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M-(H-)matrices appear in many areas of science and engineering, for example, in the solution of
the linear complementarity problem (LCP) in optimization theory and in the solution of large
systems for real-time changes of data in fluid analysis in car industry. Classical (stationary)
iterative methods used for the solution of linear systems have been shown to convergence for
this class of matrices. In this paper, we present some comparison theorems on the preconditioned
AOR iterative method for solving the linear system. Comparison results show that the rate of
convergence of the preconditioned iterative method is faster than the rate of convergence of the
classical iterative method. Meanwhile, we apply the preconditioner to H-matrices and obtain the
convergence result. Numerical examples are given to illustrate our results.

1. Introduction

In numerical linear algebra, the theory of M- and H-matrices is very important for the
solution of linear systems of algebra equations by iterative methods (see, e.g., [1–14]). For
example, (a) in the linear complementarity problem (LCP) (see [5, Section 10.1] for specific
applications), where we are interested in finding a z ∈ Rn such that z ≥ 0, Mz + q ≥ 0,
zT (Mz + q) = 0, with M ∈ Rn×n and q ∈ Rn given, a sufficient condition for a solution to
exist, and to be found by a modification of an iterative method, especially of SOR, is that
M is an H-matrix, with mi,i > 0, i = 1, . . . , n [15]; (b) in fluid analysis, in the car modeling
design [16, 17], it was observed that large linear systems with an H-matrix coefficient A are
solved iteratively much faster if A is postmultiplied by a suitable diagonal matrix D, with
di,i > 0, i = 1, . . . , n, so that AD is strictly diagonally dominant. We consider the following
linear system:

Ax = b, (1.1)
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where A is an n × n square matrix, x and b are two n-dimensional vectors. For any splitting,
A = M −N with the nonsingular matrix M, the basic iterative method for solving the linear
system (1.1) is as follows:

xi+1 = M−1Nxi +M−1b, i = 0, 1, 2, . . . . (1.2)

Without loss of generality, letA = I −L −U and ai,1 /= 0, i = 2, . . . , n, where L andU are
strictly lower triangular and strictly upper triangular matrices of A, respectively. Then the
iterative matrix of the AOR iterative method [18] for solving the linear system (1.1) is

Tγ,ω =
(
I − γL

)−1[(1 −ω)I +
(
ω − γ

)
L +ωU

]
, (1.3)

where ω and γ are nonnegative real parameters with ω/= 0.
To improve the convergence rate of the basic iterative methods, several preconditioned

iterative methods have been proposed in [8, 12, 13, 19–24]. We now transform the original
system (1.1) into the preconditioned form

PAx = Pb, (1.4)

where P is a nonsingular matrix. The corresponding basic iterative method is given in general
by

xi+1 = M−1
P NPx

i +M−1
P Pb, i = 0, 1, 2, . . . , (1.5)

where PA = MP −NP is a splitting of PA.
Milaszewicz [19] presented a modified Jacobi and Gauss-Seidel iterative methods by

using the preconditioned matrix P = I + S, where

P = (I + S) =

⎡

⎢⎢⎢
⎣

1 0 · · · 0
−a21 1 · · · 0
...

...
. . .

...
−an1 0 · · · 1

⎤

⎥⎥⎥
⎦
. (1.6)

The author [19] suggests that if the original iteration matrix is nonnegative and
irreducible, then performing Gaussian elimination on a selected column of iteration matrix
to make it zero will improve the convergence of the iteration matrix.

In 2003, Hadjidimos et al. [4] considered the generalized preconditioner used in this
case is of the form

P(α) = (I + Sα) =

⎡

⎢⎢⎢
⎣

1 0 · · · 0
−α2a21 1 · · · 0

...
...

. . .
...

−αnan1 0 · · · 1

⎤

⎥⎥⎥
⎦
, (1.7)
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where α = (α2, . . . , αn)
T ∈ Rn−1 with αi ∈ [0, 1], i = 2, . . . , n, constants. The selection of α’s

will be made from the (n − 1)-dimensional nonnegative cone Kn−1 in such a way that none
of the diagonal elements of the preconditioned matrix Ã = P(α)A vanishes. They discussed
the convergence of preconditioned Jacobi and Gauss-Seidel when a coefficient matrix A is an
M-matrix.

