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This study elucidates the dynamic characteristics of an optical fiber coupler via the differential
quadrature simulations. A novel modeling scheme is suitable for developing an optical fiber
coupler application. Exactly how the locations of bonding points, string tension, and spring
stiffness of the rubber pad affect the dynamic behavior of the optical fiber coupler is investigated.

1. Introduction

An optical fiber coupler is an optical device with several input fibers and several output
fibers. The optical fibers in couplers may be under shock and impact. Cheng and Zu [1] and
Sun [2] studied vibration of an optical fiber coupler subjected to a half-sine shock. Malomed
and Tasgal [3] analyzed the dynamics of small internal vibrations in a two-component gap
soliton. They found three oscillation modes, which are composed of dilation-contraction of
each component’s width, and a relative translation of the two components. Brown et al. [4]
performed vibration tests on commercial grade fiber optic connectors and splices. Huang
et al. [5] presented optical coupling loss and vibration characterization for packaging of 2 × 2
MEMS vertical torsion mirror switches. Thomes et al. [6] presented vibration performance
of current fiber optic connector.

In this study the idea of differential quadrature formulation is extended to an optical
fiber coupler. During the last decade, the differential quadrature approach applied to
engineering and science problems has attracted considerable attention [7–31]. Liew et al. [7–
16] applied the differential quadrature method to Mindlin plates on Winkler foundations and
developed an application of the differential quadrature method to thick symmetric cross-ply
laminates with first-order shear flexibility. Liew et al. [7–16] also employed the generalized
differential quadrature method for buckling analysis and examined static and free vibration
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of beams and rectangular and annular plates. Sherbourne and Pandey [17] investigated
the buckling behavior of beams and composite plates using the differential quadrature
method. Mirfakhraei and Redekop [18] evaluated the buckling of circular cylindrical shells
using the differential quadrature method. Tomasiello [19] applied the differential quadrature
method to evaluate initial-boundary-value problems. Moradi and Taheri [20] conducted
buckling analysis of general laminated composite beams using the differential quadrature
method. De Rosa and Franciosi [21] solved the dynamic problem of circular arches using
the differential quadrature method. Sun and Zhu [22] investigated incompressible viscous
flow problems using the differential quadrature method. Via the differential quadrature
method, Tanaka and Chen [23] solved transient elastodynamic problems. Chen and Zhong
[24] observed that the differential quadrature and differential cubature methods, due to
their global domain characteristics, are more efficient in solving nonlinear problems than
conventional numerical schemes, such as the finite element and finite difference methods.
Civan [25] solved multivariable mathematical models using the differential quadrature and
differential cubature methods. Hua and Lam [26] identified the frequency characteristics
of a thin rotating cylindrical shell using the differential quadrature method. Wang et al.
[27–30] employed new versions of the differential quadrature and differential quadrature
element methods to analyze anisotropic rectangular plates, frame structures, nonuniform
beams, circular annular plates, and isotropic skew plates. The dynamic behavior of an optical
fiber coupler is elucidated using the differential quadrature method in this work. Few studies
have conducted vibration analysis of an optical fiber coupler using the differential quadrature
method.

2. Differential Quadrature Method

Solutions to numerous complex beam problems have been efficiently acquired using fast
computers and various numerical schemes, including the Galerkin technique, finite element
method, boundary element method, and Rayleigh-Ritz method. In this study, the differential
quadrature scheme is employed to generate discrete eigenvalue problems for an optical fiber
coupler. The basic concept of the differential quadrature method is that the derivative of
a function at a given point can be approximated as a weighted linear sum of functional
values at all sample points in the domain of that variable. The partial differential equation is
then reduced to a set of algebraic equations. For a function, f(x), the differential quadrature
approximation for the mth-order derivative at the ith sample point is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dmf(x1)
dxm

dmf(x2)
dxm

...

dmf(xN)
dxm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼=
[
D

(m)
ij

]

⎡
⎢⎢⎢⎢⎢⎢⎣

f(x1)

f(x2)

...

f(xN)

