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This paper presents the solving unit commitment (UC) problem using Modified Subgradient
Method (MSG) method combined with Simulated Annealing (SA) algorithm. UC problem is one
of the important power system engineering hard-solving problems. The Lagrangian relaxation
(LR) based methods are commonly used to solve the UC problem. The main disadvantage of this
group of methods is the difference between the dual and the primal solution which gives some
significant problems on the quality of the feasible solution. In this paper, MSG method which does
not require any convexity and differentiability assumptions is used for solving the UC problem.
MSG method depending on the initial value reaches zero duality gap. SA algorithm is used in
order to assign the appropriate initial value for MSG method. The major advantage of the proposed
approach is that it guarantees the zero duality gap independently from the size of the problem. In
order to show the advantages of this proposed approach, the four-unit Tuncbilek thermal plant
and ten-unit thermal plant which is usually used in literature are chosen as test systems. Penalty
function (PF) method is also used to compare with our proposed method in terms of total cost and
UC schedule.

1. Introduction

UC is very important problem for power system engineering. The problem can be described
as a nonlinear, mixed-integer, and nonconvex and is considered to be a nondeterministic
polynomial-time hard (NP-hard) problem [1]. The real difficulty in solving the problem is
the high dimension of the possible solution space. Meta-heuristic and mathematical based
methods have been developed for solving the thermal and hydrothermal UC problem in the
literature. The most used metaheuristic methods are SA [2–5], expert systems [6], tabu search
[7–9], evolutionary programming [10, 11], genetic algorithms [12–15], memetic algorithm
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[16], particle swarm optimization [17], interior point method [18], neural network [19, 20],
and greedy randomized adaptive search procedure [21]. The mathematical-based methods
depend on the duality theory [22–28]. The other methods used for solving the UC problem are
dynamic programming [29, 30], mixed-integer programming [31], benders decomposition
[32], and some hybrid methods [33–35].

Meta-heuristic methods are used for solving difficult combinatorial optimization
problems. To solve UC problem by using these methods, priority list is precalculated and
all the constraints are heuristically incorporated.

The LR method subsequently tries to find the values of the Lagrange multipliers
that maximize the dual objective function based on the duality theory. The duality gap,
a major problem in the nonlinear programming, has been long recognized as an inherent
disadvantage of these methods. If the LR-based methods are used for solving the UC
problem, dual solution may be far away from the optimal solution. The duality gap for
the problem of UC is an important measure of the quality of the solution. When the gap is
smaller, the solution is better [36]. In [37], different mathematical-based methods LR, penalty
function, and augmented Lagrangian penalty function are compared to each other according
to feasible cost, dual cost, duality gap, number of iterations, and duration time. According to
[37], it is seen that there are differences between primal value and dual value. MSG method
does not require any convexity and differentiability assumptions. In the nonlinear NP, the
duality gap has been investigated and the theoretical tools for zero duality gap condition
have been improved extensively in [38–42].

In this paper, one of the methods based on dual optimization technique, MSG method,
which has the best performance in eliminating the duality gap in the literature, is used for
solving the UC problem. A dual problem with respect to the sharp augmented Lagrangian is
constructed for UC problem. The disadvantage of the MSG method is that the zero-duality
gap value depends on the initial value of the upper dual value. This dual value is found
by using SA algorithm. In this proposal approach constructs the dual problem and solves it
without any duality gap for large class of nonconvex constrained problems. This proposed
approach is compared to PF method because the MSG method removes some of the problems
occurred in this method.

The remaining sections are outlined as follows. Section 2 provides a description of the
UC problem formulation. This section includes an objective function and the constraints of
the problem. In Section 3, MSG method with SA algorithm Explained in detailed. In Section 4,
applications and numerical results are presented and discussed. Finally the conclusion is
given.

2. Unit Commitment Problem Formulation

UC has been used to plan over a given time horizon the most economical schedule of
committing and dispatching generating units to meet forecasted demand levels and spinning
reserve requirements while all generating unit constraints are satisfied. The objective function
can be represented mathematically as
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In (2.1), T is period,N is the number of generators, Pti is the generation power output of unit i
at hour t, Fi(Pti ) is quadratic fuel cost function of generating unit i (Fi(Pti ) = ai+biP

t
i +ci(P

t
i )

2),
Ut
i is status of unit i at hour t (on = 1, off = 0), SCt

i is startup cost of unit i at hour t, SDt
i is

shutdown cost of unit i at hour t [43].
The minimization of the objective function is provided to the following constraints.