In this paper, we consider the preconditioned linear system of the form

Ãx = b̃, (1.8)

where Ã = (I + Sα)A and b̃ = (I + Sα)b. It is clear that SαL = 0. Thus, we obtain the equality

Ã = (I + Sα)A = (I + Sα)(I − L −U) = I − SD − L − SL + Sα −U − SU, (1.9)

where SD, SL, and SU are the diagonal, strictly lower, and strictly upper triangular parts of the
matrix SαU, respectively. If we apply the AOR iterative method to the preconditioned linear
system (1.8), then we get the preconditioned AOR iterative method whose iteration matrix is

T̃γ,ω =
(
D̃ − γL̃

)−1[
(1 −ω)D̃ +

(
ω − γ

)
L̃ +ωŨ

]
. (1.10)

This paper is organized as follows. Section 2 is preliminaries. Section 3 will discuss
the convergence of the preconditioned AOR method and obtain comparison theorems with
the classical iterative method when a coefficient matrix is a Z-matrix. In Section 4 we apply
the preconditioner to H-matrices and obtain the convergence result. In Section 5 we use
numerical examples to illustrate our results.

2. Preliminaries

We say that a vector x is nonnegative (positive), denoted x ≥ 0 (x > 0), if all its entries are
nonnegative (positive). Similarly, a matrix B is said to be nonnegative, denoted B ≥ 0, if all
its entries are nonnegative or, equivalently, if it leaves invariant the set of all nonnegative
vectors. We compare two matrices A ≥ B, when A − B ≥ 0, and two vectors x ≥ y (x > y)
when x − y ≥ 0 (x − y > 0). Given a matrix A = (ai,j), we define the matrix |A| = (|ai,j |). It
follows that |A| ≥ 0 and that |AB| ≤ |A||B| for any two matrices A and B of compatible size.

Definition 2.1. A matrix A = (ai,j) ∈ Rn×n is called a Z-matrix if ai,j ≤ 0 for i /= j. A matrix A is
called a nonsingular M-matrix if A is a Z-matrix and A−1 ≥ 0.

Definition 2.2. AmatrixA is anH-matrix if its comparison matrix 〈A〉 = (ai,j) is anM-matrix,
where ai,j is

ai,i = |ai,i|, ai,j = −∣∣ai,j

∣∣, i /= j. (2.1)

Definition 2.3 (see [1]). The splitting A = M − N is called an H-splitting if 〈M〉 − |N| is an
M-matrix and an H-compatible splitting if 〈A〉 = 〈M〉 − |N|.
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Definition 2.4. LetA = (ai,j) ∈ Rn×n.A = M−N is called a splitting ofA ifM is a nonsingular
matrix. The splitting is called

(a) convergent if ρ(M−1N) < 1

(b) regular ifM−1 ≥ 0 and N ≥ 0

(c) nonnegative if M−1N ≥ 0

(d) M-splitting if M is a nonsingular M-matrix and N ≥ 0.

Lemma 2.5 (see [1]). Let A = M −N be a splitting. If the splitting is an H-splitting, then A and
M are H-matrices and ρ(M−1N) ≤ ρ(〈M〉−1|N|) < 1. If the splitting is an H-compatible splitting
and A is anH-matrix, then it is an H-splitting and thus convergent.

Lemma 2.6 (Perron-Frobenius theorem). Let A ≥ 0 be an irreducible matrix. Then the following
hold:

(a) A has a positive eigenvalue equal to ρ(A).

(b) A has an eigenvector x > 0 corresponding to ρ(A).

(c) ρ(A) is a simple eigenvalue of A.

Lemma 2.7 (see [3, 25]). Let A = M − N be an M-splitting of A. Then ρ(M−1N) < 1 (= 1) if
and only if A is a nonsingular (singular) M-matrix. If A is irreducible, then here is a positive vector
x such that M−1Nx = ρ(M−1N)x.