⎤
⎥⎥⎥⎥⎥⎥⎦

for i, j = 1, 2, . . . ,N, (2.1)

where f(xi) is the value of the function at sample point xi,D
(m)
ij is the weighted coefficient of

the mth-order differentiation attached to these functional values, N is the number of sample
points, and xi is the location of the ith sample point in the domain. The most convenient



Mathematical Problems in Engineering 3

technique is to distribute sample points uniformly [31]. A Lagrangian interpolation
polynomial is utilized to eliminate possible adverse conditions when determining the
weighted coefficients D(m)

ij [31], which are as follows:

f(x) =
M(x)

(x − xi)M1(xi)
for i = 1, 2, . . . ,N, (2.2)

where

M(x) =
N∏
j=1

(
x − xj

)
,

M1(xi) =
N∏

j=1,j /= i

(
xi − xj

)
for i = 1, 2, . . . ,N.

(2.3)

Inputting (2.2) into (2.1) yields

D
(1)
ij =

M1(xi)(
xi − xj

)
M1
(
xj
) for i, j = 1, 2, . . . ,N, i /= j,

D
(1)
ii = −

N∑
j=1,j /= i

D
(1)
ij for i = 1, 2, . . . ,N.

(2.4)

The coefficients of the weighted matrix can be acquired using (2.4). For the mth-order
derivative, the weighted coefficients can be obtained using the following recurrence relation
equations:

D
(m)
ij =

N∑
k=1

D
(1)
ik
D

(m−1)
kj

for i, j = 1, 2, . . . ,N. (2.5)

The selection of sample points always is very important to solution accuracy when using
the differential quadrature approach. For a beam problem, the most convenient technique
is to choose equally spaced sample points [31]. Unequally spaced sample points, such as
Chebyshev-Gauss-Lobatto sample points, have been utilized by a number of studies. With
the Chebyshev-Gauss-Lobatto distribution, the sample points of an optical fiber coupler are
distributed as

xi =
1
2

(
1 − cos

(i − 1)π
N − 1

)
for i = 1, 2, . . . ,N. (2.6)

3. Vibration of an Optical Fiber Coupler with
a Continuous Elastic Support

Figure 1 shows a sectional view of the optical fiber coupler with a continuous elastic support.
The fibers, the substrate, and the rubber pad are on the inside of the steel tube. The optical
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Figure 1: Sectional view of the optical fiber coupler with an elastic foundation [1, 2].

fibers are placed onto the substrate. A beam represents the substrate. The optical fibers model
as a string. The rubber pad is placed between the substrate and steel tube. The linear model
assumes that fiber tension is constant. The equation of motion for the optical fiber coupler is
derived as [1, 2]

P
∂2u1

∂x2
− ρ1A1

∂2u1

∂t2
= 0 for x : 0 to l1,

P
∂2u2

∂x2
− ρ1A1

∂2u2

∂t2
= 0 for x : l1 to l1 + l2,

P
∂2u3

∂x2
− ρ1A1

∂2u3

∂t2
= 0 for x : l1 + l2 to l1 + l2 + l3,

E2I2
∂4v1

∂x4
+ kfv1 + ρ2A2

∂2v1

∂t2
= 0 for x : 0 to l1,

E2I2
∂4v2

∂x4
+ kfv2 + ρ2A2

∂2v2

∂t2
= 0 for x : l1 to l1 + l2,

E2I2
∂4v3

∂x4
+ kfv3 + ρ2A2

∂2v3

∂t2
= 0 for x : l1 + l2 to l1 + l2 + l3,

(3.1)

where u1, u2, and u3 are displacements of the fibers; v1, v2, and v3 are displacements of the
substrate; P is string tension; t is time; kf is the constant determined by the material constants
of the silicon rubber pad;A1 is cross-section area of fibers;A2 is cross-section area of substrate;
ρ1 is density of the fiber material; ρ2 is density of the substrate material; I2 is the second
moment of the cross-sectional area A2; E2 is Young’s modulus of the substrate. The optical
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fibers and substrate are bonded at four points. The boundary conditions of the optical fiber
coupler are

u1(0, t) − v1(0, t) = 0,

u1(l1, t) − v1(l1, t) = 0,

u2(l1, t) − v2(l1, t) = 0,

u2(l1 + l2, t) − v2(l1 + l2, t) = 0,

u3(l1 + l2, t) − v3(l1 + l2, t) = 0,

u3(l1 + l2 + l3, t) − v3(l1 + l2 + l3, t) = 0,

E2I2
∂2v1(0, t)
∂x2

= 0,

E2I2
∂3v1(0, t)
∂x3

= 0,

v1(l1, t) − v2(l1, t) = 0,

∂v1(l1, t)
∂x

− ∂v2(l1, t)
∂x

= 0,

E2I2
∂2v1(l1, t)