System Constraints

Power Balance Constraints. For satisfying the load balance in each stage, the forecasted load
demand should be equal to the total power of the generated power for feasible combination

N∑

i=1

Ut
iP

t
i = P

t
d. (2.2)

In (2.2), Pt
d

is system load demand at hour t.

Unit Constraints

Generation Limits. Each unit must satisfy the generation range

Pi,minU
t
i ≤ Pti ≤ Pi,maxU

t
i, i = 1, 2, . . . ,N. (2.3)

In (2.3), Pi,min is minimum power output of unit i, and Pi,max is maximum power output of
unit i.

Ramp Up and Ramp Down Constraints. For each unit, output is limited by ramp
up/down rate at each hour as follows:

Pt−1
i − Pti ≤ RDi, if Ut

i = 1 & Ut−1
i = 1,

P ti − Pt−1
i ≤ RUi, if Ut

i = 1 & Ut−1
i = 1,

(2.4)

RDi is ramp down rate limit of unit i, and RUi is ramp up rate limit of unit i.
The problem is nonconvex because it is structured binary variables. These variables

cause a great deal of trouble and difficulty in solving the UC. Load balance is coupling
constraint for the UC problem. The coupling constraints across the unit so that one unit affects
what will happen on other units if the coupling constraints are met.

3. Modified Subgradient Method Combined with
Simulated Annealing Algorithm

3.1. Simulated Annealing Algorithm for Unit Commitment

SA algorithm is a strong technique for solving hard combinatorial optimization problems
without specific structure. This method has the ability of escaping local minima by
performing uphill moves. The main advantage of SA algorithm is that it does not need
large computer memory. SA is based on the iterative method, originally proposed by
Metropolis et al. [44], which simulates the transition of atoms in equilibrium at a given
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temperature. The main disadvantage of this method is very greedy regarding computation
time requirements, due to the large number of iterations needed for the convergence of the
method. All the generating and acceptance distributions depend on the temperature [3].

One of the measure steps in the SA is the cooling schedule. This schedule has three
components: the initial temperature setting, the temperature decreasing scheme, and a finite
number of initial value of temperature should be large enough to allow all transients to be
accepted for unconstrained optimization problem. On the other hand, the temperature is
lowered based on multiplying the temperature in which typical values lie between 0.8 and
0.99. If the acceptance ratio is low or the sampled mean and variance of cost values at current
temperature have big drops, then the factor is adjusted to a higher value in order to avoid
getting stuck at a local optimal configuration. Otherwise, the factor is adjusted to a lower
value to increase the convergence speed. The number of moves at each temperature is based
on the requirement that at each temperature quasiequilibrium is to be restored. The final
temperature is obtained if, at five consecutive temperatures, either the sampled mean values
of cost function do not change or the acceptance ratio is small enough [2, 3].

In solving the UC problem by using SA algorithm, two types of variables need to be
determined: the unit status (binary) variables U and the units output power (continuous)
variables P. Then, this problem can be considered into two subproblems, a combinatorial
optimization problem in U and a nonlinear optimization problem in P. The flow diagram
of SA algorithm for UC problem is given in Figure 1 [3]. The economic dispatch problem is
solved by using lambda-iteration method in the SA.

3.2. Modified Subgradient Method for Unit Commitment

The MSG method proposed by Gasimov has a notable performance in having zero duality
gaps for large class of nonconvex problems [38, 39]. In the standard form the nonlinear
programming problem can be expressed as follows:

min
K

f(K) (3.1)

subject to

⎧
⎨

⎩

h(K) ≤ 0,

K ∈ Ω,
(3.2)

where h(K) = [h1(K) h2(K) · · · hn(K)] is the constraint vector.
The primal problem is (3.1). Sharp augmented Lagrangian is defined as follows:

L(K,v, c) = f(K) + c‖h(K)‖ − vTh(K), (3.3)

where v ∈ R3 and c ∈ R+. Define the dual function as

H(v, c) = min
K∈Ω

L(K,v, c). (3.4)
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Initialize all variables

Find, randomly an initial feasible solution.