Lemma 2.8 (see [5]). Let A ≥ 0 be a nonnegative matrix. Then the following hold.

(a) If Ax ≥ βx for a vector x ≥ 0 and x /= 0, then ρ(A) ≥ β.

(b) If Ax ≤ γx for a vector x > 0, then ρ(A) ≤ γ ; moreover, if A is irreducible and if βx ≤
Ax ≤ γx, equality excluded, for a vector x ≥ 0 and x /= 0, then β < ρ(A) < γ and x > 0.

3. Convergence Theorems for Z-Matrix

We first consider the convergence of the iteration matrix T̃γ,ω of the preconditioned linear
system (1.8)when the coefficient matrix is a Z-matrix.

Particularly, we consider αi = 1, i = 2, . . . , n. Define

A = (I + S1)A = (I + S1)(I − L −U) = I −D′ − L − L′ + S1 −U −U′, (3.1)

where D′, L′, and U′ are diagonal, strictly lower triangular, and strictly upper triangular
parts of the matrix S1U, respectively. Then the preconditioned AOR method is expressed
as follows:

Tγ,ω =
(
D − γL

)−1[
(1 −ω)D +

(
ω − γ

)
L +ωU

]
, (3.2)

whereD = I −D′, L = L + L′ − S1, andU = U +U′ are the diagonal, strictly lower, and strictly
upper triangular matrices obtained from A, respectively.
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Lemma 3.1. Let A = (ai,j) ∈ Rn×n be a Z-matrix. Then (I + Sα)A is also a Z-matrix.

Proof. Since Ã = (ãi,j) = (I + Sα)A, we have

ãi,j =

⎧
⎨

⎩

ai,j , i = 1,

ai,j − αiai,1a1,j , i = 2, . . . , n.
(3.3)

It is clear that Ã is a Z-matrix for any αi ∈ [0, 1], i = 2, . . . , n.

Lemma 3.2. Let Tγ,ω and T̃γ,ω be defined by (1.3) and (1.10). Assume that 0 ≤ γ ≤ ω ≤
1 (ω/= 0, γ /= 1). If A is an irreducible Z-matrix with ai1a1i < 1, i = 2, . . . , n, for αi ∈ (0, 1),
i = 2, . . . , n, then Tγ,ω and T̃γ,ω are nonnegative and irreducible.

Proof. Since A = I − L − U is irreducible. Then for αi ∈ (0, 1), i = 2, . . . , n, we have that
Ã = (I + Sα)A = D̃ − L̃ − Ũ is also irreducible. Observe that

Tγ,ω = (1 −ω)I +ω
(
1 − γ

)
L +ωU + T, (3.4)

where T is a nonnegative matrix. As A is an irreducible Z-matrix and ω/= 0, γ /= 1, it is
easy to show that Tγ,ω is nonnegative and irreducible. By assumption, D̃, L̃, and Ũ are all
nonnegative and thus T̃γ,ω is nonnegative. Observe that T̃γ,ω can be expressed as

T̃γ,ω = (1 −ω)I +ω
(
1 − γ

)
D̃−1L̃ +ωD̃−1Ũ + T̃ , (3.5)

where T̃ is a nonnegative matrix. Sinceω/= 0, γ /= 1, and Ã is irreducible,ω(1−γ)D̃−1L̃+ωD̃−1Ũ
is irreducible. Hence, T̃γ,ω is irreducible from (3.5).

Our main result in this section is as follows.

Theorem 3.3. Let Tγ,ω and T̃γ,ω be defined by (1.3) and (1.10). Assume that 0 ≤ γ ≤ ω ≤
1 (ω/= 0, γ /= 1). If A is an irreducible Z-matrix with ai1a1i < 1, i = 2, . . . , n, for αi ∈ (0, 1),
i = 2, . . . , n, then

(a) for αi ∈ (0, 1), ρ(T̃γ,ω) < ρ(Tγ,ω) < 1 if ρ(Tγ,ω) < 1;

(b) for αi ∈ [0, 1], ρ(T̃γ,ω) = ρ(Tγ,ω) = 1 if ρ(Tγ,ω) = 1;

(c) for αi ∈ (0, 1), ρ(T̃γ,ω) > ρ(Tγ,ω) > 1 if ρ(Tγ,ω) > 1.

