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An unsteady nonlinear and extended version of the Moore-Greitzer model is developed to
facilitate the synthesis of a quasilinear stall vibration controller. The controller is synthesised in two
steps. The first step defines the equilibrium point and ensures that the desired equilibrium point
is stable. In the second step, the margin of stability at the equilibrium point is tuned or increased
by an appropriate feedback of change in the mass flow rate about the steady mass flow rate at the
compressor exit. The relatively simple and systematic non-linear modelling and linear controller
synthesis approach adopted in this paper clearly highlights the main features on the controller that
is capable of inhibiting compressor surge and rotating stall vibrations. Moreover, the method can
be adopted for any axial compressor provided its steady-state compressor and throttle maps are
known.

1. Introduction

Compressor surge and rotating stall vibrations place fundamental limitations on aircraft
engine performance and remain persistent problems in the development of axial compressor
and fan stages. Compressor surge and rotating stall are purely fluid mechanic instabilities,
while blade flutter, stall flutter, and surge flutter and their variants are aeroelastic instabilities
involving both blade vibrations and fluid motion. Although both rotating stall flutter and
rotating stall tend to occur when the blades of a compressor or fan are operating at high-
incidence angles and/or speed, and unsteady viscous flow separation plays a key role in
both of these phenomena, the various fluttering phenomena are precursors to compressor
surge.

Surge is characterized by large amplitude fluctuations of the pressure in unsteady,
circumferentially uniform, annulus-averaged mass flow. It is a one-dimensional instability
that spreads through the compression system as a whole and culminates in a limit cycle



2 Mathematical Problems in Engineering

oscillation in the compressor map. In most situations surge is initiated in a compressor when
the compressor mass flow is obstructed and throttled. The frequency of surge oscillations
is relatively in a low-frequency band (<25–30 Hz) which could couple with the aeroelastic
modes of vibration. The performance of the compressor in surge is characterised by a loss
in efficiency leading to high-aeroelastic vibrations in the blade as well as influence the stress
levels in the casing. In jet engines, surge can lead to the so-called flame-out of the combustor
which could involve reverse flow and chaotic vibrations.

Based on the amplitude of mass flow and pressure fluctuations, surge was classified
into four distinct categories: mild surge, classical surge, modified surge, and deep surge by
de Jager [1]. This classification is now widely accepted and is used to differentiate between
different forms of surge and rotating stall vibrations. During mild surge, the frequency
of oscillations is around the Helmholtz frequency associated with the resonance within a
cavity, that is, the resonance frequency of the compressor duct and the plenum volume
connected to the compressor. This frequency is typically over an order of magnitude smaller
than the maximal rotating stall frequency which is normally of the same order as the rotor
frequency. Classical surge is a nonlinear phenomenon such as bifurcation and chaos with
larger oscillations and at a lower frequency than mild surge, but the mass flow fluctuations
remain positive. Modified surge is a mix of both classical surge and rotating stall. Deep surge,
which is associated with reverse flow over part of the cycle, is associated with a frequency
of oscillation well below the Helmholtz frequency and is induced by transient nonlinear
processes within the plenum. Mild surge may be considered as the first stage of a complex
nonlinear phenomenon which bifurcates into other types of surge by throttling the flow to
compressor to lower mean mass flows. Mild surge is generally a relatively low-frequency
phenomenon (≈5–10 Hz) while rotating stall is a relatively higher-frequency phenomenon
(≈25–30 Hz).

There are two modes of stable control of a compressor, the first is based on surge
avoidance which involves operating the compressor in a instability free domain (Epstein et
al. [2], and Gu et al. [3]). Most control systems currently used in industry are based on this
control strategy. In this simple strategy, a control point is defined in parameter space with a
redefined stability margin from the conditions for instability defined in terms of stall point.
This stability margin is defined by (i) typical uncertainties in the location of the stall point, (ii)
typical disturbances including load variations, inlet distortions, and combustion noise, and
(iii) a consideration of the available sensors and actuators and their limitations. Generally, a
bleed valve or another form of bleeding or recycling of the flow is used to negate the effect
of throttling the flow. The control is either the valve position or if one employs an on/off
approach as in pulse width modulation, the relative full opening times of the bleed valve in
a cycle. Such an approach achieves stability at the expense of performance and the approach
is not particularly suitable when the flow is compressible. In short, the surge avoidance
approach is not performance optimal. There are also problems associated with the detection
of instability. The second mode of control involves continuous feedback control of the mass
flow by introducing a control valve or an independently controlled fan. This method involves
stability augmentation as the changes in the mass flow will effectively change the conditions
for instability and thus increase the stability margin. Rather than operating away from the
domain of instability, the domain is pushed further away from the operating point. Based on
the experiments performed by a number of earlier researchers (see, e.g., Greitzer [4]), a 20%
increase in mass flow is deemed achievable by this means of stability augmentation.