∂x2
− E2I2

∂2v2(l1, t)
∂x2

= 0,

E2I2
∂3v1(l1, t)

∂x3
− E2I2

∂3v2(l1, t)
∂x3

= 0,

v2(l1 + l2, t) − v3(l1 + l2, t) = 0,

∂v2(l1 + l2, t)
∂x

− ∂v3(l1 + l2, t)
∂x

= 0,

E2I2
∂2v2(l1 + l2, t)

∂x2
− E2I2

∂2v3(l1 + l2, t)
∂x2

= 0,

E2I2
∂3v2(l1 + l2, t)

∂x3
− E2I2

∂3v3(l1 + l2, t)
∂x3

= 0,

E2I2
∂2v3(l1 + l2 + l3, t)

∂x2
= 0,

E2I2
∂3v3(l1 + l2 + l3, t)

∂x3
= 0.

(3.2)

To obtain frequencies, a harmonic movement of the optical fiber coupler is assumed as

us(x, t) = us(x) cos(ωt) for s = 1, 2, 3,

vs(x, t) = vs(x) cos(ωt) for s = 1, 2, 3,
(3.3)
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where u1(x), u2(x), u3(x), v1(x), v2(x), and v3(x) are vibrational modes, and ω is the natural
frequency of the optical fiber coupler. Substituting (3.3) into (3.1) yields

P
d2us
dx2

= −ω2ρ1A1us for s = 1, 2, 3,

E2I2
d4vs
dx4

+ kfvs = ω2ρ2A2vs for s = 1, 2, 3.

(3.4)

The boundary conditions of the optical fiber coupler are rewritten as

u1(0) − v1(0) = 0,

u1(l1) − v1(l1) = 0,

u2(l1) − v2(l1) = 0,

u2(l1 + l2) − v2(l1 + l2) = 0,

u3(l1 + l2) − v3(l1 + l2) = 0,

u3(l1 + l2 + l3) − v3(l1 + l2 + l3) = 0,

E2I2
d2v1(0)
dx2

= 0,

E2I2
d3v1(0)
dx3

= 0,

v1(l1) − v2(l1) = 0,

dv1(l1)
dx

− dv2(l1)
dx

= 0,

E2I2
d2v1(l1)
dx2

− E2I2
d2v2(l1)
dx2

= 0,

E2I2
d3v1(l1)
dx3

− E2I2
d3v2(l1)
dx3

= 0,

v2(l1 + l2) − v3(l1 + l2) = 0,

dv2(l1 + l2)
dx

− dv3(l1 + l2)
dx

= 0,

E2I2
d2v2(l1 + l2)

dx2
− E2I2

d2v3(l1 + l2)
dx2

= 0,

E2I2
d3v2(l1 + l2)

dx3
− E2I2

d3v3(l1 + l2)
dx3

= 0,

E2I2
d2v3(l1 + l2 + l3)

dx2
= 0,

E2I2
d3v3(l1 + l2 + l3)

dx3
= 0.

(3.5)
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Figure 2: Sectional view of the optical fiber coupler with two spring supports [1, 2].

The equations of motion of the optical fiber coupler can be rearranged in the differential
quadrature method formula by substituting (2.1) into (3.4) and (3.5). The equations of motion
of the optical fiber coupler are derived as

N∑
j=1

PD
(2)
i,j

l2s
us,j = −ω2ρ1A1us,i for i = 1, 2, . . . ,N, s = 1, 2, 3,

N∑
j=1

E2I2D
(4)
i,j

l4s
vs,j + kfvs,i = ω2ρ2A2vs,i for i = 1, 2, . . . ,N, s = 1, 2, 3.