Proof. Let A = I − L − U be irreducible. It is clear that I − γL is an M-matrix and (1 − ω)I +
(ω − γ)L +ωU ≥ 0. So A = (I − γL) − [(1 −ω)I + (ω − γ)L +ωU] is anM-splitting of A. From
Lemma 2.7, there exists a positive vector x such that

Tγ,ωx = λx, (3.6)
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where λ denotes the spectral radius of Tγ,ω. Observe that Tγ,ω = (I −γL)−1[(1−ω)I +(ω−γ)L+
ωU]; we have

[
(1 −ω)I +

(
ω − γ

)
L +ωU

]
x = λ

(
I − γL

)
x, (3.7)

which is equivalent to

(λ − 1)
(
I − γL

)
x = ω(L +U − I)x. (3.8)

Let SαU = SD + SL + SU, where SD, SL, and SU are the diagonal, strictly lower, and strictly
upper triangular parts of SαU, respectively. It is clear that SαL = 0, so

Ã = D̃ − L̃ − Ũ = (I − SD) − (L + SL − Sα) − (U + SU), (3.9)

where

D̃ = I − SD, L̃ = L + SL − Sα, Ũ = U + SU. (3.10)

From (3.8) and (3.10), we have

T̃γ,ωx − λx =
(
D̃ − γL̃

)−1[
(1 −ω)D̃ +

(
ω − γ

)
L̃ +ωŨ − λ

(
D̃ − γL̃

)]
x

=
(
D̃ − γL̃

)−1[
(1 −ω − λ)D̃ +

(
ω − γ + λγ

)
L̃ +ωŨ

]
x

=
(
D̃ − γL̃

)−1[
(1 −ω − λ)(I − SD) +

(
ω − γ + λγ

)
(L + SL − Sα) +ω(U + SU)

=
(
D̃ − γL̃

)−1[
(1 −ω − λ)I +

(
ω − γ + λγ

)
L +ωU

−(1 −ω − λ)SD +
(
ω − γ + λγ

)
SL −

(
ω − γ + λγ

)
Sα +ωSU

]
x

=
(
D̃ − γL̃

)−1[
(λ − 1)SD +ωSD + (λ − 1)γSL +ωSL +ωSU − (

ω − γ + λγ
)
Sα

]
x

=
(
D̃ − γL̃

)−1[
(λ − 1)SD + (λ − 1)γSL +ωSαU −ωSα +ωSαL − (λ − 1)γSα

]
x

=
(
D̃ − γL̃

)−1[
(λ − 1)SD + (λ − 1)γSL − (λ − 1)γSα +ωSα(U + L − I)

]
x

=
(
D̃ − γL̃

)−1[
(λ − 1)SD + (λ − 1)γSL − (λ − 1)γSα + (λ − 1)Sα

(
I − γL

)]
x

=
(
D̃ − γL̃

)−1[
(λ − 1)SD + (λ − 1)γSL − (λ − 1)γSα + (λ − 1)Sα

]
x

= (λ − 1)
(
D̃ − γL̃

)−1[
SD +

(
1 − γ

)
Sα + γSL

]
x.

(3.11)

Since ai,1a1,i < 1, i = 2, . . . , n, then D̃ − γL̃ is an M-matrix. Notice that SD ≥ 0, Sα ≥ 0, and
SL ≥ 0. If λ < 1, then from (3.11), we have T̃γ,ωx ≤ λx. As x > 0, Lemma 2.8 implied that
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ρ(T̃γ,ω) ≤ λ = ρ(Tγ,ω). For the case of λ = 1 and λ > 1, T̃γ,ωx = λx and T̃γ,ωx ≥ λx are obtained
from (3.11), respectively. Hence, Theorem 3.3 follows from Lemmas 2.8 and 3.2.

