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We define the multiple generalized w-Genocchi polynomials. By using fermionic p-adic invariant
integrals, we derive some identities on these generalized w-Genocchi polynomials, for example,
fermionic p-adic integral representation, Witt’s type formula, explicit formula, multiplication
formula, and recurrence formula for thesew-Genocchi polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, �, �p, �p , � , and � p will,
respectively, denote the ring of integers, the ring of p-adic integers, the field of p-adic rational
numbers, the complex number field, and. the p-adic completion of the algebraic closure of
�p . Let νp be the normalized exponential valuation of � p with |p|p = p−νp(p) = p−1.

The q-basic natural numbers are defined by

[n]q =
1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1 (1.1)

for n ∈ �, and the binomial coefficient is defined as

(
n

k

)
=

n!
(n − k)!k!

=
n(n − 1) · · · (n − k + 1)

k!
. (1.2)
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The binomial formulas are well known that

(1 − b)n =
n∑
i=0

(
n

i

)
(−1)ibi, 1

(1 − b)n
=

n∑
i=0

(
n + i − 1

i

)
bi (1.3)

(see, [1, 2]). When one talks of q-extension, q is variously considered as an indeterminate,
a complex number q ∈ � , or a p-adic number q ∈ � p . If q ∈ � , one normally assumes that
|q| < 1. If q ∈ � p , one normally assumes that |q − 1|p < 1. We use the notation

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

, (1.4)

see [1–13] for all x ∈ �p. Note that limq→ 1[x]q = x for x ∈ �p in presented p-adic case.
Let UD(�p) be denoted by the set of uniformly differentiable function on �p. For f ∈

UD(�p), an invariant p-adic q-integral on �p is defined as

I−q
(
f
)
=
∫
�p

f(x)dμ−q(x) = lim
n→∞

1 + q

1 + qp
N

pN−1∑
x=0

f(x)
(−q)x. (1.5)

Thus, we have the following integral relation:

lim
q→ 1

qI−q
(
f1
)
+ I−q

(
f
)
=
(
1 + q

)
f(0), (1.6)

where f1(x) = f(x + 1), and the fermionic p-adic invariant integral relation:

I−1
(
f
)
= lim

q→ 1
I−q
(
f
)
=
∫
�p

f(x)dμ−1(x), (1.7)

I−1
(
f1
)
+ I
(
f
)
= 2f(0). (1.8)

Now, we recall that the definitions of w-Euler polynomials and w-Genocchi
polynomials are defined as

2ext

wet + 1
=

∞∑
n=0

En,w(x)
tn

n!
,

2text

wet + 1
=

∞∑
n=0

Gn,w(x)
tn

n!
, t ∈ �, w ∈ � ,

(1.9)

with |1 − w|p < 1, respectively. In the special case x = 0, En,w(0) = En,w, and Gn,w(0) = Gn,w

are calledw-Euler numbers andw-Genocchi numbers (see [2, 9]).
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In [13], Bayard and Simsek have studied multiple generalized Bernoulli polynomials
as follows:

r∏
j=1

(
ajt + log(waj )

(wet)aj − 1

)
et =

∞∑
n=0

B
(r)
n,w(x; a1, . . . ar)

tn

n!
,
∣∣t + log(|w|)∣∣ < min

{
π

a1
· · · π

ap

}
,

(1.10)

where a1, . . . , ar are strictly positive real numbers.
The purpose of this paper is to define another construction of multiple generalizedw-

Genocchi polynomials and numbers, which are different frommultiple generalized Bernoulli
polynomials and numbers in [13]. By using fermionic p-adic invariant integrals, we derive
some identities on these generalizedw-Genocchi polynomials, for example, fermionic p-adic
integral representation, Witt’s type formula, explicit formulas, multiplication formula, and
recurrence formula for these w-Genocchi polynomials.

2. Multiple Generalized w-Genocchi Polynomials and Numbers

Let r ∈ � and a1, . . . , ar be strictly positive real numbers. The multiple generalized w-
Genocchi polynomials G(r)

n,w(x; a1, . . . , ar) are defined as

r∏
j=1

(2t)r

(wet)aj + 1
ext =

∞∑
n=0

G
(r)
n,w(x; a1, . . . ar)

tn

n!
, for t ∈ �, w ∈ � , (2.1)

where | logw + t| ≤ min1≤j≤r{π/aj}. The values of G(r)
n,w(x; a1, . . . , ar) at x = 0 are called the

multiple generalized w-Genocchi numbers: when r = 1, w = 1, and aj = 0 (j = 1, . . . r), the
polynomials or numbers are called the ordinary Genocchi polynomials or numbers.