(3.6)

Using the differential quadrature method, the boundary conditions of the optical fiber
coupler can be rearranged into the matrix form as

u1,1 − v1,1 = 0,

u1,N − v1,N = 0,

u2,1 − v2,1 = 0,

u2,N − v2,N = 0,

u3,1 − v3,1 = 0,

u3,N − v3,N = 0,

N∑
j=1

E2I2D
(2)
1,j

l21
v1,j = 0,
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N∑
j=1

E2I2D
(3)
1,j

l31
v1,j = 0,

v1,N − v2,1 = 0,

N∑
j=1

D
(1)
N,j

l1
v1,j −

N∑
j=1

D
(1)
1,j

l2
v2,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l21
v1,j −

N∑
j=1

E2I2D
(2)
1,j

l22
v2,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l31
v1,j −

N∑
j=1

E2I2D
(3)
1,j

l32
v2,j = 0,

v2,N − v3,1 = 0,

N∑
j=1

D
(1)
N,j

l2
v2,j −

N∑
j=1

D
(1)
1,j

l3
v3,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l22
v2,j −

N∑
j=1

E2I2D
(2)
1,j

l23
v3,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l32
v2,j −

N∑
j=1

E2I2D
(3)
1,j

l33
v3,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l23
v3,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l33
v3,j = 0.

(3.7)

4. The Optical Fiber Coupler with Two Spring Supports

Figure 2 shows a sectional view of the optical fiber coupler with two rubber pads at each end
of the coupler. The rubber pads are placed between the substrate and steel tube. The rubber
pads model as the two spring supports. The equations of motion for the optical fiber coupler
are [1, 2]

P
∂2u1

∂x2
− ρ1A1

∂2u1

∂t2
= 0 for x : 0 to l1,

P
∂2u2

∂x2
− ρ1A1

∂2u2

∂t2
= 0 for x : l1 to l1 + l2,
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P
∂2u3

∂x2
− ρ1A1

∂2u3

∂t2
= 0 for x : l1 + l2 to l1 + l2 + l3,

E2I2
∂4v1

∂x4
+ ρ2A2

∂2v1

∂t2
= 0 for x : 0 to l1,

E2I2
∂4v2

∂x4
+ ρ2A2

∂2v2

∂t2
= 0 for x : l1 to l1 + l2,

E2I2
∂4v3

∂x4
+ ρ2A2

∂2v3

∂t2
= 0 for x : l1 + l2 to l1 + l2 + l3.

(4.1)

The boundary conditions of the optical fiber coupler are

u1(0, t) − v1(0, t) = 0,

u1(l1, t) − v1(l1, t) = 0,

u2(l1, t) − v2(l1, t) = 0,

u2(l1 + l2, t) − v2(l1 + l2, t) = 0,

u3(l1 + l2, t) − v3(l1 + l2, t) = 0,

u3(l1 + l2 + l3, t) − v3(l1 + l2 + l3, t) = 0,

E2I2
∂2v1(0, t)
∂x2

= 0,

E2I2
∂3v1(0, t)
∂x3

= −kspringv1(0, t),

v1(l1, t) − v2(l1, t) = 0,

∂v1(l1, t)
∂x

− ∂v2(l1, t)
∂x

= 0,

E2I2
∂2v1(l1, t)

∂x2
− E2I2

∂2v2(l1, t)
∂x2

= 0,

E2I2
∂3v1(l1, t)

∂x3
− E2I2

∂3v2(l1, t)
∂x3

= 0,

v2(l1 + l2, t) − v3(l1 + l2, t) = 0,

∂v2(l1 + l2, t)
∂x

− ∂v3(l1 + l2, t)
∂x

= 0,

E2I2
∂2v2(l1 + l2, t)

∂x2
− E2I2

∂2v3(l1 + l2, t)
∂x2

= 0,

E2I2
∂3v2(l1 + l2, t)

∂x3
− E2I2

∂3v3(l1 + l2, t)
∂x3

= 0,

E2I2
∂2v3(l1 + l2 + l3, t)

∂x2
= 0,

E2I2
∂3v3(l1 + l2 + l3, t)

∂x3
= kspringv3(l1 + l2 + l3, t),

(4.2)
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where kspring is the constant determined by material constants of the spring support.
Substituting (3.3) into (4) yields

P
d2us
dx2

= −ω2ρ1A1us for s = 1, 2, 3,

E2I2
d4vs
dx4

= ω2ρ2A2vs for s = 1, 2, 3.

