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This paper addresses the cryptanalysis of a secure communication scheme proposed by Wu (2006),
where the information signal is modulated into a system parameter of a unified chaotic system. It
is demonstrated that a parameter observer can be designed to identify the parameter determined
by the transmitted information and then the transmitted information can be obtained. Compared
with the existing analysis using adaptive observer, the cryptanalysis based on parameter observer
is much simpler and needs less structure information of the transmitter system. With numerical
simulations, it is shown that the parameter observer has stronger practicality and robustness.
Furthermore, it is still possible to obtain the transmitted information, even if the derivative of
the transmitted signal is unknown.

1. Introduction

Over the past two decades, increasing attentions are drawn on utilizing chaos theory
on secure communication based on synchronization technique [1–4]. At the meantime,
cryptanalysis of chaotic secure communication scheme is proposed with different methods
[5, 6]. Recently, a new secure cryptosystem based on adaptive synchronization has been
proposed by Wu [7]. In this paper, we carry out a security analysis of the cryptosystem on
the concept of parameter identification. It is demonstrated that a parameter observer can
be designed to identify the parameter and then the information can be obtained. Compared
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with the existing analysis using adaptive observer, the parameter observer is much simpler
and needs less structure information of the transmitter system. With numerical simulations,
it is shown that the parameter observer has stronger practicality and robustness.

Wu proposed a new secure communication scheme in [7]. The secure communication
scheme utilizes adaptive synchronization of a unified chaotic system. The transmitter is
designed as follows:

ẋm =
(
25β(t) + a

)(
ym − xm

)
,

ẏm =
(
b − 35β(t)

)
xm − xmzm +

(
29β(t) − c

)
ym,

żm = xmym −
β(t) + d

3
zm,

(1.1)

where the lower scripts m stands for the transmitter system, a, b, c and d are user-specific
parameters. The information signal f(t), which satisfies m ≤ f(t) ≤M, is modulated into the
function as follows:

β(t) =
f(t) −m
M −m . (1.2)

It is obvious that β(t) varies from 0 to 1 according to f(t). As it was shown in [7],
system (1.1) then exhibits chaotic behavior with different chaotic attractors, such as Lorenz,
Lü and Chen attractors.

The identical receiver system can be constructed at the receiving end as follows:

ẋs =
(
25β1(t) + a

)(
ys − xs

)
+ u1,

ẏs =
(
b − 35β1(t)

)
xs − xszs +

(
29β1(t) − c

)
ys + u2,

żs = xsys −
β1(t) + d

3
zs + u3,

(1.3)

where the lower scripts s stands for the receiver system. u1, u2 and u3 are the nonlinear
controllers and β1(t) is the estimator for β(t) and is updated adaptively. With the assumption
that β̇(t) or ḟ(t) is known, it is proved in [7] by the Lyapunov stability theorem that the
receiver is synchronous with the transmitter, and the covered message can be obtained with
a reverse transformation of (1.2).

In [6], Liu and Tang addresses a cryptanalysis of the cryptosystem performed with
adaptive control theory. To obtain the transmitted information, an adaptive observer with
three state observers (xm, ym and zm) and five parameter estimators (a, b, c, d and β(t)) are
designed. Assuming that the dynamical evolution of the information signal is available, it
is proved that both state variables and unknown parameters of the adaptive observer will
asymptotically converge to their true values, respectively, justified by the Lyapunov stability
theory. As the result, the transmitted information can be retrieved.

In this paper, we are interested in performing the cryptanalysis of the same
cryptosystem in a simpler way, based on two questions as follows.
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Firstly, since it is β(t) that we only need to obtain the transmitted information, can we
identify β(t) without achieving the true values of the user-specific parameters a, b, c and d?

Secondly, if the structure of the system (1.1) is partly available, for instance, only the
structure of the third equation is known, is it possible to obtain the transmitted information?

Our answer is positive, and it is demonstrated in the following sections that it can be
achieved based on the concept of parameters observer.

The paper is organized as follows. In Section 2, a parameter observer is designed for
the cryptanalysis of the secure communication system (1.1) with both theoretical analysis
and numerical simulations. In Section 3, a more practical case is considered, for which the
derivative of the information signal is kept secret from attackers. Finally, the conclusion of
the paper is given in Section 4.

2. Cryptanalysis Using the Parameter Observer

Let us consider the conditions of the secure communication scheme proposed in [7], where
system (1.1) with parameters a, b, c, d and β(t) being unknown, in this section, we will show
that a parameter observer can be designed to retrieve the transmitted information.