Solve the economic dispatch problem.

Calculate total cost, F(Pti ,U
t
i)

Determine the initial temperature that results in a
high probability of accepting any solution.

Equilibrium is achieved?
Yes

No

Stop

Find a trial solution.

Perform the acceptance test;
accept or reject the trial solution.

Stopping criterion is satisfied
Yes

No
Stop

Decrease the temperature.

Figure 1: SA algorithm for UC problem.

The dual problem (P ∗) is

max
(v,c)∈R3×R+

H(v, c). (3.5)
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Dual function H(v,c) is not a definite function; however it is a convex function for continuous
f (K), h(K) and compact set S. Inequality constraints can be converted to standard form by
adding nonnegative slack variables to left hand sides of inequalities; one of the advantages
of the MSG method is that the fact that the solution convergence is proved. Thus, in each
iteration a better solution can be found. This method differs from the classical LR functions,
scans the solution with conics, and hence obtains zero dual gap value. In other words, there is
no difference between primal and dual problems. Thus it gives an optimal solution. Another
advantage of this method is that it does not require any convexity and differentiability
assumptions.

Using the definitions, the MSG method is as follows.

Initialization

Choose a pair (v1, c1) with v1 ∈ R3 and c ∈ R+, c1 ≥ 0 and let j = 1, and go to Step 1.

Step 1. Given (cj , vj), solve the following subproblem:

min
K

f(K) + cj‖h(K)‖ − vjh(K) = H
(
vj , cj

)
(3.6)

subject to k ∈ Ω.

In (3.6) (cj , vj) is multiplier of sharp augmented Lagrangian, f(K) is objective
function, ‖h(K)‖ is norm of the constraint vector, and H(vj , cj) is dual function of the
problem. Let Kj be a solution of (3.6). If h(Kj) = 0, then stop; (vj , cj) is an optimal solution to
the dual problem and Kj is a solution to (3.1); so f(Kj) is the optimal value of problem (3.1).
Otherwise, go to Step 2.

Step 2. Update (vj , cj) by

vj+1 = vj − zjh
(
Kj

)
,

cj+1 = cj +
(
zj + εj

)∥∥h
(
Kj

)∥∥,
(3.7)

where zj and εj are positive scalar step sizes defined below. Replace j by j+1 and go to Step 1.

Step Size Calculation

Let us consider the pair (vj , cj) and calculate

H
(
vj , cj

)
= min

K∈Ω
L(K,v, c), (3.8)
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and let H(Kj)/= 0 for the corresponding Kj , which means that Kj is not optimal. Then the
step size parameter zj can be calculated as

0 < zj <
2
(
H −H(vj , cj

))

5
∥
∥h(Kj)

∥
∥2

,

0 < εj < zj ,

(3.9)

where H is an upper bound for the dual function. Considering the dual function formed
by using the sharp Lagrangian, its value at any feasible point is not larger than primal
problems’ objective function value. The equality occurs at a point when both primal and
dual problems achieve their optimal values. It has been proven in [38] that if h(K) = 0 for
any K obtained from (3.6), then it is the solution of the primal problem. If h(K)/= 0, then the
value of H calculated from (3.6) is strictly less than the optimal value of (3.1). In this case
we update dual variables using Step 2, which leads to an increase in the value of the dual
function. Solution of (3.6) corresponding to the updated (v, c) is always greater than the value
obtained in the previous step. Note that this property is not guaranteed by the multiplier
and penalty methods [43, 45]. According to MSG method for solving the UC problem, the
objective function and constraints are defined as follows.

Objective Function

One has
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Slack variables are added to inequality constraints. Equality and inequality constraints can
be defined as follows.

Generation Limit Constraints

One has

h1(N,T) = Ut
iPi,min − Pti + hti = 0,

h2(N,T) = Pti −Ut
iPi,max + hti = 0.