Several attempts have been made to incorporate the influence of blade dynamics
into model for stall prediction. Compressor surge by itself places a fundamental limitation
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on performance. Hence active control methods that tend to suppress the various forms of
stall will allow the system to be effectively employed over the parameter space prior to
the occurrence of surge. Moreover, it is important to consider the various forms of stall in
a holistic and integrated fashion as it would be quite impossible to design individual control
systems to eliminate each of the individual instabilities. To this end it is also important
to develop a holistic and integrated dynamic model. The model developed by Moore and
Greitzer [5] based on the assumptions that the system is incompressible except in a plenum
which is assumed to enclose the compressor and turbine stages, and that radial variations are
unimportant, represents the compressor surge as a Helmholtz-type hydrodynamic instability.
In the original Moore and Greitzer model, an empirical, semiactuator disk representation of
the compressor was used, incorporating Hawthorne and Horlock’s [6] original actuator disc
model of an axial compressor and it served as the basic model incorporating rotating stall. By
introducing a semiempirical actuator disk theory into the model, Moore and Greitzer were
able to predict rotating stall and surge. The advantage of the Moore and Greitzer model is the
analyst ability to incorporate a host of hysteresis models into the compressor characteristics
that permit the prediction of a variety of limit cycle response characteristics. Gravdahl and
Egeland [7] extended the Moore and Greitzer model by including the spool dynamics and the
input torque into the same framework as the original model, thus permitting the inclusion of
the control inputs into the dynamics. The models may be derived by the application of finite
volume type analysis and may also be extended to the case of rotating stall instability and
rotating stall-induced flutter. In the Moore and Greitzer model, the downstream flow field is
assumed to be a linearized flow with vorticity, so a solution of a form similar to the upstream
solution can be found. The plenum chamber is assumed to be an isentropic compressible
chamber in which the flow is negligibly small and perturbations are completely mixed and
distributed. Thus the plenum acts merely as a “fluid spring”. The throttle is modelled as a
simple quasisteady device across which the drop in pressure is only a function of the mass
flow rate. Flow variations across the compressor are subject to fluid-inertia lags in both the
rotor and the stator, and these lags determine the rotation rate of rotating stall. Stability of
rotating stall is determined by the slope of the compressor total-to-static pressure rise map.
Greitzer [4] discussed the possibility of the active control of both stall and rotating stall by
controlling the relevant Helmholtz cavity resonance frequencies which could be achieved by
structural feedback.

Apart from the numerous methods of synthesizing control laws that have been
proposed by the application of linear control law synthesis methods, which are only suitable
for the guaranteed stabilisation of mild surge, a few nonlinear control law synthesis methods
have also been proposed. In order to design an active feedback controller that can control
deep surge, an inherently nonlinear surge-control model is essential. A number of nonlinear
models have been proposed (Chen et al. [8], Krstic et al. [9], Nayfeh and Abed [10], Paduano
et al. [11], and Young et al. [12]), and but almost all of these are oriented towards rotating stall
control synthesis and include the dynamics of the amplitude of the leading circumferential
mode. Many of these models (Gu et al. [13] and Hõs et al. [14]) have been employed to
perform a bifurcation analysis to explore the behaviour of the postinstability dynamics.

In this paper, an unsteady nonlinear and extended version of the Moore-Greitzer
model is developed to facilitate the synthesis of a surge and stall controller. The motivation is
the need for a comprehensive and yet low-order model to describe the various forms of stall
as well as the need to independently represent the transient disturbance and control inputs
in the compressor pressure rise dynamics. Furthermore, the extended version of the Moore-
Greitzer model is developed by reducing the number of independent model parameters to a
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minimum. Our preliminary studies indicate that model can effectively capture the dynamics
of the phenomenon of compressor surge and that its poststall instability behaviour is a well
representative of the observed behaviours in real axial flow compressors. The controller is
synthesised in two steps. In the first step, the desired equilibrium throttle position and the
desired equilibrium value of the ratio of the nondimensional pressure rise at minimum flow
to a quarter of the peak to peak variation of the pressure fluctuation at the compressor exit
are established. This defines the equilibrium point and ensures that the desired equilibrium
point is stable. In the second step, the margin of stability at the equilibrium point is tuned
or increased by an appropriate feedback of change in the mass flow rate about the steady
mass flow rate at the compressor exit. The first step may be considered to be an equilibrium
point controller while the second corresponds to stability augmentation. Such a two-step
process then ensures that both the desired equilibrium solution is reachable and that any
perturbations about the equilibrium point are sufficiently stable.

2. Fundamental Model Equations

The unsteady and steady fluid mechanics of the flow upstream and downstream of the
compressor is considered while the viscous effects are limited to within the actuator disc
of the compressor which allows one to define nondimensional total to static pressure rise
map. Compressibility is assumed to be confined to the plenum chamber downstream of the
compressor where the compression is assumed to be uniform and isentropic. The throttle
map sets the mass flow through the system and is a function of the plenum pressure and
the throttle opening. It is essential in defining the flow characteristics of the compressor. The
rate of change of the plenum pressure is determined from the one-dimensional continuity
conditions and is a function of difference in the compressor flow averaged over the face of
the compressor and the throttle flow. The second equation is defined by the one-dimensional
rate of change of momentum which relates to the dynamic pressure. Two other equations
complete the definition of the complete dynamics of the Moore-Greitzer model; the first
relates to the rate of change of the throttle flow and the second defines the compressor
dynamics and is based on an unsteady adaptation of the actuator disc model. These equations
were first proposed by Greitzer [15] in 1976.