2.1. Design of the Parameter Observer

Assuming all the state variables in system (1.1) and the dynamical evolution of the
information signal are available, let

g(t) =
β(t) + d

3
, (2.1)

and the third equation of (1.1) can be written as follows:

g(t)zm = xmym − żm. (2.2)

A parameter observer is proposed as follows:

dĝ(t)
dt

= ġ(t) − zml(zm)ĝ(t) + l(zm)
(
xmym − żm

)
, (2.3)

where ĝ(t) is the estimators for g(t), and l(zm) is a designed gain function. Let

eg(t) = g(t) − ĝ(t), (2.4)

then

ėg(t) = ġ(t) −
dĝ(t)
dt

= −zml(zm)eg(t). (2.5)
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l(zm) is the chosen function verifying that the system

ėg(t) + zml(zm)eg(t) = 0 (2.6)

is exponentially stable. Then ĝ(t) will exponentially converge to g(t) when t → ∞. A possible
choice for l(zm) is k/zm, then system (2.6) can be written as follows:

ėg(t) + keg(t) = 0, (2.7)

where k > 0 determines the converging speed.
However, it is not practical to get the information of żm, which makes observer (2.3)

practically useless. To overcome the defect, we define an instrumental variable as follows:

δ = ĝ(t) + p(zm), (2.8)

where p(zm) is a designed function verifying

l(zm) =
dp(zm)
dzm

. (2.9)

We can obtain

δ̇ =
dĝ(t)
dt

+
dp(zm)
dzm

żm = ġ(t) − zml(zm)
(
δ − p(zm)

)
+ l(zm)xmzm, (2.10)

that is,

δ̇ = ġ(t) − zml(zm)δ + l(zm)
(
zmp(zm) + xmym

)
,

ĝ(t) = δ − p(zm).
(2.11)

Obviously, choose function p(zm) such that

ėg(t) +
dp(zm)
dzm

egzm = 0 (2.12)

is exponentially stable, then ĝ(t) will exponentially converge to g(t).
Summing up the above analysis, we have the following parameter observer.
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Figure 1: Simulation results with Case 1 of Section 2: f(t) = 3 + 2 sin(0.5t).

Result 1. With known β̇(t), we can obtain ġ(t) = β̇(t)/3. The parameter observer of g(t) is
designed as follows:

δ̇ = ġ(t) − zml(zm)δ + l(zm)
(
zmp(zm) + xmym

)
,

ĝ(t) = δ − p(zm),
(2.13)

where p(zm) is a designed function verifying dp(zm)/dzm = l(zm) and l(zm) determines the
converging speed.

Based on (1.2) and (2.1), we get

β̂(t) = 3ĝ(t) − d̂, (2.14)



6 Mathematical Problems in Engineering

1

1.5
2

2.5
3

3.5
4

4.5
5

f
(t
)

0 5 10 15

Time (s)

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

f̂
(t
)

0 5 10 15

Time (s)

−1
0
1
2
3
4
5
6
7
8
9
×104

f
(t
)
−
f̂
(t
)

0 1 2 3 4 5 6 7 8
×10−4

Time (s)

Figure 2: Simulation results with Case 2 of Section 2: f(t) = 3 + 2 sin(10t).

where the minimum and maximum values of β̂(t) are 0 and 1, respectively. Note that ĝ(t) can
be obtained by the observer mentioned before and d is the constant, it is possible to determine
d̂ by the minimum and maximum values of β̂(t). Consequently, β̂(t) can be obtained. Then,
the information f(t) can be retrieved as follows:

f̂(t) = (M −m)β̂(t) +m. (2.15)

As the result, the scheme proposed in [7] is considered to be insecure.
The parameter observer proposed in this paper gives excellent performances in

following aspects.
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Figure 3: Simulation results with Case 3 of Section 2: f(t) = 5 + sin(t) + sin(4t) + sin(7t).

Firstly, the parameter observer is simple and direct. To retrieve the transmitted
information, we only need to construct one observer to identify the true value of β(t), which is
directly determined by the transmitted information. And it is unnecessary to obtain the true
value of the user-specific parameters a, b, c and d. The result answers on the first question in
Section 1.

Secondly, the parameter observer is only related to the structure of the third equation
in system (1.1), which means it is possible to construct the parameter observer, even
if part of the structure information of the transmitter system is unknown. The result
answers on the second question in Section 1. Furthermore, for the reason that the parameter
observer is designed based on the third equation, any change of parameters or structures
in the first and second equations in system (1.1) has no effect on the result of parameter
identification.
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Figure 4: Simulation results with Case 4 of Section 2: f(t) = 3+2 sin(0.5t). The parameter a changes during
parameter identification.

