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This paper is devoted to the study of a free-convective boundary-layer flow modeled by a
system of nonlinear ordinary differential equations. We apply a modified variational iteration
method (MVIM) coupled with He’s polynomials and Padé approximation to solve free-
convective boundary-layer equation. It is observed that the combination of MVIM and the Padé
approximation improves the accuracy and enlarges the convergence domain.

1. Introduction

The boundary-layer flows of viscous fluids are of utmost importance for industry and applied
sciences. These flows can be modeled by systems of nonlinear ordinary differential equations
on an unbounded domain, see [1–4] and the references therein. Keeping in view the physical
importance of such problems, there is a dire need of extension of some reliable and efficient
technique for the solution of such problems. He [1, 2, 5–15] developed the variational iteration
(VIM) and homotopy perturbation (HPM) methods which are very efficient and accurate
and are [1, 2, 4–42] being used very frequently for finding the appropriate solutions of
nonlinear problems of physical nature. In a later work, Ghorbani and Nadjfi [24] introduced
He’s polynomials which are calculated for He’s homotopy perturbation method. It is also
established [24] that He’s polynomials are compatible with Adomian’s polynomials but are
easier to implement and are more user friendly. Recently, Mohyud-Din, Noor and Noor
[4, 33–36] made the elegant coupling of He’s polynomials and the correction functional of
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variational iteration method (VIM) and found the solutions of number of nonlinear singular
and nonsingular problems. It is observed that [4, 33–36] the modified version of VIM is very
efficient in solving nonlinear problems. The basic motivation of this paper is the extension
of the modified variational iteration method (MVIM) coupled with Padé approximation to
solve a free-convective boundary-layer flow modeled by a system of nonlinear ordinary
differential equations. Numerical and figurative illustrations show that it is a promising
tool to solve nonlinear problems. It needs to be highlighted that Herisanu and Marinca
[41] suggested an optimal variational iteration algorithm. It needs to be highlighted that
He in his latest article “The variational iteration method which should be followed” [42]
presented a very comprehensive and detailed study on various aspects of variational iteration
method in connection with partial differential equations, ordinary differential equations,
fractional differential equations, fractal-differential equations, and difference-differential
equations.

2. Modified Variational Iteration Method (MVIM)

To illustrate the basic concept of the modified variational iteration method (MVIM), we
consider the following general differential equation:

Lu +Nu = g(x), (2.1)

where L is a linear operator,N is a nonlinear operator, and g(x) is the forcing term. According
to variational iteration method [1, 2, 4, 10–23, 28, 33–39, 41, 42], we can construct a correction
functional as follows:

un+1(x) = un(x) +
∫x

0
λ(ξ)
(
Lun(ξ) +Nũn(ξ) − g(ξ)

)
dξ, (2.2)

where λ is a Lagrange multiplier [1, 2, 10–15, 42], which can be identified optimally via
variational iteration method. The subscripts n denote the nth approximation; ũn is considered
as a restricted variation. That is, δũn = 0; (2.2) is called a correction functional. Now, we apply
He’s polynomials [24]

∞∑
n = 0

p(n)un = u0(x) + p
∫x

0
λ(ξ)

( ∞∑
n =0

p(n)L(un) +
∞∑

n = 0

p(n)N(ũn)

)
dξ −

∫x
0
λ(ξ)g(ξ)dξ, (2.3)

which is the coupling of variational iteration method and He’s polynomials and is called the
modified variational iteration method (MVIM) [4, 33–36]. The comparison of like powers of
p gives solutions of various orders.