We next consider the case of αi = 1, i = 2, . . . , n; the convergence theorem is given as
follows see [26, 27].

Theorem 3.4. Let Tγ,ω and Tγ,ω be defined by (1.3) and (1.10). Assume that A is an irreducible Z-
matrix and A(2 : n, 2 : n) is an irreducible submatrix of A deleting the first row and the first column.
Then for 0 ≤ γ ≤ ω ≤ 1 (ω/= 0, γ /= 1) and ai1a1i < 1, i = 2, . . . , n, we have

(a) ρ(Tγ,ω) < ρ(Tγ,ω) < 1 if ρ(Tγ,ω) < 1;

(b) ρ(Tγ,ω) = ρ(Tγ,ω) = 1 if ρ(Tγ,ω) = 1;

(c) ρ(Tγ,ω) > ρ(Tγ,ω) > 1 if ρ(Tγ,ω) > 1.

Proof. Let A = I − L − U be irreducible. It is clear that I − γL is an M-matrix and (1 − ω)I +
(ω − γ)L +ωU ≥ 0. So A = (I − γL) − [(1 −ω)I + (ω − γ)L +ωU] is anM-splitting of A. From
Lemma 2.7, there exists a positive vector x such that

Tγ,ωx = λx, (3.12)

where λ denotes the spectral radius of Tγ,ω. Observe that Tγ,ω = (I −γL)−1[(1−ω)I +(ω−γ)L+
ωU]; we have

[
(1 −ω)I +

(
ω − γ

)
L +ωU

]
x = λ

(
I − γL

)
x, (3.13)

which is equivalent to

(λ − 1)
(
I − γL

)
x = ω(L +U − I)x. (3.14)

Similar to the proof of the equality (3.11), we have

Tγ,ωx − λx =
(
D − γL

)−1[
(1 −ω)D +

(
ω − γ

)
L +ωU − λ

(
D − γL

)]
x

=
(
D − γL

)−1[
(1 −ω − λ)D +

(
ω − γ + λγ

)
L +ωU

]
x.

(3.15)

Since D = I −D′, L = L + L′ − S1, and U = U +U′, then we have

Tγ,ωx − λx = (λ − 1)
(
D − γL

)−1(
D′ + γL′ +

(
1 − γ

)
S1

)
x. (3.16)

By computation, we have

Tγ,ω = (1 −ω)I +ω
(
1 − γ

)
D

−1
L +ωD

−1
U +H =

[
1 −ω T1,2

0 T2,2

]

, (3.17)
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whereH is a nonnegative matrix, T1,2 ≥ 0 is a 1×(n−1)matrix, and T2,2 ≥ 0 is an (n−1)×(n−1)
matrix. As A is irreducible, then at least one a1,i /= 0 and T1,2 is nonzero. Since A(2 : n, 2 : n) is
irreducible, it is clear that A(2 : n, 2 : n) is irreducible. Since ω/= 0 and γ /= 1, from (3.17), we
have that T2,2 is irreducible. Let

u =
(
D − γL

)−1(
D′ + γL′ +

(
1 − γ

)
S1

)
x, v =

(
D − γL

)−1
u. (3.18)

From (3.18), and x > 0, we know that u ≥ 0, and the first component of u is zero. Hence v ≥ 0
and its first component is zero. Let

x =
(
x1

x2

)
, v =

(
0
v2

)
, (3.19)

where x1 ∈ R1 > 0, x2 ∈ Rn−1 > 0, and v2 ∈ Rn−1 ≥ 0 being a nonzero vector. From (3.16) and
(3.17), we have

Tγ,ωx − λx = (λ − 1)v. (3.20)

That is,

(1 −ω)x1 + T1,2x2 = λx1, (3.21)

T2,2x2 − λx2 = (λ − 1)v2. (3.22)

If λ < 1, from (3.22) and v2 is a nonzero vector, we have

T2,2x2 < λx2, (λ − 1)v2 /= 0.
(3.23)

Since T2,2 is irreducible, from Lemma 2.8, we have

ρ
(
T2,2

)
< λ. (3.24)