The dimensionless compressor mass flow is assumed to be φc and ψ is the
dimensionless plenum pressure rise. Furthermore, Ψc,ss is the dimensionless steady-state
compressor pressure rise given in the compressor map, whereas Ψc is the dimensionless
dynamic compressor pressure rise. The dimensionless throttle mass flow is φt and
dimensionless pressure drop across the throttle is Ψt

1
B

d

dτ
φc = Ψc − ψ,

G

B

d

dτ
φt = ψ −Ψt,

B
d

dτ
ψ = φc − φt,

τc
d

dτ
Ψc = Ψc,ss −Ψc,

(2.1)
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where φc = ṁc/(ρaAcUt), φt = ṁt/(ρaAcUt), Ψc = 2Δpc/(ρaU2
t ), Ψt = 2Δpt/(ρaU2

t ), B

is the Greitzer parameter given by B = Ut/2ωHLc, ωH = a
√
Ac/(VpLc) is the Helmholtz

cavity resonance frequency for the plenum, τ is the non-dimensional time defined in terms
of the Helmholtz frequency and the time t, in seconds as, τ = ωHt, G is the geometry ratio
parameter of the throttle duct and control volume given by G = (Lt/At)/(Lc/Ac), and τc is
the time constant of the compression system that would be different for stall and for rotating
stall. In the preceding definitions of the model parameters, ṁc is the mass flow rate through
the compressor, ṁt is the mass flow rate through the throttle, Δpc is the pressure rise across
the compressor, Δpt is the pressure drop across the throttle, ρa is the ambient air density, a
is the speed of sound corresponding to ambient conditions, Ac is the cross-sectional area of
the control volume, Lc is the length of the control volume, At is the cross-sectional area of the
throttle duct, Lt is the length of the throttle duct, Vp is the volume of the plenum chamber,
and Ut is the rotor tip speed.

The compressor map in steady flow is a plot of the non-dimensional pressure with the
non-dimensional mass flow rate through the compressor for each rotation speed. However,
the plots are self-similar and can be reduced to single plot by scaling the non-dimensional
mass flow rate and the non-dimensional dynamic pressure rise. The compressor surge line
is obtained simply by linking the maximum point on each compressor characteristic for a
particular rotational speed. Representing the compressor characteristics in a non-dimensional
manner for each rotation speed and appropriately scaling the axes simply reduces the “surge
line” to a single point which is the maximum point on the characteristic. Following, Hõs et
al. [14], the scaled compressor map in steady flow when φc = φcs is assumed to be

Ψc,ss

(
φcs
)
= Ψc0 +

H

2

(
2 + 3

(
φcs
F
− 1
)
−
(
φcs
F
− 1
)3
)
. (2.2)

In (2.2), H defines half the peak-to-peak variation of the pressure fluctuation at the
compressor exit or the amplitude of the pressure fluctuation while F is half the change in
the steady mass flow rate, φcs is required for the pressure to change from the minimum to the
maximum. The definitions of the parameters H and F are illustrated in Figure 1.

The throttle map in steady flow when φt = φts is taken to be

Ψt,ss =
(
φts
Ctγ

)2

, (2.3)

where the dimensionless throttle parameter Ct is a coefficient defining the capacity of the
fully opened throttle and γ is the dimensionless throttle position.

Following Gravdahl and Egeland [7], the input torque to the compressor may be
included and the dynamics of the spool as another state equation is given by

I

(
dω

dt

)
= Text − Tc, (2.4)

where I is the mass moment of inertia of the compressor rotor, ω the angular velocity
which may be expressed in terms of the Greitzer parameter and tip radius as ω = Ut/Rt =
2ωHLcB/Rt, Text is the external torque input, and Tc is the torque necessary to drive the
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Figure 1: Definitions of the compressor characteristic parameters H and F.

compressor which may be expressed in terms of the slip ratio σ, as Tc = ρaAcU
2
t Rtφcσ.

The slip ratio σ can be defined as the ratio of the tangential velocity of the fluid at the
compressor exit guide vanes and the tip speed. The external torque may be expressed in a
non-dimensional form as, Γext = Text/ρaAcU

2
t Rt. Hence (2.4) may be expressed in a non-

dimensional form as

dB

dτ
=
B2(Γext − φcσ

)

μ
, (2.5)

where μ = I/2ρaR2
t AcLc is the non-dimensional inertia parameter, and Γext is the non-

dimensional torque input.
In this analysis all controls are initially assumed to be fixed as the uncontrolled

dynamics is considered first. For this reason, any bleed valve that may have been included is
closed and all control pressure perturbations are assumed to be equal to zero.