Mathematical Problems in Engineering 3

3. Mathematical Model

Let us consider the problem of cooling of a low-heat-resistance sheet that moves downwards
in a viscous fluid [3]:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2
+ gβ(T − T0),

u
∂T

∂x
+ v

∂T

∂y
= κ

∂2T

∂y2
,

(3.1)

subject to

u = 0, v = 0 at y = 0,

u −→ 0, T −→ T0 as y −→ ∞,
(3.2)

where u and v are the velocity components in the x- and y-directions, respectively. ψT is the
temperature, T0 is the temperature of the surrounding fluid, ν is the kinematic viscosity, κ is
the thermal diffusivity, g is the acceleration due to gravity, and β is the coefficient of thermal
expansion. Using the similarity variables

ψ =
[
gβ(T1 − T0)v2x3

0

]1/4
f
(
η
)
,

T = T0 + (T1 − T0)
[

x0

(x0 − x)
]3

θ
(
η
)
,

η =

[
gβ(T1 − T0)x3

0

v2

]1/4
y

(x0 − x) ,

(3.3)

where ψ is the stream function defined by u = ∂ψ/∂y and v = −∂ψ/∂x, f and θ are the
similarity functions dependent on η, T (0, 0) = T1 and θ(0) = 1, (3.1) is transformed to

f ′′′(η) + θ(η) − (f ′(η)
)2 = 0,

θ′′
(
η
) − 3σf ′(η)θ(η) = 0,

(3.4)

subject to the boundary conditions

f(0) = 0, f ′(0) = 0, f ′(+∞) = 0,

θ(0) = 1, θ(+∞) = 0,
(3.5)

where the primes denote differentiation with respect to η, and σ is the Prandtl number.
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Table 1: Numerical values of α1 = f ′′(0).

σ [4, 4] [5, 5] [6, 6] α1

0.001 1.1135529418 1.1272760416 1.1252849854 1.1231381347
0.01 1.0631737963 1.0741895683 1.0638385351 1.0633808585
0.1 0.9128082210 0.9238226280 0.9242158493 0.9240830397
1 0.6941230861 0.6929598014 0.6932195158 0.6932116298
10 0.4511240728 0.4502429544 0.4476712316 0.4471165250
100 0.2679197151 0.2681474363 0.2641295627 0.2645235434
1000 0.2204061432 0.1524783266 0.1500456755 0.1512901971
10000 0.0858587180 0.0858519249 0.0844775473 0.0855408524

Table 2: Numerical values of α2 = θ′(0).

σ [4, 4] [5, 5] [6, 6] α2 of [3]
0.001 −0.0371141028 −0.0415417739 −0.0436188230 −0.0468074648
0.01 −0.1274922800 −0.1221616907 −0.1351353865 −0.1357607439
0.1 −0.3621215470 −0.3505589981 −0.3499273453 −0.3500596733
1 −0.7694165843 −0.7695971295 −0.7698955992 −0.7698611967
10 −1.5028543431 −1.5007437650 −1.4985484075 −1.4970992078
100 −2.7627624234 −2.7637067330 −2.7445541894 −2.7468855016
1000 −5.7787858408 −4.9468469883 −4.9104728566 −4.9349476252
10000 −8.8057265644 −8.8032691004 −8.7384279086 −8.8044492660

4. The Padé Approximation

We denote L,M Padé approximants to f(z) by

[
L

M

]
=

PL(z)
QM(z)

, (4.1)

where PL(z) is polynomial of degree at most L and QM(z)(QM(z)/= 0) is a polynomial of
degree at most M. The former power series is

f(z) =
∞∑
k=0

ck · zk. (4.2)

And we write the PL(z) and QM(z) as

PL(z) = p0 + p1 · z + p2 · z2 + p3 · z3 + · · · + pL · zL,

QM(z) = q0 + q1 · z + q2 · z2 + q3 · z3 + · · · + qM · zM,
(4.3)

so

f(z) − PL(z)
QM(z)

= O
(
zL+M+1

)
as z −→ 0, (4.4)
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Figure 1: Variation of f(η) using φ6[6,6] for σ = 0.1, φ6[5,5] for σ = 1, and φ6[4,4] for σ = 10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

η

σ = 0.1
σ = 1
σ = 10

Figure 2: Variation of f ′(η) using φ′6[6,6] for σ = 0.1, φ′6[5,5] for σ = 1, and φ′6[4,4] for σ = 10.

and the coefficients of PL(z) and QM(z) are determined by the equation. From (4.4), we have

f(z) ·QM(z) − PL(z) = O
(
zL+M+1

)
, (4.5)
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Figure 3: Variation of θ(η)using �7[6,6] for σ = 0.1, �7[5,5] for σ = 1 and φ7[4,4] for σ = 10.