It is known that

t

∫
�p

wzet(z+x)dμ−1(z) =
2t

wet + 1
=

∞∑
n=0

Gn,w(x)
tn

n!
,

tr
∫
�p

· · ·
∫
�p

wz1+z2+···+zr et(z1+···+zr+x)dμ−1(z1) · · ·dμ−1(zr) =
(

2t
wet + 1

)r

ext =
∞∑
n=0

G
(r)
n,w(x)

tn

n!
.

(2.2)

In fact, let us take t ∈ �, w ∈ � , and we apply the above difference integral formula
(1.8) for f(z) = wazetaz, then we obtain

2
(wet)a + 1

etx =
∫
�p

wazet(az+x)dμ−1(z). (2.3)
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By (2.3), we easily see that

r∏
j=1

(2t)r

(wet)aj + 1
ext = tr

∫
�p

· · ·
∫
�p

wa1z1+···+arzr et(a1z1+···+arzr+x)dμ−1(z1) · · ·dμ−1(zr)

=
∞∑
n=0

∫
�p

· · ·
∫
�p

wa1z1+···+arzr(a1z1 + · · · + arzr + x)n

× dμ−1(z1) · · ·dμ−1(zr)
tn+r

n!
,

(2.4)

G
(r)
0,w(x; a1, . . . , ar) = · · · = G

(r)
r−1,w (x; a1, . . . , ar)) = 0. (2.5)

By (2.4) and (2.5), we obtain the following fermionic p-adic integral representation
formula for these numbers.

Theorem 2.1 (p-adic integral representation). Let r ∈ � and a1, . . . , ar be strictly positive real
numbers. Then one has a fermionic p-adic invariant integral representation for the multiple generalized
w-Genocchi polynomials G(r)

n,w(x; a1, . . . , ar) as follows:

G
(r)
n+r,w(x; a1, . . . , ar)

r!( n+r
r )

=
∫
�p

· · ·
∫
�p

wa1z1+···+arzr (a1z1 + · · · + arzr + x)ndμ−1(z1) · · ·dμ−1(zr)

(2.6)

for n ≥ r and

G
(r)
0,w(x; a1, . . . , ar) = · · · = G

(r)
r−1,w (x; a1 . . . , ar)) = 0. (2.7)

We remark that if we set r = 1 and a1 = 1, then we have the following equation:

G
(1)
n+r,w(x; 1)

1!
(
n+1
1

) =
G

(r)
n+1,w(x)

n + 1
= En,w(x). (2.8)

The generalizedw-Genocchi polynomials are given by

2t
(wet)a + 1

ext =
∞∑
n=0

Gn,w(x; a)
tn

n!
,

∫
�p

wazet(az+x)dμ−1(z) =
∞∑
n=0

∫
�p

waz(az + x)ndμ−1(z)tn.

(2.9)
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By comparing the coefficients on both sides in (2.9), we obtain the following identity on the
generalizedw-Genocchi polynomials

Gn,w(x; a)
n!

=
∫
�p

waz(az + x)ndμ−1(z). (2.10)

Similarly, from (2.4), we can obtain the following Witt’s type formula for the multiple
generalizedw-Genocchi polynomials.

Theorem 2.2 (Witt’s type formula). Let r ∈ � and a1, . . . , ar be strictly positive real numbers.
Then one has

G
(r)
n,w(x; a1, . . . , ar)

n!
=
∫
�p

· · ·
∫
�p

wa1z1+···+arzr (a1z1 + · · · + arzr + x)ndμ−1(z1) · · ·dμ−1(zr).

(2.11)

From (2.4), we can directly calculate the following:

G
(r)
n,w(x; a1, . . . , ar)

=
∫
�p

· · ·
∫
�p

wa1z1+···+arzr (a1z1 + · · · + arzr + x)n × dμ−1(z1) · · ·dμ−1(zr)n!

=
n∑
i=0

(
n

i

)
xn−i

∫
�p

· · ·
∫
�p

wa1z1+···+arzr × (a1z1 + · · · + arzr)idμ−1(z1) · · ·dμ−1(zr)n!

=
n∑
i=0

(
n

i

)2

(n − i)!xn−iG(r)
i,w(a1, . . . , ar).

(2.12)

From (2.12), we get the following explicit formula.

Theorem 2.3 (explicit formula). Let r ∈ � and a1, . . . , ar be strictly positive real numbers. Then
one has

G
(r)
n,w(x; a1, . . . , ar) =

n∑
i=0

(
n

i

)2

(n − i)!xn−iG(r)
i,w(a1, . . . , ar). (2.13)
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Next we discuss the multiplication formula for the multiple generalized w-Genocchi
polynomials as follows:

G
(r)
n,w(x; a1, . . . , ar)

=
∫
�p

· · ·
∫
�p

wa1z1+···+arzr (a1z1 + · · · + arzr + x)n dμ−1(z1) · · ·dμ−1(zr)n!