3. Steady Flow Analysis

Assuming the conditions of steady flow, the equations are

1
B

d

dτ
φc = Ψc − ψ = 0, (3.1a)

G

B

d

dτ
φt = ψ −Ψt = 0, (3.1b)

B
d

dτ
ψ = φc − φt = 0, (3.1c)

τc
d

dτ
Ψc = Ψc,ss −Ψc = 0, (3.1d)

dB

dτ
=
B2

μ

(
Γext − φcσ

)
= 0. (3.1e)
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From the third of the above equations, (3.1c), in steady flow, let

φcs = φts = φs0. (3.2)

The steady flow conditions are obtained from the first two of the above equations, (3.1a) and
(3.1b), and are given by Ψc,ss = Ψt,ss; that is,

Ψc,ss

(
φs0
)
= Ψc0 +

H

2

(
2 + 3

(
φs0

F
− 1
)
−
(
φs0

F
− 1
)3
)

=
(
φs0

Ctγ

)2

. (3.3)

A parameter p is defined as

p =
(

2
H

)(
F

Ctγn

)2

, (3.4)

where p is the throttle non-dimensional pressure rise at minimum flow and a parameter p0

p0 =
2
H

Ψc0 + 2 (3.5)

which is the ratio of the non-dimensional pressure rise at minimum flow to a quarter of the
peak-to-peak variation of the pressure fluctuation at the compressor exit, then (3.3) reduces
to

Ψc,ss

(
φs0
)
=
H

2

(
p0 + 3x − x3

)
= p

H

2
(1 + x)2, (3.6a)

where the variable x is

x =
(
φs0

F

)
− 1. (3.6b)

If one assumes that with the minimum flow through the compressor and the throttle, the flow
is always steady, then with φs0/F = 1, one obtains from (3.4),

p0 = p. (3.7)

Assuming that the position of the throttle γ is set to a nominal value γ = γn when (3.6a)-(3.6b),
and (3.7) are satisfied, (3.6a)-(3.6b) may be rearranged and written as

Ψc0 =
H

2
(
p − 2

)
. (3.8)
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Eliminating Ψc0, the steady flow characteristic may be defined entirely in terms of the
compressor and throttle map parameters, H,F and the product γ nCt and is

3x − x3 = px(x + 2), (3.9)

and (3.8) may be expressed as

x
(
x2 + px + 2p − 3

)
= 0. (3.10)

From the first factor of (3.10) the assumed solution, φs0/F = 1, is recovered. Assuming x /= 0
and solving for p

p =

(
3 −
(
φs0/F − 1

)2
)

(
φs0/F + 1

) . (3.11)

If one assumes that with the flow through the compressor and the throttle either minimum
or below minimum, it is always steady, then x = x0. Then it follows that,

H

2

(
p0 + 3x0 − x3

0

)
= p

H

2
(1 + x0)2. (3.12)

Eliminating p0, one obtains

(
3(x − x0) −

(
x3 − x3

0

))
= 2p(x − x0) + p

(
x2 − x2

0

)
. (3.13)

Solving for p, one obtains

p =

(
3 −
(
x2 + xx0 + x2

0

))

(x + x0 + 2)
. (3.14)

When x0 = 0, (3.14) reduces to (3.11).

4. Unsteady NonLinear Extended Moore-Greitzer Model

Rather than combining the quasisteady and transient components of compressor pressure
rise, the independent contributions from these two components of the pressure rise are
separately identified. If one defines ΔΨc = Ψc −Ψc,qs as the transient disturbance and control
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pressure component of the compressor pressure rise, the first three unsteady equations may
be expressed as

dφc
Bdτ

= Ψc,qs − ψ + ΔΨc, (4.1a)

Gdφt
Bdτ

= ψ −Ψt,qs, (4.1b)

Bdψ

dτ
= φc − φt. (4.1c)

The compressor transient disturbance and control dynamics, in the absence of a control
pressure input, is defined entirely in terms of ΔΨc as

τcdΔΨc

dτ
= −ΔΨc + Ψc,ss −Ψc,qs, (4.2)

where the unsteady compressor characteristics, Ψc,qs, and the unsteady throttle map, Ψt,qs,
are assumed to satisfy the quasisteady model equations given by

Ψc,qs

(
φc
)
= Ψc0 +

H

2

(
2 + 3

(
φc
F
− 1
)
−
(
φc
F
− 1
)3
)
, (4.3a)

Ψc0 =
H

2
(
p − 2

)
, Ψt,qs =

(
φt
Ctγ

)2

. (4.3b)

Furthermore

Ψc,ss

(
φs0
)
=
H

2

(
p + 3

(
φs0

F
− 1
)
−
(
φs0

F
− 1
)3
)
. (4.4)

Further from the definition of the parameter, p, one may write

C2
t γ

2
n =

2F2

pH
. (4.5)