(4.3)

The boundary conditions of the optical fiber coupler are rewritten as

u1(0) − v1(0) = 0,

u1(l1) − v1(l1) = 0,

u2(l1) − v2(l1) = 0,

u2(l1 + l2) − v2(l1 + l2) = 0,

u3(l1 + l2) − v3(l1 + l2) = 0,

u3(l1 + l2 + l3) − v3(l1 + l2 + l3) = 0,

E2I2
d2v1(0)
dx2

= 0,

E2I2
d3v1(0)
dx3

= −kspringv1(0),

v1(l1) − v2(l1) = 0,

dv1(l1)
dx

− dv2(l1)
dx

= 0,

E2I2
d2v1(l1)
dx2

− E2I2
d2v2(l1)
dx2

= 0,

E2I2
d3v1(l1)
dx3

− E2I2
d3v2(l1)
dx3

= 0,

v2(l1 + l2) − v3(l1 + l2) = 0,

dv2(l1 + l2)
dx

− dv3(l1 + l2)
dx

= 0,

E2I2
d2v2(l1 + l2)

dx2
− E2I2

d2v3(l1 + l2)
dx2

= 0,

E2I2
d3v2(l1 + l2)

dx3
− E2I2

d3v3(l1 + l2)
dx3

= 0,

E2I2
d2v3(l1 + l2 + l3)

dx2
= 0,

E2I2
d3v3(l1 + l2 + l3)

dx3
= kspringv3(l1 + l2 + l3).

(4.4)
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The equations of motion of the optical fiber coupler can be rearranged in the differential
quadrature method formula by substituting (2.1) into (4.3). The equations of motion of the
optical fiber coupler then become

N∑
j=1

PD
(2)
i,j

l2s
us,j = −ω2ρ1A1us,i for i = 1, 2, . . . ,N, s = 1, 2, 3,

N∑
j=1

E2I2D
(4)
i,j

l4s
vs,j = ω2ρ2A2vs,i for i = 1, 2, . . . ,N, s = 1, 2, 3.

(4.5)

Using the differential quadrature method, the boundary conditions of the optical fiber
coupler can be rearranged into the matrix form as

u1,1 − v1,1 = 0,

u1,N − v1,N = 0,

u2,1 − v2,1 = 0,

u2,N − v2,N = 0,

u3,1 − v3,1 = 0,

u3,N − v3,N = 0,

N∑
j=1

E2I2D
(2)
1,j

l21
v1,j = 0,

N∑
j=1

E2I2D
(3)
1,j

l31
v1,j = −kspringv1,1,

v1,N − v2,1 = 0,

N∑
j=1

D
(1)
N,j

l1
v1,j −

N∑
j=1

D
(1)
1,j

l2
v2,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l21
v1,j −

N∑
j=1

E2I2D
(2)
1,j

l22
v2,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l31
v1,j −

N∑
j=1

E2I2D
(3)
1,j

l32
v2,j = 0,
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v2,N − v3,1 = 0,

N∑
j=1

D
(1)
N,j

l2
v2,j −

N∑
j=1

D
(1)
1,j

l3
v3,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l22
v2,j −

N∑
j=1

E2I2D
(2)
1,j

l23
v3,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l32
v2,j −

N∑
j=1

E2I2D
(3)
1,j

l33
v3,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l23
v3,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l33
v3,j = kspringv3,N.