(3.11)

Load Balance Constraints

One has

h3(T) =
N∑

i=1

Ut
iP

t
i − Ptd = 0. (3.12)
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Ramp Up and Ramp Down Constraints

One has

h4(N,T) = Pt−1
i − Pti − RDi, + hti, if Ut

i = 1 & Ut−1
i = 1,

h5(N,T) = Pti − Pt−1
i − RUt

i + h
t
i, if Ut

i = 1 & Ut−1
i = 1.

(3.13)

hti shows slack variables from (3.11) to (3.13).
H = [h1(N,T)h2(N,T)h3(T)h4(N,T)h5(N,T)]. According to (3.3), sharp augmented

Lagrangian LSAL is defined as follows:
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(3.14)

The epsilon value is chosen as 0.95zj in the UC problem solution. After (3.14) is
constructed using the objective function and constraints, all the steps of the MSG method
are applied to the UC problem. In this study, SA algorithm is used in order to assign the
appropriate initial value H for MSG method. Then, the UC problem is solved using this
proposed method for finding the optimal solution.

4. Applications and Numerical Results

The UC problem for four-unit Tuncbilek thermal plant is solved by using the MSG method
combined with SA algorithm. First the SA algorithm is applied to the UC problem and then
the cost function value found from the SA algorithm is used as upper dual value in MSG
method for four-unit Tuncbilek thermal plant and ten-unit thermal plant. SA algorithm is
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Table 1: Unit characteristics for four-unit Tuncbilek thermal plant.

Unit Pmin Pmax SC a b C SD RDi RUi

No (MW) (MW) ($) ($/h) ($/MWh) ($/MW2h) ($) (MW/h) (MW/h)
1 8 32 60 0.515 10.86 149.9 120 6 6
2 17 65 240 0.227 8.341 284.6 480 13 13
3 35 150 550 0.082 9.9441 495.8 1100 30 30
4 30 150 550 0.074 12.44 388.9 1100 30 30

Table 2: Load data for four-unit Tuncbilek thermal plant (MW).

Stage Load Stage Load
1 168 5 313
2 150 6 347
3 260 7 308
4 275 8 231

coded in MATLAB PF and MSG methods are coded in GAMS which is a high-level modeling
system for mathematical programming problems [46]. The data for four-unit Tuncbilek
thermal plant is taken from Turkish Electric Power Company and Electricity Generation
Company. The unit characteristics for four-unit Tuncbilek thermal plant are given in Table 1.
In this study, a 24-hour day is subdivided into 8 discrete stages for four-unit Tuncbilek
thermal plant. The load demands for the stages are given in Table 2. The unit characteristics
for ten-unit thermal plant are given in Table 3. The load demands for each period are given in
Table 4 for ten unit thermal plant. UC schedule for the SA algorithm for four-unit Tuncbilek
thermal plant is given in Table 5. UC schedule for the SA algorithm for ten-unit thermal plant
is given in Table 6.

The cost value $56249.9 found from the SA algorithm is used for upper dual value in
MSG method for four-unit Tuncbilek thermal plant. The cost value $565907.9 found from the
SA algorithm for ten-unit thermal plant. Optimal solution of the dual model set up by the
augmented Lagrange function, which is proposed by Azimov and Gasimov for nonconvex
problems, is equal to the primal solution of the system [38–40]. CONOPT2 is used as a GAMS
solver for MSG and PF methods. The MSG method is run until the norm is equal to 9.713717×
10−7 for four-unit Tuncbilek thermal plant; the norm is equal to 6.61489 × 10−4 for ten-unit
thermal plant. Then all the constraints reduce to zero and feasible solution is obtained. Primal
value is equal to the dual value yielding zero duality gap value for both of these systems. The
value for the c parameter is 9957.327 for four-unit Tuncbilek thermal plant; c parameter is
13468.451 for ten-unit thermal plant. The UC schedule for MSG method combined with SA
algorithm is given for four-unit Tuncbilek thermal plant and ten-unit thermal plant in Tables
7 and 8, respectively.

In Table 7, the total cost value is found $55581.683 and in Table 8 total cost value is
found $563986.5 for MSG method combined with SA algorithm. It can be seen from Tables 7
and 8 that MSG reaches to zero duality gap value (primal value = dual value) for UC problem.