In (4.5) one considers the throttle’s non-dimensional nominal position, γ = γn, to be fixed and
any perturbations to it must be considered as a deviation. If Δγ is the deviation of the throttle
position from the nominal position, γ = γn, then in the general case (4.5) may be written as

C2
t γ

2 =

⎛
⎝
√

2F2

pH
+ CtΔγ

⎞
⎠

2

. (4.6)
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Considering the last equation for the dynamics of the compressor spool, one assumes that
that the non-dimensional torque input, Γext, is provided by a non-dimensional power input
and can be defined by Γext = Πext/B. The equation for the spool dynamics is

dB

dτ
=
B

μ

(
Πext − Bφcσ

)
, (4.7)

where the non-dimensional power input is related to the real power, Pext, by the equation

Πext =
Pext

2ρaU2
t

AcωHLc. (4.8)

In most practical situations involving jet engines, it is power that is delivered to a turbine
driving the compressor by a combustor and this can be modelled independently.

Using (3.14) to (4.7), the complete unsteady nonlinear equations not including the
control inputs may be expressed in terms of the five states φc, φt, ψ, ΔΨc, and B, as

dφc
dτ

= BΨc,qs + B
(
ΔΨc − ψ

)
,

d

dτ
φt = −

B

G

φ2
t(√

2F2/pH + CtΔγ
)2

+
Bψ

G
,

d

dτ
ψ =

(
φc − φt

)

B
,

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss −Ψc,qs

)

τc
,

dB

dτ
=
B

μ

(
Πext − Bφcσ

)

(4.9)

with

p =

(
3 −
(
φs0/F − 1

)2
)

(
φs0/F + 1

) . (4.10)

The eight model parameters are φs0/F,H,G, τc, F,CtΔγ , μ, and σ. The input to the model is
defined by Πext, the non-dimensional power input to the compressor.

5. Application to Rotating Stall Vibrations

Equations (4.9) describe surge in our one-dimensional model but do not include rotating
stall. The extension needed is derived and explained in detail by Moore and Greitzer [5]
by Galerkin projection, and only the essence of the method is presented here. The Galerkin
projection procedure represents the reduction of the differential equation by a set of basic or
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coordinate functions to capture the behaviour in the circumferential direction with a finite set
of modes. One-mode truncation via Galerkin projection results in an additional equation in
terms of a new variable J that must be included with (4.9). The square of the new variable J
represents the amplitude of the first Galerkin mode. Following Hõs et al. [14], the dynamics
of J is described by

τJ
dJ

dτ
=
H

F
J

(
1 −
(
φc
F
− 1
)2

− 1
4
J

)
, (5.1)

where the time constant τJ is related to the time constant of an N-stage compressor τc and the
slope of the compressor duct flow parameter m, by the relations

τJ =
ωHR(1 +ma)

3aUt
, with a =

R

τcUt
. (5.2)

The presence of rotating stall influences the compressor characteristic (2.3), and following
Hõs et al. [14], it is modified as

Ψc,ss

(
φcs
)
= Ψc0 +

H

2

(
2 + 3

(
φcs
F
− 1
)(

1 − J
2

)
−
(
φcs
F
− 1
)3
)
. (5.3)

Conditions for steady flow now require additionally that either J = Js = 0, corresponding
to an equilibrium with no rotating stall disturbance, or J = Js = 4(1 − x2), corresponding to
an equilibrium with a rotating stall disturbance. Since J represents the amplitude of rotating
stall amplitude, to avoid rotating stall J must tend to zero. If it tends to any other finite value
the rotating stall amplitude is nonzero, implying that rotating stall exists. In the case when
the rotating stall amplitude is nonzero, (3.4) and (3.5) are unchanged but (3.10) and (3.11)
are, respectively, modified, in case J is given by the latter non-zero equilibrium point as

5x2 − xp − 3 − 2p = 0,

p =

(
5
(
φs0/F − 1

)2 − 3
)

(
φs0/F + 1

) ,

(5.4)

where the definition of the parameter p is unchanged. In the model, it should be noted
that the Greitzer parameter B is no longer a parameter but a slowly varying state. In this
respect, our analysis is different from that of Moore and Greitzer [5] who treated it as
a parameter and stated the conditions for surge in terms of this parameter. For control
applications, particularly when the external control input is due to a control torque, it is
most appropriate to allow the Greitzer parameter B to vary. However, when the Greitzer
parameter B is assumed to be variable, it is essential that both the compressor steady
characteristic parameters, H and F, are not constant but functions of B. Based on a set of
typical characteristics, the parameters, H and F, are assumed to be linear functions of the
Greitzer parameter B and given by

H = H0 +HBB, F = FBB, (5.5a)
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where H0, HB, and FB are assumed to be constants. Thus in steady state, when B = B0, H and
F are given by

Hs = H0 +HBB0, Fs = FBB0. (5.5b)

If one defines the change in J by ΔJ = J − Js in the unsteady case, (4.9) are now modified as

dφc
dτ

= BΨc,qs + B
(
ΔΨc − ψ

)
, (5.6a)

d

dτ
φt = −

B

G

φ2
t(√

2F2/pH + CtΔγ
)2

+
Bψ

G
, (5.6b)

d

dτ
ψ =

(
φc − φt

)