(4.6)

5. Nonlinear Dynamic Analysis of an Optical Fiber Coupler with
a Continuous Elastic Support

The nonlinear model assumes that fiber tension varies. The coupler is subjected to a sine
shock motion. The equations of motion for the optical fiber coupler with a continuous elastic
support are [1, 2]

P
∂2u1

∂x2
+ kstring

⎛
⎝
∫ l1

0

√
1 +
(
∂u1

∂x

)2

dx +
∫ l1+l2
l1

√
1 +
(
∂u2

∂x

)2

dx

+
∫ l1+l2+l3
l1+l2

√
1 +
(
∂u3

∂x

)2

dx − l1 − l2 − l3

⎞
⎠

− ρ1A1
∂2u1

∂t2
= ρ1A1a sin(Ωt) for x : 0 to l1,

P
∂2u2

∂x2
+ kstring

⎛
⎝
∫ l1

0

√
1 +
(
∂u1

∂x

)2

dx +
∫ l1+l2
l1

√
1 +
(
∂u2

∂x

)2

dx

+
∫ l1+l2+l3
l1+l2

√
1 +
(
∂u3

∂x

)2

dx − l1 − l2 − l3

⎞
⎠

− ρ1A1
∂2u2

∂t2
= ρ1A1a sin(Ωt) for x : l1 to l1 + l2,
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P
∂2u3

∂x2
+ kstring

⎛
⎝
∫ l1

0

√
1 +
(
∂u1

∂x

)2

dx +
∫ l1+l2
l1

√
1 +
(
∂u2

∂x

)2

dx

+
∫ l1+l2+l3
l1+l2

√
1 +
(
∂u3

∂x

)2

dx − l1 − l2 − l3

⎞
⎠

− ρ1A1
∂2u3

∂t2
= ρ1A1a sin(Ωt) for x : l1 + l2 to l1 + l2 + l3,

(5.1)

E2I2
∂4v1

∂x4
+ kfv1 + ρ2A2

∂2v1

∂t2
= −ρ2A2a sin(Ωt) for x : 0 to l1,

E2I2
∂4v2

∂x4
+ kfv2 + ρ2A2

∂2v2

∂t2
= −ρ2A2a sin(Ωt) for x : l1 to l1 + l2,

E2I2
∂4v3

∂x4
+ kfv3 + ρ2A2

∂2v3

∂t2
= −ρ2A2a sin(Ωt) for x : l1 + l2 to l1 + l2 + l3,

(5.2)

where kstring is the elastic coefficient of the string, a is the acceleration of shock motion, and
Ω is the circular frequency of shock motion. With the following approximation equation

√
1 +
(
∂us
∂x

)2

≈ 1 +
1
2

(
∂us
∂x

)2

for s = 1, 2, 3 (5.3)

(5.1) can be rewritten as [1, 2]

P
∂2u1

∂x2
+
kstring

2

(∫ l1
0

(
∂u1

∂x

)2

dx +
∫ l1+l2
l1

(
∂u2

∂x

)2

dx +
∫ l1+l2+l3
l1+l2

(
∂u3

∂x

)2

dx

)
− ρ1A1

∂2u1

∂t2

= ρ1A1a sin(Ωt) for x : 0 to l1,

P
∂2u2

∂x2
+
kstring

2

(∫ l1
0

(
∂u1

∂x

)2

dx +
∫ l1+l2
l1

(
∂u2

∂x

)2

dx +
∫ l1+l2+l3
l1+l2

(
∂u3

∂x

)2

dx

)
− ρ1A1

∂2u2

∂t2

= ρ1A1a sin(Ωt) for x : l1 to l1 + l2,

P
∂2u3

∂x2
+
kstring

2

(∫ l1
0

(
∂u1

∂x

)2

dx +
∫ l1+l2
l1

(
∂u2

∂x

)2

dx +
∫ l1+l2+l3
l1+l2

(
∂u3

∂x

)2

dx

)
− ρ1A1

∂2u3

∂t2

= ρ1A1a sin(Ωt) for x : l1 + l2 to l1 + l2 + l3.
(5.4)
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The boundary conditions of the optical fiber coupler are

u1(0, t) − v1(0, t) = 0,

u1(l1, t) − v1(l1, t) = 0,

u2(l1, t) − v2(l1, t) = 0,

u2(l1 + l2, t) − v2(l1 + l2, t) = 0,

u3(l1 + l2, t) − v3(l1 + l2, t) = 0,

u3(l1 + l2 + l3, t) − v3(l1 + l2 + l3, t) = 0,

E2I2
∂2v1(0, t)
∂x2

= 0,

E2I2
∂3v1(0, t)
∂x3

= 0,

v1(l1, t) − v2(l1, t) = 0,

∂v1(l1, t)
∂x

− ∂v2(l1, t)
∂x

= 0,

E2I2
∂2v1(l1, t)

