [2, 10, 12, 16]

Sm =
k

T2
w

(
∇T

)2
+

μ

Tw
Φ. (6.1)
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The first term in (6.1) is the irreversibility due to heat transfer and the second term is the
entropy generation due to viscous dissipation. Using (6.1), we express the entropy generation
number in dimensionless form as
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w
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In (6.2), the first term can be assigned as N1 and the second term due to viscous dissipation
as N2, that is,

N1 =
(
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. (6.3)

In order to have an idea whether fluid friction dominates over heat transfer irreversibility
or vice versa, Bejan [10] defined the irreversibility distribution ratio as Φ = N2/N1. Heat
transfer dominates for 0 ≤ Φ < 1 and fluid friction dominates when Φ > 1. The contributions
of both heat transfer and fluid friction to entropy generation are equal when Φ = 1. In many
engineering designs and energy optimization problems, the contribution of heat transfer
entropy N1 to overall entropy generation rate Ns is needed. As an alternative to irreversibility
parameter, the Bejan number (Be) is define mathematically as

Be =
N1

Ns
=

1
1 + Φ

. (6.4)

Clearly, the Bejan number ranges from 0 to 1. Be = 0 is the limit where the irreversibility
is dominated by fluid friction effects and Be = 1 corresponds to the limit where the
irreversibility due to heat transfer by virtue of finite temperature differences dominates. The
contributions of both heat transfer and fluid friction to entropy generation are equal when
Be = 1/2.

7. Results and Discussion

We emphasize here that an increase in the parameter value of β indicates an increase in
the fluid viscosity and a decrease in the fluid activation energy while an increase in the
parameter value of γ signifies an increase in the reactive flow Arrhenius kinetics. Table 1
below demonstrates agreement between the results obtained using perturbation technique
and purely fourth-order Runge Kutta numerical integration approach coupled with shooting
method at small and moderate parameter values. Generally, the difference is of order 10−8.

The Hermite-Padé approximation procedure in Section 4 above was applied to the first
few terms of the solution series in Section 2 and we obtained the results as shown in Tables 2
and 3 below.

The results in Table 2 reveal the rapid convergence of Hermite-Padé approximation
procedure with gradual increase in the number of series coefficients utilized in the
approximants. In Table 3, it is noteworthy that the magnitude of thermal criticality (γc)
increases with an increase in the reactive flow activation energy parameter (i.e., β 	 0). This
invariably will lead to a delay in the development of thermal runaway in the flow system and
enhance flow thermal stability.
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Table 1: Comparison between analytical and numerical results (β = 0.1, γ = 0.5)

y T(y) Perturbation Results T(y) Numerical Results |Tnumer. − Tperturb.|
0 0 0 0

0.1 0.02360044943 0.02360039520 5.423 × 10−8

0.2 0.04208380022 0.04208374384 5.638 × 10−8

0.3 0.05535532038 0.05535525228 6.810 × 10−8

0.4 0.06334613033 0.06334604947 8.086 × 10−8

0.5 0.06601440811 0.06601432697 8.114 × 10−8

0.6 0.06334613023 0.06334604947 8.076 × 10−8

0.7 0.05535532037 0.05535525228 6.809 × 10−8

0.8 0.04208380020 0.04208374384 5.636 × 10−8

0.9 0.02360044944 0.02360039520 5.424 × 10−8

1.0 0 0 0

Table 2: Computations showing the criticality procedure rapid convergence (β = 0.1).

d N Nu γcN

2 4 5.0854548671499 3.9528766995579

3 8 5.0849831249732 3.9528312115207

4 13 5.0849831815807 3.9528312148390

5 19 5.0849831815664 3.9528312148383

6 26 5.0849831815664 3.9528312148383

Table 3: Computations showing thermal criticality for different parameter values.

β 0 0.1 0.15 0.2

Nu 4.0000000000000 5.0849831815664 6.0215731738934 7.717815638192141

γc 3.51383071912516 3.9528312148383 4.2506038264647 4.647918009128950

The velocity profiles are reported for increasing values of γ and β in Figures 2 and 3.
The fluid velocity is zero at the lower stationary plate and increases gradually towards the
upper moving upper plate. For γ = 0, the fluid shows the standard Couette linear velocity
profile with maximum velocity at the moving upper plate. As the parameter value of γ > 0
increases, the Arrhenius kinetic increases, causing the velocity profile to increase nonlinearly
across the channel to a maximum at y = 1. Furthermore, for increasing value of β, an inflexion
point appears in the velocity profile around the centre of the channel as shown in Figure 3.