B
, (5.6c)

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss −Ψc,qs

)

τc
, (5.6d)

dB

dτ
=
B

μ

(
Πext − Bφcσ

)
, (5.6e)

τJ
dΔJ
dτ

=
H

F
(Js + ΔJ)

(
1 −
(
φc
F
− 1
)2

− 1
4
(Js + ΔJ)

)
(5.6f)

with

Js = 0 (5.7)

or

Js = 4

((
1 −
(
φs0

F

)
− 1
)2
)
, (5.8)

where the parameter F is evaluated under steady conditions. Only the former is used and
it also required the equilibrium point to be stable. Moreover, there is now an additional
parameter τJ , which may be related to τc as

τJ =
τcωH(1 +mRτc/Ut)

3
, (5.9)

but will be treated as an independent parameter. Equations (5.6a)–(5.6f) represent a six-state
dynamic model of the dynamics of the compressor system.
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Table 1: Typical parameter and initial state values for simulation.

Parameter Primary value State/input Initial value
φs0 0.375 φc 0.4
FB 0.625 φt 0.3
H0 0.06 ψ 0.0
HB 0.3 ΔΨc 1.0
G 2 B 0.4
σ 0.9 ΔJ 3.1 or 0.1
CtΔγ 0.0 Js 0
μ 40 Πext 0.17
τc 0.05 τJ 0.5

6. Model Response and Instability

Although our primary interest is in establishing a nonlinear model for synthesizing an active
surge controller, one needs to understand the dynamic response of the uncontrolled model
not only in the vicinity of the domain of instability but also in the postinstability domains
in the parameter space. For this reason, the dynamic response of the model proposed in the
preceding section is considered, without including any controls which could include a bleed
valve or a feedback controller that influences the transient dynamics of the compressor. The
rotating stall dynamics is ignored in the first instance.

Table 1 lists the nominal typical values of the parameters, initial values of the states,
and the inputs used in the simulation of the dynamic response, for which the system was
stable. The parameter p is not shown in Table 1 as it is computed from the parameters in
the table. It is however an important parameter as a high value represents greater levels of
throttling and a reduced mass flow rate through the throttle. The system was not unstable
unless either H was negative or γ < γn. A typical example of a stable response is shown in
Figure 2.

The first case considered was with CtΔγ = 0. In this case, no chaotic behaviour
was observed although both stable and unstable behaviours were observed. When the
compressor was stable, the behaviour was always lightly damped and oscillatory. Choosing
the parameter γ = γn represents a case of tuning or matching the throttle to the compressor.
In most cases the instability could be eliminated by proper tuning of the parameters and no
active stabilisation was deemed necessary.

When H is locally negative, it corresponds to the case of negative slope in the
characteristic that was considered by Hõs et al. [14]. When H is negative and the parameter,
γ > γn, the throttle mass flow is not matched to the compressor mass flow. Although the
system was unstable, no chaos was observed. When H is negative and γ < γn, there was
a clear incidence of chaos in the flow through the compressor, which was identified by a
one-dimensional Poincaré map. The chaotic response with a negative H is significant as it
represents the case of flame-out in jet-engines. However, this case is not of much practical
importance for controller synthesis as the compressor becomes unstable before it becomes
chaotic.

The responses of B and J, when H is negative and γ > γn in the rotating stall case,
are illustrated in Figure 3. Apparently the Greitzer “parameter” is itself stable in this case but
the sustained response in J away from the trivial equilibrium solution (J = 0) represents the
presence of rotating stall disturbances.
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Figure 2: Stable responses of states to disturbance, for the nominal typical values of the parameters.

Considering the case of rotating stall with H positive and CtΔγ = 0, the system always
exhibited stability in the sense that the response converged to a steady state. With γ /= γn or
γ = γn, H positive, and φs0/F < 2, the equilibrium solution jumps from one with Js = 0 to
one with Js = 1 and this is followed by the pressure in the plenum chamber falling to zero.
The state responses in this case are illustrated in Figure 4(a). The corresponding unsteady
compressor map and the operating point on the map are shown in Figure 4(b).

Although, when the compressor flow and throttle flow were matched, that is, with
γ = γn, the system is stable; it is also important to maintain J at zero, as it represents the
amplitude of the rotating stall disturbance amplitude. It can be concluded that open-loop
stability is not enough to drive the operating point to γ = γn and also suppress rotating stall
disturbances, by using a controller such as an automatically controlled bleed valve. The bleed
valve by itself is not always adequate to maintain J at zero and additional feedback is essential
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Figure 3: Typical responses of B and J when H is negative and γ < γn in the rotating stall case.

to suppress the rotating stall disturbance by changing the operating equilibrium point. Some
authors (Gu et al. [13]) have referred to this requirement as “bifurcation control”.