To show the advantages of this method, PF method is used. UC schedule, primal-dual
values for PF method are given in Tables 9 and 10 for four-unit Tuncbilek thermal plant and
for ten-unit thermal plant, respectively.

It is seen that there are differences between primal value and dual value in the PF
method. The quality of the solution is improved when the duality gap is decreased. In this



10 Mathematical Problems in Engineering

Table 3: Unit characteristics for ten-unit thermal plant.

Unit Pmin Pmax SC SC a b C RDi RUi

No (MW) (MW) (hot)($) (cold)($) ($/h) ($/MWh) ($/MW2h) (MW/h) (MW/h)
1 150 455 4500 9000 1000 16.19 0.00048 130 130
2 150 455 5000 10000 970 17.26 0.00031 130 130
3 20 130 550 1100 700 16.60 0.00200 60 60
4 20 130 560 1120 680 16.50 0.00211 60 60
5 25 162 900 1800 450 19.70 0.00398 90 90
6 20 80 170 340 370 22.26 0.00712 40 40
7 25 85 260 520 480 27.74 0.0079 40 40
8 10 55 30 60 660 25.92 0.00413 40 40
9 10 55 30 60 665 27.27 0.00222 40 40
10 10 55 30 60 670 27.79 0.00173 40 40

Table 4: Load data for ten-unit thermal plant (MW).

Stage Load Stage Load Stage Load
1 700 9 1300 17 1000
2 750 10 1400 18 1100
3 850 11 1450 19 1200
4 950 12 1500 20 1400
5 1000 13 1400 21 1300
6 1100 14 1300 22 1100
7 1150 15 1200 23 900
8 1200 16 1050 24 800

Table 5: UC schedule for SA algorithm for four-unit Tuncbilek thermal plant.

Stage Unit Combination
1 0 0 1 1
2 0 0 1 1
3 0 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 0 1 1 1

TC = $56249.9.

paper, zero duality gap is achieved and feasible solution is attained by using total cost value
of the SA algorithm as an upper dual value for the MSG method.

5. Conclusion

The quality of the solution of UC problem is improved when the duality gap is decreased. In
this paper zero duality gap is achieved and feasible solution is attained by applying the novel
proposed method, MSG method combined with SA algorithm, to solving the UC problem.
The cost function found from the SA algorithm is used for upper dual value in MSG method.
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Table 6: UC schedule for SA algorithm for ten-unit thermal plant.

Period Unit Combination Period Unit Combination
1 1 1 0 0 0 0 0 0 0 0 13 1 1 1 1 1 1 1 1 0 0
2 1 1 0 0 0 0 0 0 0 0 14 1 1 1 1 1 1 1 0 0 0
3 1 1 0 0 1 0 0 0 0 0 15 1 1 1 1 1 0 0 0 0 0
4 1 1 0 0 1 0 0 0 0 0 16 1 1 1 1 1 0 0 0 0 0
5 1 1 0 1 1 0 0 0 0 0 17 1 1 1 1 1 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0 18 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0 19 1 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 0 0 0 0 0 20 1 1 1 1 1 1 1 1 0 0
9 1 1 1 1 1 1 1 1 0 0 21 1 1 1 1 1 1 1 0 0 0
10 1 1 1 1 1 1 1 1 0 0 22 1 1 0 0 1 1 1 0 0 0
11 1 1 1 1 1 1 1 1 1 0 23 1 1 0 0 1 0 0 0 0 0
12 1 1 1 1 1 1 1 1 1 1 24 1 1 0 0 0 0 0 0 0 0

TC = $565907.9.

Table 7: UC schedule for MSG method combined with SA algorithm for four-unit Tuncbilek thermal plant.

Stage Unit Combination
1 0 0 1 1
2 0 1 1 0
3 0 1 1 1
4 0 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1 1
8 0 1 1 1

TC = $55581.683 (primal value = dual value).

Table 8: UC schedule for MSG method combined with SA algorithm for ten-unit thermal plant.