Thirdly, our cryptanalysis with parameter observer imposes less assumptions than the
cryptanalysis proposed in [6], where, in order to obtain the true value of the parameters,
persistently excitation or linearly independent condition are need.

As mentioned in the first and second aspects, the questions proposed in Section 1
have been resolved. Moreover, it can be concluded that the parameter observer has stronger
practicality and robustness.

2.2. Numerical Simulations with Available β̇(t)

In the following, several functions of f(t) are tested. At the meantime, a possible case, for
which the parameter a changes during the parameter identification process, is also simulated.
Furthermore, we also take the influence of the noise on the identification performance into
consideration. The parameters and initial states of system (1.1) are set the same as [6]: a = 10,
b = 28, c = 1, d = 8, xm = 1, ym = 1, zm = 2. For the parameter observer, the initial state is set
as: δ(0) = 0. It was shown above that l(zm) is a designed gain function, which determines the
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Figure 5: Simulation results with Case 4 of Section 2: f(t) = 3+ 2 sin(10t). The parameter a changes during
parameter identification.

converging speed. l(zm) is set as: l(zm) = k/zm, where different k is chosen in different cases,
according to the frequency of the information signal.

Case 1 (f(t) = 3 + 2 sin(0.5t)). For the first case, M = 5 and m = 1. According to (1.2), β(t) =
[1 + sin(0.5t)]/2. The simulation results are given in Figure 1 with k = 1000. It is shown in
Figure 1(a) that 3ĝ(t) = β̂(t) + d̂ is obtained and found to be varied in the range of [8, 9].
Considering that the minimum and maximum values of β(t) are 0 and 1, respectively, it is
estimated that d̂ = 8.00 and β̂(t) is shown in Figure 1(b). Figure 1(d) shows the estimation of
the absolute error. After the initial transient time of about 7×10−3 s, information signal can be
recovered with a fluctuation of |f(t)− f̂(t)| ≤ 0.5×10−3. A faster convergence rate is achieved,
compared with the result given in [6].
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Figure 6: Simulation results with Case 4 of Section 2: f(t) = 5 + sin(t) + sin(4t) + sin(7t). The parameter a
changes during parameter identification.

Case 2 (f(t) = 3 + 2 sin(10t)). In this case, information signal with higher frequency is
simulated and a large value is set for k as: k = 10000. As it is shown in Figure 2, f̂(t) still
closely follows f(t) with a small mismatch |f(t) − f̂(t)| ≤ 1.65 × 10−3 after a transient time of
6 × 10−4 s.

Case 3 (f(t) = 5 + sin(t) + sin(4t) + sin(7t)). In this case, a composite signal is chosen as the
information signal. It is assumed that f(t) = 5 + sin(t) + sin(4t) + sin(7t). As it is indicated in
Figure 3 with k = 8000, information signal is identified with a small mismatch of |f(t)−f̂(t)| ≤
1.1 × 10−3 after a transient time of 9 × 10−4 s.

Case 4 (The parameter a changes during parameter identification process). In the above
three cases, the success of the proposed algorithm is clearly indicated. In the following
two cases, we are going to demonstrate that the parameter observer has strong robustness.
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Figure 7: Simulation results in presence of noise with Case 5 of Section 2: f(t) = 3 + 2 sin(0.5t).

In Case 4, it is assumed that the parameter a in system (1.1) is not a constant anymore.
Instead, a is varied in the range of [9.5, 10.5]. Figure 4(a) shows that during the initial
five seconds, a = 5 and then a = 10 + 0.5 sin(0.5t). It is demonstrated in Figure 4 with
k = 1000 that the information f(t) = 3 + 2 sin(0.5t) can still be recovered with the same
mismatch as that in Case 1. Furthermore, information signal with higher frequency and
composite signal are also considered. The results with f(t) = 3 + 2 sin(10t), k = 10000 and
f(t) = 5 + sin(t) + sin(4t) + sin(7t), k = 8000 are shown in Figures 5 and 6, respectively. It
is clearly demonstrated that the information signal can be recovered successfully, even if the
parameter a changes during the identification process. Based on much simulations, we find
that any change of parameters in the first and second equations of system (1.1) has nothing
to do with the identification results.

Case 5 (Simulation results in presence of noise). In this part, we are going to consider
the influence of the noise on the identification performance of the proposed parameter
observer in practical applications. We keep the third equation of system (1.1) invariant and
add the noise into the other two equations, then the transmitter system can be written as
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Figure 8: Simulation results in presence of noise with Case 5 of Section 2: f(t) = 3 + 2 sin(10t).

follows:

ẋs =
(
25β1(t) + a

)(
ys − xs

)
+ η1,

ẏs =
(
b − 35β1(t)

)
xs − xszs +

(
29β1(t) − c

)
ys + η2,

żs = xsys −
β1(t) + d

3
zs.