∂x2
− E2I2

∂2v2(l1, t)
∂x2

= 0,

E2I2
∂3v1(l1, t)

∂x3
− E2I2

∂3v2(l1, t)
∂x3

= 0,

v2(l1 + l2, t) − v3(l1 + l2, t) = 0,

∂v2(l1 + l2, t)
∂x

− ∂v3(l1 + l2, t)
∂x

= 0,

E2I2
∂2v2(l1 + l2, t)

∂x2
− E2I2

∂2v3(l1 + l2, t)
∂x2

= 0,

E2I2
∂3v2(l1 + l2, t)

∂x3
− E2I2

∂3v3(l1 + l2, t)
∂x3

= 0,

E2I2
∂2v3(l1 + l2 + l3, t)

∂x2
= 0,

E2I2
∂3v3(l1 + l2 + l3, t)

∂x3
= 0.

(5.5)

The equation of motion of the optical fiber coupler can be rearranged in the differential
quadrature method formula by substituting (2.1) into (5.2) and (5.4). The equations of motion
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of the optical fiber coupler are

N∑
j=1

PD
(2)
i,j

l2s
us,j +

kstring

2

(∫ l1
0

(
∂u1

∂x

)2

dx +
∫ l1+l2
l1

(
∂u2

∂x

)2

dx +
∫ l1+l2+l3
l1+l2

(
∂u3

∂x

)2

dx

)
− ρ1A1

∂2us,i
∂t2

= ρ1A1a sin(Ωt) for i = 1, 2, . . . ,N, s = 1, 2, 3,

N∑
j=1

E2I2D
(4)
i,j

l4s
vs,j + kfvs,i + ρ2A2

∂2vs,i
∂t2

= −ρ2A2a sin(Ωt) for i = 1, 2, . . . ,N, s = 1, 2, 3.

(5.6)

Using the differential quadrature method, the boundary conditions of the optical fiber
coupler can be rearranged into the matrix form as

u1,1 − v1,1 = 0,

u1,N − v1,N = 0,

u2,1 − v2,1 = 0,

u2,N − v2,N = 0,

u3,1 − v3,1 = 0,

u3,N − v3,N = 0,

N∑
j=1

E2I2D
(2)
1,j

l21
v1,j = 0,

N∑
j=1

E2I2D
(3)
1,j

l31
v1,j = 0,

v1,N − v2,1 = 0,

N∑
j=1

D
(1)
N,j

l1
v1,j −

N∑
j=1

D
(1)
1,j

l2
v2,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l21
v1,j −

N∑
j=1

E2I2D
(2)
1,j

l22
v2,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l31
v1,j −

N∑
j=1

E2I2D
(3)
1,j

l32
v2,j = 0,

v2,N − v3,1 = 0,
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N∑
j=1

D
(1)
N,j

l2
v2,j −

N∑
j=1

D
(1)
1,j

l3
v3,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l22
v2,j −

N∑
j=1

E2I2D
(2)
1,j

l23
v3,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l32
v2,j −

N∑
j=1

E2I2D
(3)
1,j

l33
v3,j = 0,

N∑
j=1

E2I2D
(2)
N,j

l23
v3,j = 0,

N∑
j=1

E2I2D
(3)
N,j

l33
v3,j = 0.