Since x2 > 0 and T1,2 is a nonzero nonnegative vector, from (3.21), we have (1 − ω)x1 < λx1.
Namely,

1 −ω < λ. (3.25)

It is clear that ρ(Tγ,ω) = max{1 −ω, ρ(T2,2)}. Hence, we have

ρ
(
Tγ,ω

)
< λ. (3.26)
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For the case of λ > 1, T2,2x2 ≥ λx2 is obtained from (3.22) and equality is excluded. Hence
ρ(Tγ,ω) > λ follows from Lemma 2.8 and T2,2 is irreducible. Since A = (I − γL) − [(1 − ω)I +
(ω − γ)L + ωU] is an M-splitting of A, from Lemma 2.7, we know that λ = 1 if and only if A
is a singular M-matrix. So A = (I + S1)A is a singular M-matrix. Since A = (D − γL) − [(1 −
ω)D + (ω− γ)L+ωU] is anM-splitting ofA; from Lemma 2.7 again, we have Tγ,ω = 1, which
completes the proof.

In Theorem 3.4, if we let ω = γ , then can obtain some results about SOR method. For
the similarity of proof of the Theorem 3.4, we only give the convergence result of the SOR
method.

Theorem 3.5. Let Tω and Tω be defined by (1.3) and (1.10). Assume that A is an irreducible Z-
matrix and A(2 : n, 2 : n) is an irreducible submatrix of A deleting the first row and the first column.
Then for 0 ≤ ω ≤ 1 (ω/= 0) and ai1a1i < 1, i = 2, . . . , n, we have

(a) ρ(Tω) < ρ(Tω) < 1 if ρ(Tω) < 1;

(b) ρ(Tω) = ρ(Tω) = 1 if ρ(Tω) = 1;

(c) ρ(Tω) > ρ(Tω) > 1 if ρ(Tω) > 1.

4. AOR Method for H-Matrix

In this Section, we will consider AOR method for H-matrices. For convenience, we still use
some notions and definitions in Section 2.

Lemma 4.1 (see [7]). Let A be an H-matrix with unit diagonal elements, defining the matrices
SD

.= diag(0, α2a2,1a1,2, . . . , αnan,1a1,n) and SαU
.= SD + SL + SU, where SL and SU are the strictly

lower and strictly upper triangular components of SαU, respectively; then Ã = (I+Sα)A = Mα−Nα,
Mα = I − SD − L − SL + Sα, and Nα = U + SU. Let u = (u1, . . . , un)

T be a positive vector such that
〈A〉u > 0; assume that ai1 /= 0 for i = 2, . . . , n, and

α′
i =

ui −
∑i−1

j=2

∣∣ai,j

∣∣uj −
∑n

j=i+1

∣∣ai,j

∣∣uj + |ai,1|u1

|ai,1|
∑n

j=1

∣∣a1,j
∣∣uj

; (4.1)

then α′
i > 1 for i = 2, . . . , n and for 0 ≤ αi < α′

i, the splitting Ã = Mα − Nα is an H-splitting and
ρ(M−1

α Nα) < 1 so that the iteration (1.3) converges to the solution of (1.1).

Lemma 4.2. Let A = (ai,j) be an H-matrix, and let α′ = min{α′
i}, i = 2, . . . , n, where α′

i is defined
as Lemma 4.1. Then for any α ∈ [0, α′], Ã = (I + Sα)A is also an H-matrix.

Proof. The conclusion is easily obtained by Lemma 4.1 [7].
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Lemma 4.3. Let 0 ≤ γ ≤ ω ≤ 1 (ω/= 0, γ /= 1). Then Ã = M̃ − Ñ is an H-compatible splitting.