Period Unit Combination Period Unit Combination
1 1 1 0 0 0 0 0 0 0 0 13 1 1 1 1 1 1 1 1 0 0
2 1 1 0 0 0 0 0 0 0 0 14 1 1 1 1 1 1 1 0 0 0
3 1 1 0 0 1 0 0 0 0 0 15 1 1 1 1 1 0 0 0 0 0
4 1 1 0 0 1 0 0 0 0 0 16 1 1 1 1 1 0 0 0 0 0
5 1 1 0 1 1 0 0 0 0 0 17 1 1 1 1 1 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0 18 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0 19 1 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 0 0 0 0 0 20 1 1 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 0 0 0 0 21 1 1 1 1 1 1 1 0 0 0
10 1 1 1 1 1 1 1 1 0 0 22 1 1 0 0 1 1 1 0 0 0
11 1 1 1 1 1 1 1 1 1 0 23 1 1 0 0 1 0 0 0 0 0
12 1 1 1 1 1 1 1 1 1 1 24 1 1 0 0 0 0 0 0 0 0

TC = $563986.5 (primal value = dual value).

The most attractive feature of the proposed approach is that the duality gap value of MSG
method over the scheduled time horizon is zero. Note that there is a general acceptance that
whenever the system size gets smaller, the duality gap value gets bigger for UC problem.
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Table 9: UC schedule for PF method for four-unit Tuncbilek thermal plant.

Stage Unit Combination
1 0 0 1 1
2 0 0 1 1
3 0 0 1 1
4 0 1 1 1
5 1 1 1 1
6 1 1 1 1
7 0 1 1 1
8 0 1 1 1

Primal value = $55917.13, Dual value = $55407.38.

Table 10: UC schedule for PF method for ten-unit thermal plant.

Period Unit Combination Period Unit Combination
1 1 1 0 0 0 0 0 0 0 0 13 1 1 1 1 1 1 1 1 0 0
2 1 1 0 0 0 0 0 0 0 0 14 1 1 1 1 1 1 1 0 0 0
3 1 1 0 0 1 0 0 0 0 0 15 1 1 1 1 1 0 0 0 0 0
4 1 1 0 0 1 0 0 0 0 0 16 1 1 1 1 1 0 0 0 0 0
5 1 1 0 1 1 0 0 0 0 0 17 1 1 1 1 1 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0 18 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0 19 1 1 1 1 1 1 0 0 0 0
8 1 1 1 1 1 0 0 0 0 0 20 1 1 1 1 1 1 1 0 0 0
9 1 1 1 1 1 1 1 0 0 0 21 1 1 1 1 1 1 1 0 0 0
10 1 1 1 1 1 1 1 1 1 0 22 1 1 0 0 1 1 1 0 0 0
11 1 1 1 1 1 1 1 1 1 0 23 1 1 0 0 1 0 0 0 0 0
12 1 1 1 1 1 1 1 1 1 1 24 1 1 0 0 0 0 0 0 0 0

Primal value = $565282.9, Dual value = $559741.45.

However, it is shown that this is not the case with the MSG method for a small size system.
The results of the proposed method for solving the UC problem are very impressive, and the
quality of feasible solution is significantly improved. This approach can be applied to UC
problem for any size of systems to obtain the feasible schedule.

List of Symbols

c: Multiplier of sharp augmented Lagrangian
f(K): Objective function
Fi(Pti ): Generator fuel cost function in a quadratic form, Fi(Pti ) = ai + biP

t
i + ci(P

t
i )

2 ($/h)
H: Upper bound of the dual function
H(v, c): Dual function
h(x): Equality constraint
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g(x): Inequality constraint
LR: Lagrangian Relaxation
N: Number of generating units
P : Primal problem
P ∗: Dual problem
PF: Penalty function method
Pt
d
: Nominal demand at hour t (MW)

Pti : Generation output of unit i at hour t (MW)
Ptmax,i: Maximum available capacity of unit i at hour t (MW)
Ptmin,i: Minimum available capacity of unit i at hour t (MW)
RUi: Ramp up rate of unit i (MW/h)
RDi: Ramp down rate of unit i (MW/h)
SCi: Start up cost of unit i ($)
SDi: Shut down cost of unit i ($)
UC: Unit commitment
Ut
i : Status value of unit i at time t

T : Time horizon for UC (h)
TC: Total cost
v: Multiplier of sharp augmented Lagrangian.
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