Typical variations of the fluid temperature profiles in the normal direction are shown
in Figures 4 and 5. The fluid temperature increases with increasing values of γ . This can be
attributed to an increase in heat generation within the fluid due to exothermic reaction as
illustrated in Figure 4. A decrease in the fluid temperature is observed when the parameter
value of β increases; in this case, the fluid activation energy is reduced and its viscosity has
increased. Meanwhile, minimum temperature is generally observed at both the lower and the
upper plate surfaces while the maximum temperature occurs around the core region of the
channel.
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Figure 3: Velocity profile: γ = 5; (——) β = 0.3; (ooooo) β = 0.5; (++++) β = 0.7; (. . . . . .) β = 1.

A slice of the bifurcation diagram for 0 < β � 1 in the (γ , Nu) plane is shown
in Figure 6. It represents the qualitative change in the flow system as the parameter (γ)
increases. In particular, for 0 ≤ β � 1 there is a critical value γc (a turning point) such that,
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Figure 4: Temperature profile: β = 0.3; (——) γ = 1; (ooooo) γ = 2; (++++) γ = 4; (. . . . . .) γ = 5.
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Figure 5: Temperature profile: γ = 5; (——) β = 0.3; (ooooo) β = 0.5; (++++) β = 0.7; (. . . . . .) β = 1.

for 0 < γ < γc, there are two solutions (labelled I and II). The upper and lower solution
branches occur due to the temperature-dependent variable viscosity and Arrhenius kinetics
in the governing thermal boundary layer equation (2.10). When γ > γc, the system has no real



12 Mathematical Problems in Engineering

5

I

N
u 10

γc = 3.9528312148

15
II

0 4

γ

8

Figure 6: A slice of approximate bifurcation diagram in the (γ , Nu(β = 0.1)) plane.

2

1.5

N
s

2.5

3

3.5

4

0 0.2 0.4

y

0.6 0.8 1

Figure 7: Entropy generation rate: γ = 2; (——) β = 0.5; (ooooo) β = 0.6; (++++) β = 0.7; (. . . . . .) β = 0.8.

solution and displays a classical form indicating thermal runaway. As temperature increases
the fluid viscosity decreases exponentially. The velocity gradient specified by (2.10) increases
exponentially with temperature coupled with increasing Arrhenius kinetics and feeds back
into the temperature equation, leading to thermal runaway [5, 8, 9].
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Figure 9: Bejan number: γ = 2; (——) β = 0.1; (ooooo) β = 0.3; (++++) β = 0.5; (. . . . . .) β = 0.8.

Figures 7 and 8 display results for the entropy generation versus the channel width
for various parametric values. Generally, entropy generation rate is maximum at the plate
surfaces and minimum around the core region of the channel. It is interesting to note that the
entropy generation rate decreases with increasing value of β and increases with increasing
value of γ .
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Figure 10: Bejan number: β = 0.5; (——) γ = 2; (ooooo) γ = 3; (++++) γ = 4; (. . . . . .) γ = 5.

Figures 9 and 10 display the Bejan (Be) number versus the channel width. It is
observed that the fluid friction irreversibility dominates at the channel core region while
the heat transfer irreversibility dominates at both the lower and upper plate surfaces. The
dominant effect of heat transfer irreversibility at the plate increases with increasing values of
β and γ .

8. Conclusion

The evaluation of the entropy production rates for variable viscosity reactive Couette flow
was carried out using both analytical and numerical techniques. Solutions are obtained for
fluid velocity and temperature profiles. Using a special type of Hermite-Padé approximation
technique, we obtain accurately the thermal criticality conditions and the solution branches.
The volumetric entropy generation rate and the Bejan number depend on fluid viscosity
variation and activation energy parameter (β) and heat generation parameter (γ). Our results
reveal that, for all parametric values, fluid friction irreversibility dominates at the channel
core region while at both lower fixed and upper moving plate surfaces the heat transfer
irreversibility dominates.
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