7. Control Law for Throttle Setting

To design the throttle controller, one rewrites (5.6b) as

d

dτ
φt = −

B

G

φ2
t(√

2F2/pdH + CtΔγ
)2

+
Bψ

G
, (7.1)

where pd is the desired set value for p. The first step in designing a controller is to choose
an appropriate value for pd. The next step is to gradually wash out Δγ according to some
dynamic law such as

τu
dΔγ
dτ

= −Δγ, (7.2)

where τu is an appropriate time constant so the washout does not interfere with the plant
dynamics.

If one further chooses x > 1, the equilibrium with J = Js = 0 is stable. To establish the
controller parameter pd, a suitable choice may be made by first choosing x0 and the operating
point x and using (3.14). A typical choice could be x0 = 0 and x > 1 giving a value for



16 Mathematical Problems in Engineering

1.5

1

0.5

0
0 50 150100 200 250 300 350 400

R
es

po
ns

e
R

es
po

ns
e

R
es

po
ns

e

Compressor flow
Throttle flow

Plenum pressure
Compressor pressure

B

J

0.5

0

−0.5

−1

−1.5
0 50 100 150 200 250 300 350 400

4

3

2

1

0
0 50 100 150 200 250 300 350 400

Non-dimensional time

Non-dimensional time

Non-dimensional time

(a)

−10

−8

−6

−4

−2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4

N
on

-d
im

en
si

on
al

co
m

pr
es

so
r

d
yn

am
ic

pr
es

su
re

ri
se
)/
H

Unsteady
Quasi-steady

Steady
Operating point

(Non-dimensional mass flow rate)/F

(b)

Figure 4: (a) Typical open-loop state responses when H is positive and φs0/F < 2 in the rotating stall case.
(b) Unsteady, quasisteady and steady characteristics of the compressor corresponding to (a).

pd < 0.666. If the initial value of p is p0 and is greater than this value, then the steady state
value of ΔΨc must be increased by

ΔΨc,ss =
H

2
(
pd − p0

)
=
HΔp

2
. (7.3)

The corresponding initial condition for Δγ is then given by

Δγ(t)
∣∣
t=0 = γ − γn = γ −

√
2F2/pdH

Ct
. (7.4)
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8. Control of the Rotating Stall Vibration Amplitude

To increase the steady state value of ΔΨc, it is important to increase the steady flow delivered
by the compressor. This can be done by increasing the input to the compressor. To incorporate
such a feature in our model, one assumes a distribution of pressure sources at the inlet to the
compressor and write the compressor unsteady pressure dynamics equation with a source
control term included as

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss −Ψc,qs

)

τc
+
Δu0

τc
, (8.1a)

where the control input is a distribution of pressure sources which are integrated over the
inlet area of the compressor and chosen according to the control law

Δu0 =
H

2
(
pd − p0

)
+ Δu =

HΔp
2

+ Δu, (8.1b)

where Δu is the control input perturbation to provide feedback. The complete model
equations (5.6a)–(5.6f) including the controller may be expressed as

dφc
dτ

= BΨc

(
p0, φc

)
+ B
(
ΔΨc − ψ

)
, (8.2a)

d

dτ
φt = −

B

G

φ2
t(√

2F2/pdH + CtΔγ
)2

+
Bψ

G
, (8.2b)

d

dτ
ψ =

(
φc − φt

)

B
, (8.2c)

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss

(
p0, φcs

)
−Ψc

(
p0, φc

))

τc
+
Δu0

τc
, (8.2d)

dB

dτ
=
B

μ

(
Πext − Bφcσ

)
, (8.2e)

τJ
dΔJ
dτ

=
H

F
(Js + ΔJ)

(
1 −
(
φc
F
− 1
)2

− 1
4
(Js + ΔJ)

)
, (8.2f)

τu
dCtΔγ
dτ

= −CtΔγ, (8.2g)
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Figure 5: Root locus plot illustrating the effect of the negative feedback of Δφc.

where

Ψc

(
p0, φc

)
=
H

2

(
p0 +

(
φc
F
− 1
)(

1 − J
2

)
−
(
φc
F
− 1
)3
)
,

Ψc,ss

(
p0, φcs

)
= Ψc

(
p0, φc

)∣∣
t→∞,

Δu0 =
H

2
(
pd − p0

)
+ Δu =

HΔp
2

+ Δu.

(8.3)

To implement such a controller the parameter p0 must be known. This parameter must
therefore be identified offline a priori or adaptively, so the control input can be synthesised.