which system of L +M + 1 homogeneous equations with L +M + 2 unknown quantities. We
impose the normalization condition

QM(0) = 1. (4.6)

We can write out (4.5) as

cL+1 + cL · q1 + · · · + cL−M+1 · qM = 0,

cL+2 + cL+1 · q1 + · · · + cL−M+2 · qM = 0,

...,

cL+M + cL+M−1 · q1 + · · · + cL · qM = 0,

(4.7)

c0 = p0,

c1 + c0 · q1 = p1,

c2 + c1 · q1 + c0 · q2 = p2,

...,

cL + cL−1 · q1 + · · · + c0 · qL = pL.

(4.8)

From (4.7), we can obtain qi(1 ≤ i ≤M). Once the values of q1, q2, . . . , qM are all known
(4.8) gives an explicit formula for the unknown quantities p1, p2, . . . , pL. For the diagonal
approximants like [2/2], [3/3], [4/4], [5/5], or [6/6] have the most accurate approximants
by built-in utilities of Maple.
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5. Solution Procedure

Consider problems (3.4)–(3.5) formulated in Section 3 and is related to the free-convective
boundary-layer flow.

The correction functional is given by

fn+1
(
η
)
= fn

(
η
)
+
∫x

0
λ1(s)

⎛
⎝d3fn

ds3
+ θ̃n

(
η
) −
(
df̃n
dη

)2
⎞
⎠ds,

θn+1
(
η
)
= θn

(
η
)
+
∫x

0
λ2(s)

(
d2θn
ds2

− 3σ

(
df̃n
dη

))
θ̃n
(
η
)
ds.

(5.1)

Making the correction functional stationary, the Lagrange multipliers can easily be identified

λ1(s) = − 1
2!
(
s − η)2

, λ2(s) =
(
s − η). (5.2)

Consequently,

fn+1
(
η
)
= fn

(
η
) −
∫x

0

1
2!
(
s − η)2

(
d3fn

ds3
+ θn

(
η
) −
(
dfn
dη

)2
)
ds,

θn+1
(
η
)
= θn

(
η
)
+
∫x

0

(
s − η

)(d2θn
ds2

− 3σ
(
dfn
dη

))
θn
(
η
)
ds.

(5.3)

Applying the modified variational iteration method (MVIM), we get

f0 + pf1 + · · · = f0
(
η
) − p

∫x
0

1
2!
(
s − η)2

((
d3f0

ds3
+ p

d3f1

ds3
+ · · ·

)
+
(
θ0 + pθ1 + · · · )

−
(
df0

dη
+ p

df1

dη
+ · · ·

)2
)
ds,

θ0 + pθ1 + · · · = θ0
(
η
)
+
∫x

0

(
s − η)

((
d2θ0

ds2
+ p

d2θ1

ds2
+ · · ·

)
− 3σ

(
θ0 + pθ1 + · · · )

−
(
df0

dη
+ p

df1

dη
+ · · ·

)2
)
ds.

(5.4)
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Comparing the coefficient of like powers of p, we get