Proof. Let 〈Ã〉 = (ai,j) and 〈M̃〉 − |Ñ| = (bi,j), where M̃ = (1/ω)(D̃ − γL̃) and Ñ = (1/ω)[(1 −
ω)D̃ + (ω − γ)L̃ +ωŨ]. Since

ãi,j =

⎧
⎨

⎩

ai,j , i = 1,

ai,j − αiai,1a1,j , i = 2, . . . , n,
(4.2)

we have that

(a) if i = j, then

ai,j = |1 − αiai,1a1,i|,

bi,j =
1
ω
[|1 − αiai,1a1,i| − (1 −ω)|1 − αiai,1a1,i|] = |1 − αiai,1a1,i|;

(4.3)

(b) if i /= j, then

ai,j = −∣∣ai,j − αiai,1a1,j
∣∣, (4.4)

since 〈M̃〉 − |N| = (1/ω)〈D̃ − γL̃〉 − (1/ω)|(1 −ω)D̃ + (ω − γ)L̃ +ωŨ|; observe that
if i < j, we have

bi,j =
1
ω

(
0 −ω

∣∣−ai,j + αiai,1a1,j
∣∣) = −∣∣aij − αiai,1a1,j

∣∣. (4.5)

if i > j, we have

bi,j =
1
ω

[−∣∣γ(ai,j − αiai,1a1,j
)∣∣ − (

ω − γ
)∣∣−ai,j + αiai,1a1,j

∣∣] = −∣∣ai,j − αiai,1a1,j
∣∣; (4.6)

Hence, we have 〈Ã〉 = 〈M̃〉 − |Ñ|, that is, Ã = M̃ − Ñ is an H-compatible splitting.

Theorem 4.4. Let the assumption of Lemma 4.2 holds. Then for any α ∈ [0, α′] and 0 ≤ γ ≤ ω ≤
1 (ω/= 0, γ /= 1), we have ρ(T̃γ,ω) < 1.

Proof. By Lemmas 2.5, 4.2, and 4.3, the conclusion is easily obtained.

5. Numerical Examples

In this Section, we give three numerical examples to illustrate the results obtained in Sections
3 and 4.
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Table 1: Spectral radius of the iteration matrices ρ(Tγ,ω) and ρ(Tγ,ω) with different values of ω and γ for
Example 5.1.

ω γ ρ(Tγ,ω) ρ(Tγ,ω) ω γ ρ(Tγ,ω) ρ(Tγ,ω)
0.4 0.1 0.9983 0.9840 0.8 0.7 0.9952 0.9559
0.4 0.4 0.9980 0.9815 0.8 0.8 0.9949 0.9529
0.5 0.2 0.9977 0.9790 0.9 0.7 0.9946 0.9504
0.5 0.4 0.9975 0.9768 0.9 0.9 0.9938 0.9431
0.6 0.4 0.9970 0.9722 1 0.8 0.9936 0.9411
0.6 0.6 0.9966 0.9689 1 0.9 0.9931 0.9367

Table 2: CPU time and the iteration number of the basic and the preconditioned Gauss-Seidel method for
Example 5.1.

n IT (GS) CPU (GS) IT (PGS) CPU (PGS)
60 232 0.0780 229 0.0780
90 340 0.2030 337 0.2030
120 446 0.5000 443 0.4380
150 551 4.5780 548 4.5470
180 655 9.5930 652 9.5000
210 758 36.7190 755 30.0470

Example 5.1. Consider a n × n matrix of A of the form

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 c1 c2 c3 c1 · · ·
c3 1 c1 c2

. . . c1

c2 c3
. . . . . . . . . c3

c1
. . . . . . 1 c1 c2

c3
. . . c2 c3 1 c1

... c3 c1 c2 c3 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (5.1)

where c1 = −2/n, c2 = −1/n + 1, and c3 = −1/n + 2. It is clear that the matrix A satisfies the
assumptions of Theorem 3.3. Numerical results for this matrix A are given in Table 1.

We consider Example 5.1; if we let c1 = −2/n, c2 = 0, and c3 = −1/n + 2, it is clear to
show that A is an M-matrix. The initial approximation of x0 is taken as a zero vector, and
b is chosen so that x = (1, 2, . . . , n)T is the solution of the linear system (1.1). Here ‖xk+1 −
xk‖/‖xk+1‖ ≤ 10−6 is used as the stopping criterion.