9. Stability of Controlled Equilibrium

An important step in the validation of the controller is the assessment of the stability of the
closed loop equilibrium. To determine the stability of the controlled equilibrium, one first
linearises (8.2a)–(8.2f), about the controlled equilibrium solution which is characterised by
p = pd and φc = φt = φsd. Perturbing the state vector and the control input and linearising
(8.2a)–(8.2g) about the equilibrium states result in

dΔφc
dτ

=

(
Ψc

(
pd, φsd

)
+ B0

dΨc

(
pd, φsd

)

dB

)
ΔB

+ B0

(
dΨc

(
pd, φsd

)

dφc
Δφc +

dΨc

(
pd, φsd

)

dJ
ΔJ + ΔΨc −Δψ

)
,
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dΔφt
dτ

=
B0Δψ
G

− B0

G

pdHsφsd

2F2
s

⎛
⎜⎝2Δφt −

2φsdCtΔγ√
2F2

s/pdHs

−
(
FB
Fs
− HB

2Hs

)
φsd√

2F2
s/pdHs

ΔB

⎞
⎟⎠,

d

dτ
Δψ =

(
Δφc −Δφt

)

B0
,

dΔΨc

dτ
+
ΔΨc

τc
= − 1

τc

(
dΨc

(
pd, φsd

)

dφc
Δφc +

dΨc

(
pd, φsd

)

dJ
ΔJ +

dΨc

(
pd, φsd

)

dB
ΔB

)
+
Δu
τc
,

dΔB
dτ

+
ΔB
μ

(
2B0φsdσ −Πext

)

= −
B2

0Fsσ

μ

Δφc
Fs

,

τJ
dΔJ
dτ

= −Hs

Fs

(
2Js
(
φcs
Fs
− 1
)
Δφc
Fs

)

− Hs

Fs

(((
φcs
Fs
− 1
)2

− 1 +
Js
4

)
Js

(
HB

Hs
− FB
Fs

)
ΔB

+

((
φcs
Fs
− 1
)2

− 1 +
Js
2

)
ΔJ,

)

τu
dCtΔγ
dτ

= −CtΔγ,

(9.1)

where Δu is the control input perturbation and Δφc, Δφt, Δψ, ΔΨc, ΔJ , and ΔB are the
perturbations to the corresponding states.

From (9.1) observe that the last three of the linearised perturbation equations are only
weakly coupled with the first four. An analysis of the stability indicates that the controlled
system is stable. Assume that the compressor perturbation mass flow (Δφc) is measured; the
root locus plot is obtained and shown in Figure 5. The two lightly damped poles correspond
to modes associated primarily with Δφc and Δψ. To increase the stability margins, one
could include stability augmentation negative feedback (gain = 3.3) and this is implemented
in calculating the closed loop response in the next section. The chosen value of the gain
corresponds to the maximum stability margin based on root locus plot.

The controller can now be tested by simulating it and the complete nonlinear plant.
The case of a compressor with the parameters as listed in Table 1 is considered. The desired
compressor flow ratio is chosen to be φsd/F = 2.1. The desired value of the parameter p = pd
is then estimated from (3.14). The initial value for Δγ is chosen to be −0.2. The results of
the closed loop simulation including negative feedback are illustrated in Figure 6(a) which
corresponds to the same case as the one shown in Figure 4(a) without feedback.
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Figure 6: (a) Typical closed-loop state responses when H is positive and φsd/F > 2 in the rotating stall case.
(b) Unsteady, quasisteady and steady characteristics of the closed-loop compressor.

Figure 6(b) illustrates the unsteady characteristics of the closed-loop compressor
which are compared with the steady-state characteristics. Also shown in the figure is the
steady-state closed loop operating point. The results clearly indicate that the compressor now
operates with the equilibrium J = Js = 0 being stable. Thus the rotating stall disturbance is
eliminated.

10. Conclusions

The dynamics of compressor stall has been reparameterised in a form that would facilitate the
construction of a nonlinear control law for the active nonlinear control of compressor stall.
The regions of stable performance in parameter space (γ = γn, H > 0, J = Js = 0) and unstable
performance (γ /= γn or H < 0, J /= 0) were identified. This has led to the belief that a control
law that maintains both γ = γn, H > 0 and J = Js = 0 would actively stabilize the compressor.
One observes that by merely setting the throttle at its optimum equilibrium position does
not maintain, J = Js = 0. An additional control input must aim to manipulate the transient
and control pressure dynamics defined by (8.2d) which would involve control inputs to
the compressors inlet guide vanes or some other means of feedback control. That in turn



Mathematical Problems in Engineering 21

points to a need for a better compressor pressure rise model incorporating the control input
dynamics. Yet the relatively simple and systematic approach adopted in this paper clearly
highlights the main features on the controller that is capable of inhibiting compressor surge
and rotating stall. Moreover, the method can be adopted for any axial compressor provided its
steady-state compressor and throttle maps are known. Furthermore, the linear perturbation
controller synthesised in the previous section could be substituted by a nonlinear controller
synthesised by applying the backstepping approach as demonstrated by Krstic et al. [9].
Preliminary implementations of such a controller have supported the view that there is
a need for an improved, matching, nonlinear compressor pressure rise model including
disturbance and uncertainty effects and the results of this latter study involving a robust
complimentary nonlinear H∞ optimal control law will be reported elsewhere. Coupled with
the views expressed by Greitzer [4], the active structural control of surge and rotating stall
could be effectively achieved by realistic low-order modelling of the compressor dynamics.
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