p0 : f0
(
η
)
=
(α1

2

)
η2,

p1 : f1
(
η
)
=
(α1

2

)
η2 −

(
1
6

)
η3 +

(α2

24

)
η4 +

(
α2

1

60

)
η5,

p2 : f2
(
η
)
=
(α1

2

)
η2 −

(
1
6

)
η3 +

(α2

24

)
η4 +

(
α2

1

60

)
η5 −

(
σα1

240
+
α1

120

)
η6

+
(
α1α2

630
+
σα1α2

120

)
η7 +

(
α3

1

2016

)
η8,

p3 : f3
(
η
)
=
(α1

2

)
η2 −

(
1
6

)
η3 +

(α2

24

)
η4 +

(
α2

1

60

)
η5 −

(
σα1

240
+
α1

120

)
η6

+
(
α1α2

630
+
σα1α2

120
+

σ

1680
+

1
840

)
η7

+

(
α3

1

2016
+
σα2

3360
+

α2

2016

)
η8 +

(
− α2

1σ
2

10080
+
α2

1σ

8640
+

σα2
2

130240
− 11α2

1

30240
+

α2
2

18144

)
η9

+

(
− α2

1α2

14400
− 19α2

1σα2

604800
− α2

1σ
2α2

40320

)
η10,

...,

p0 : θ0
(
η
)
= 1 + (α2)η,

p1 : θ1
(
η
)
= 1 + α2η +

(σα1α2

2

)
η3 +

(σα1α2

4

)
η4,

p2 : θ2
(
η
)
= 1 + α2η +

(σα1α2

2

)
η3 +

(σα1α2

4

)
η4 −

(
α1α2

10

)
η5 +

(
α2

1σ
2

20
+
α2

1σ

120
− α2

2σ

60

)
η6

×
(
α2

1σα2

168
+
α2

1α2σ
2

56

)
η7,

p3 : θ3
(
η
)
= 1 + α2η +

(σα1α2

2

)
η3 +

(σα1α2

4

)
η4 −

(
α1α2

10

)
η5 +

(
α2

1σ
2

20
+
α2

1σ

120
− α2

2σ

60

)
η6

+

(
α2

1σα2

168
+
α2

1α2σ
2

56
− σα1

280
− α1σ

2

35

)
η7 +

(
−11α1σα2

3360
− 41α1σ

2α2

2240

)
η8

+

(
α2

1σ
2α2

2

360
+
α2

1σ

6048
+
σ3α3

1

480
− α1α

2
2σ

2160

)
η9
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+

(
α3

1α2σα
2
2

7560
+
α2

1σ
2α2

1120
+
σ3α2α

3
1

1680

)
η10,

.... (5.5)

The series solution is given by

f
(
η
)
=
(α1

2

)
η2 −

(
1
6

)
η3 +

(α2

24

)
η4 +

(
α2

1

60

)
η5 −

(
σα1

240
+
α1

120

)
η6

+
(
α1α2

630
+
σα1α2

120
+

σ

1680
+

1
840

)
η7

+

(
α3

1

2016
+
σα2

3360
+

α2

2016

)
η8 +

(
− α2

1σ
2

10080
+
α2

1σ

8640
+

σα2
2

130240
− 11α2

1

30240
+

α2
2

18144

)
η9

+

(
− α2

1α2

14400
− 19α2

1σα2

604800
− α2

1σ
2α2

40320

)
η10 + · · · ,

θ
(
η
)
= 1 + α2η +

(σα1α2

2

)
η3 +

(σα1α2

4

)
η4 −

(
α1α2

10

)
η5 +

(
α2

1σ
2

20
+
α2

1σ

120
− α2

2σ

60

)
η6

+

(
α2

1σα2

168
+
α2

1α2σ
2

56
− σα1

280
− α1σ

2

35

)
η7 +

(
−11α1σα2

3360
− 41α1σ

2α2

2240

)
η8

+

(
α2

1σ
2α2

2

360
+
α2

1σ

6048
+
σ3α3

1

480
− α1α

2
2σ

2160

)
η9

+

(
α3

1α2σα
2
2

7560
+
α2

1σ
2α2

1120
+
σ3α2α

3
1

1680

)
η10 + · · · .

(5.6)

It is observed in Figures 1 and 2 that the flow has a boundary-layer structure and the
thickness of this boundary-layer decreases with increase in the Prandtl number, σ as expected.
This is due to the inhibiting influence of the viscous forces.

Figure 3 shows the increase of the Prandtl number, σ, that results in the decrease, as
expected, of temperature distribution at a particular point of the flow region, that is, there
would be a decrease of the thermal boundary-layer thickness with the increase of values of
σ implying a slow rate of thermal diffusion. Thus higher Prandtl number σ leads to faster
cooling of the plane sheet.

6. Conclusions

In this study, we employed modified variational iteration method (MVIM) coupled with
Padé approximation to solve a system of two nonlinear ordinary differential equations that
describes a free-convective boundary-layer in glass-fiber production process. The results
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show strong effects of the Prandtl number on the velocity and temperature profiles since
the two model equations are coupled.
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