(5.7)

6. Numerical Results and Discussion

Figure 3 presents the natural frequencies of the optical fiber coupler for various values of P .
The material and geometric parameters of the optical fiber coupler are kf = 50000 N/m2,
A1 = 3.1 × 10−8 m2, A2 = 6.61 × 10−6 m2, ρ1 = 2.2 × 103 kg/m3, ρ2 = 2.2 × 103 kg/m3, I2 =
4.34 × 10−12 m4, l1 = 0.1333 m, l2 = 0.1333 m, l3 = 0.1333 m, and E2 = 7.24 × 1010 N/m2 [1, 2].
The first and second natural frequencies of the optical fiber coupler are robust to the string
tension, P . The third and fourth natural frequencies of the optical fiber coupler increase as the
string tension, P , increases. Figure 4 shows the natural frequencies of the optical fiber coupler
for various values of kf . The material and geometric parameters of the optical fiber coupler
are P = 0.01 N,A1 = 3.1×10−8 m2,A2 = 6.61×10−6 m2, ρ1 = 2.2×103 kg/m3, ρ2 = 2.2×103 kg/m3,
I2 = 4.34 × 10−12 m4, l1 = 0.1333 m, l2 = 0.1333 m, l3 = 0.1333 m, and E2 = 7.24 × 1010 N/m2

[1, 2]. The first and third natural frequencies of the optical fiber coupler increase as the rubber
pad stiffness increases. The rubber pad stiffness does not significantly affect the second and
fourth natural frequencies of the optical fiber coupler. Figure 5 lists the natural frequencies of
the optical fiber coupler with bonding points at various locations. The material and geometric
parameters of the optical fiber coupler are P = 0.01 N, kf = 50000 N/m2, A1 = 3.1 × 10−8 m2,
A2 = 6.61×10−6 m2, ρ1 = 2.2×103 kg/m3, ρ2 = 2.2×103 kg/m3, I2 = 4.34×10−12 m4, l1 + l2 + l3 =
0.4 m, and E2 = 7.24 × 1010 N/m2 [1, 2]. The fourth natural frequency of the optical fiber
coupler generally increases rapidly as lengths l1 and l3 increase. The locations of bonding
points markedly impact the second and third natural frequencies of the optical fiber coupler.
Figure 6 plots the natural frequencies of the optical fiber coupler for various values of kspring.
The material and geometric parameters of the optical fiber coupler are P = 0.01 N, A1 =
3.1×10−8 m2,A2 = 6.61×10−6 m2, ρ1 = 2.2×103 kg/m3, ρ2 = 2.2×103 kg/m3, I2 = 4.34×10−12 m4,
l1 = 0.1333 m, l2 = 0.1333 m, l3 = 0.1333 m, and E2 = 7.24 × 1010 N/m2 [1, 2]. The spring
constant, kspring, does not affect the first, third and fourth natural frequencies of the optical
fiber coupler. Notably, the spring constant, kspring, increases the second natural frequencies of
the optical fiber coupler. Figures 7 and 8 show the displacements of the center of the fibers
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Figure 3: Natural frequencies of the optical fiber coupler for various values of P.
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Figure 4: Natural frequencies of the optical fiber coupler for various values of kf .
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Figure 5: Natural frequencies of the optical fiber coupler with bonding points at various locations.
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Figure 6: Natural frequencies of the optical fiber coupler for various values of kspring.
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Figure 7: Displacements at the fiber center for various values of kf .

and the substrate under a shock, respectively. The material and geometric parameters of the
optical fiber coupler are P = 0.01 N,A1 = 3.1×10−8 m2,A2 = 6.61×10−6 m2, ρ1 = 2.2×103 kg/m3,
ρ2 = 2.2 × 103 kg/m3, I2 = 4.34 × 10−12 m4, l1 = 0.1333 m, l2 = 0.1333 m, l3 = 0.1333 m, E2 =
7.24 × 1010 N/m2, and kstring = 5000 N/m [1, 2]. The fibers and substrate stiffen when the
foundation stiffness, kf , is large. The differential quadrature method is effective in treating
this problem.
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Figure 8: Displacements at the substrate center for various values of kf .

7. Conclusions

This study demonstrates the value of the differential quadrature method for vibration
analysis of an optical fiber coupler. The effects of string tension P , bonding locations,
surrounding medium, spring constant kspring, and rubber pad stiffness kf on the natural
frequencies of the optical fiber coupler are discussed. The effect of stiffness of the silicon
rubber pad during vibrations is significant and should be incorporated into the designs of
the optical fiber couplers.
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