All experiments were executed on a PC using MATLAB programming package.
In order to show that the preconditioned AOR method is superior to the basic AOR

method. We consider ω = γ = 1, that is, the AOR method is reduced to the Gauss-Seidel
method. In Table 2, we report the CPU time (T) and the number of iterations (IT) for the basic
and the preconditioned Gauss-Seidel method. Here GS represents the restarted Gauss-Seidel
method; the preconditioned restarted Gauss-Seidel method is noted by PGS.
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Table 3: CPU time and the iteration number with various values of αi for Example 5.2.

n αi = 0.5 αi = 0.8 αi = 1 αi = 1.2 αi = 2 αi = 0

64 1 1 1 1 1 1
0.0601 0.0488 0.0587 0.0524 0.0501 0.0629

81 1 1 1 1 1 1
0.0522 0.0504 0.0532 0.0524 0.0569 0.0635

100 1 1 1 1 1 1
0.0577 0.0547 0.0486 0.0555 0.0563 0.0663

Example 5.2. Consider the two-dimensional convection-diffusion equation

−Δu +
∂u

∂x
+ 2

∂u

∂y
= f (5.2)

in the unit squire Ωwith Dirichlet boundary conditions see [28].
When the central difference scheme on a uniform grid withN ×N interior nodes (N2)

is applied to the discretization of the convection-diffusion equation (3.5), we can obtain a
system of linear equations (1.1) of the coefficient matrix

A = I ⊗ P +Q ⊗ I, (5.3)

where ⊗ denotes the Kronecker product,

P = tridiag
(
−2 + h

8
, 1,−2 − h

8

)
, Q = tridiag

(
−1 + h

4
, 1,−1 − h

4

)
(5.4)

are N ×N tridiagonal matrices, and the step size is h = 1/N.
It is clear that the matrix A is an M-matrix, so it is an H-matrix. Numerical results for

this matrix A are given in Table 3.
From Table 3, for αi ∈ [0, α′

i), it can be seen that the convergence rate of the
preconditioned Gauss-Seidel iterative method (ω = γ = 1) is faster than the other
preconditioned iterative method for H-matrices. And iteration numbers are not changed by
the change of αi; the iteration time slightly changed by the change of αi. However, it is difficult
to select the optical parameters αi and this needs a further study.

Example 5.3. We consider a symmetric Toeplitz matrix

Tn =

⎡

⎢⎢⎢⎢⎢⎢
⎣

a b c · · · b
b a b · · · c
c b a · · · b
...

...
...

. . .
...

b c b · · · a

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (5.5)

where a = 1, b = 1/n, and c = 1/n − 2. It is clear that Tn is an H-matrix. The initial
approximation of x0 is taken as a zero vector, and b is chosen so that x = (1, 2, . . . , n)T is
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Table 4: CPU time and the iteration number of the basic and the preconditioned AOR method for
Example 5.3.

n ω γ IT (AOR) T (AOR) IT (PAOR) T (PAOR)
90 0.9 0.5 15 0.3196 11 0.0390
120 0.9 0.5 15 0.1526 10 0.0306
180 0.9 0.5 15 0.1407 11 0.1096
210 0.9 0.5 15 0.2575 11 0.1920
300 0.9 0.5 15 1.2615 10 0.7709
400 0.9 0.5 15 3.2573 11 2.3241

the solution of the linear system (1.1). Here ‖xk+1 − xk‖/‖xk+1‖ ≤ 10−6 is used as the stopping
criterion see [29].

All experiments were executed on a PC using MATLAB programming package.
We get Table 4 by using the preconditioner P(α). We report the CPU time (T) and

the number of iterations (IT) for the basic and the preconditioned AOR method. Here AOR
represents the restarted AOR method; the preconditioned restarted AOR method is noted by
PAOR.

Remark 5.4. In Example 5.3, we let αi > 1, i = 2, . . . , n − 1. From Table 4, if αi is appropriate,
the convergence of the preconditioned AOR iterative method can be improved. However, it
is difficult to select the optical parameters αi and this needs a further study.
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