= lim
N→∞

mpN−1∑
z1,...,zr=0

wa1z1+···+arzr (a1z1 + · · · + arzr + x)n(−1)z1+···+zr

= mn
m−1∑

t1,...,tr=0

wa1t1+···+ar tr (−1)t1+···+tr lim
N→∞

pN−1∑
y1,...,yr=0

(−1)m(y1+···+yr )

× (wm)a1y1+···+aryr

(
x + a1t1 + · · · + artr

m
+ a1y1 + · · · + aryr

)n

n!

= mn
m−1∑

t1,...,tr=0

wa1t1+···+ar tr (−1)t1+···+tr n!
∫
�p

· · ·
∫
�p

(wm)a1y1+···+aryr

×
(
x + a1t1 + · · · + artr

m
+ a1y1 + · · · + aryr

)n

dμ−1
(
y1
) · · ·dμ−1

(
yr

)

= mn
m−1∑

t1,...,tr=0

wa1t1+···+ar tr (−1)t1+···+tr ×G
(r)
n,wn

(
x + a1t1 + · · · + artr

m
; a1, . . . , ar

)
.

(2.14)

Thus, we obtain the following multiplication formula for the multiple generalized w-
Genocchi polynomials.

Theorem 2.4 (multiplication formula). Let r ∈ � and a1, . . . , ar be strictly positive real numbers.
For anym ∈ �, one has

G
(r)
n,w(mx; a1, . . . , ar)

= mn
m−1∑

t1,...,tr=0

wa1t1+···+ar tr (−1)t1+···+tr ×G
(r)
n,wn

(
x + a1t1 + · · · + artr

m
; a1, . . . , ar

)
.

(2.15)

Corollary 2.5. (1) If one sets w = a1 = · · · = ar = 1 and r, n ∈ �, then one obtains Raabe type
formula for multiple Genocchi polynomialsG(r)

n (x) as follows:

G
(r)
n (mx) = mn

m−1∑
t1,...,tr=0

G
(r)
n

(
x +

n∑
i=1

ti
m

)
, (2.16)

where (2t/(et + 1))rext =
∑∞

n=0 G
(r)
n (x)(tn/n!).
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(2) If one sets w = 1 and r, n ∈ �, then one obtains Carlitz’s multiplication formula for the
multiple generalized Genocchi polynomials G(r)

n (x; a1, . . . , ar) as follows:

G
(r)
n (mx; a1, . . . , ar) = mn

m−1∑
t1,...,tr=0

G
(r)
n

(
x +

n∑
i=1

ai
ti
m
; a1, . . . , ar

)
, (2.17)

where ((2t)r/(
∏r

j=1(e
aj t + 1)))ext =

∑∞
n=0 G

(r)
n (mx; a1, . . . , ar)(tn/n!).

Finally, we discuss the recurrence formula for the multiple generalized w-Genocchi
polynomials as follows. Let r ∈ � and a1, . . . , ar be strictly positive real numbers. For any
k = 1, . . . , r, we can directly derive the following equation:

∞∑
n=0

⎛
⎝ n∑

j=0

(
n

j

)
G

(k)
j,w(x | a1, . . . , ak)G

(r−k)
n−j,w(ak+1, . . . , ar)

⎞
⎠ tn

n!

=
∞∑
n=0

⎛
⎝ n∑

j=0

G
(k)
j,w(x | a1, . . . , ak)

tj

j!
G

(r−k)
n−j,w(ak+1, . . . , ar)

tn−j(
n − j

)
!

⎞
⎠

=
∞∑
n=0

( ∑
m+l=n,m,l≥0

G
(k)
m,w(x | a1, . . . , ak)

tm

m!
G

(r−k)
l,w (ak+1, . . . , ar)

tl

l!

)

=

( ∞∑
m=0

G
(k)
m,w(x | a1, . . . , ak)

tm

m!

)( ∞∑
l=0

G
(r−k)
l,w (ak+1, . . . , ar)

tl

l!

)

=

⎛
⎝ k∏

j=1

(2t)k

(wet)aj + 1
ext

⎞
⎠
⎛
⎝ r∏

j=k+1

(2t)r−k

(wet)aj + 1

⎞
⎠ =

r∏
j=1

(
(2t)r

(wet)aj + 1
ext
)

=
∞∑
n=0

G
(r)
n (mx | a1, . . . , ar)

tn

n!
.

(2.18)

By comparing the coefficients on both sides in (2.18), we obtain the recurrence formula for
the multiple generalizedw-Genocchi polynomials.

Theorem 2.6 (recurrence formula). Let r ∈ � and a1, . . . , ar be strictly positive real numbers. For
any k = 1, . . . , r, one has

G
(r)
n (mx | a1, . . . , ar) =

n∑
j=0

(
n

j

)
G

(k)
j,w(x | a1, . . . , ak)G

(r−k)
n−j,w(ak+1, . . . , ar). (2.19)
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