(2.16)

As it is shown in Figure 7(a), the mean of the random noise ηi (i = 1, 2) is zero
mean and the sample time is 0.001. In the simulations, we set the amplitudes of the noise
as 3 and the information signal as f(t) = 3 + 2 sin(0.5t), f(t) = 3 + 2 sin(10t), f(t) =
5 + sin(t) + sin(4t) + sin(7t), respectively. We utilize the proposed parameter observer to
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Figure 9: Simulation results in presence of noise with Case 5 of Section 2: f(t) = 5+ sin(t)+ sin(4t)+ sin(7t).

recover the information signal. Figures 7, 8, and 9 show the identification results when the
information signals are f(t) = 3 + 2 sin(0.5t), f(t) = 3 + 2 sin(10t), f(t) = 5 + sin(t) + sin(4t) +
sin(7t), respectively. It is indicated that for the transmitter system in presence of noise, the
information signal can still be retrieved with the same mismatch as Cases 1, 2, and 3. Based
on the simulations, we can conclude that the proposed observer in this paper is robust to
noise.

Compared with the performance of adaptive observer proposed in [6], it takes less
time for the parameter observer to recover the transmitted information. Moreover, the
proposed parameter observer is robust to any change of parameters and noise in the first
and second equations in system (1.1). However, the information estimation error is larger
than [6], but still tolerable. To identify the information easily and quickly, accuracy is the
only sacrifice.
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Figure 10: Simulation results with Case 1 of Section 3: f(t) = 3 + 2 sin(0.5t).

3. Cryptanalysis in Case of Unavailable β̇(t)

In the design process of parameter observer mentioned in Section 2, the value of β̇(t) is
assumed to be available. However, from the view of real communication, it is sometimes
impractical to get the information of β̇(t) [8]. Hence, in this section, we are going to consider
the case with unknown β̇(t).

3.1. Design of Parameter Observer

With β̇(t) being unknown, it is impossible to get the information of ġ(t). The parameter
observer of g(t) is designed as follows:

δ̇ = −zml(zm)δ + l(zm)
(
zmp(zm) + xmym

)
,

ĝ(t) = δ − p(zm),
(3.1)
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Figure 11: Simulation results with Case 2 of Section 3: f(t) = 3 + 2 sin(10t).

where the designed function l(zm) determines the converging speed. The observer identifies
g(t) at an exponential velocity. Consequently, when the frequency of g(t) is low and a large
gain function l(zm) is used, g(t) can be coarsely identified. Consequently, the transmitted
information is coarsely achieved.

3.2. Numerical Simulation

In this part, information functions used in Section 2.2 as well as a chaotic information signal
are simulated. All the parameters settings are the same as that of Section 2.2 except that a
larger k is set to improve the identification performance.
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Figure 12: Simulation results with Case 3 of Section 3: f(t) = 5 + sin(t) + sin(4t) + sin(7t).

Case 1 (f(t) = 3 + 2 sin(0.5t)). The simulation results are shown in Figure 10 with k = 1500,
which indicates the success of the information recovering. As the estimation of the absolute
error shown in Figure 10, f̂(t) closely matches with f(t), and after the initial transient time
of about 0.5 × 10−3 s, information signal can be recovered with a fluctuation of |f(t) − f̂(t)| ≤
0.5× 10−3. Although the performance is slightly worse than that shown in Case 1 of Section 2,
the estimation of the absolute error is still small.

Case 2 (f(t) = 3 + 2 sin(10t)). The proposed parameter observer is also used to recover
transmitted signal with higher frequency. A larger gain k = 15000 is set to achieve a
small error. As shown in Figure 11, f̂(t) still closely follows f(t) with a small mismatch of
|f(t) − f̂(t)| ≤ 2.5 × 10−3 after a transient time of 4 × 10−4 s. Compared with the case when β̇(t)
is known, a larger fluctuation is experienced.
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Figure 13: Simulation results with Case 4 of Section 3: f(t) is a chaotic signal.

Case 3 (f(t) = 5 + sin(t) + sin(4t) + sin(7t)). Figure 12 gives the simulation results when
a composite signal is used and a large constant k = 12000 is set. Figure 12 shows the
proposed parameter observer can still coarsely retrieve the transmitted information with
a small mismatch of |f(t) − f̂(t)| ≤ 2 × 10−3 after 5 × 10−4 s. The performance is inferior to
that with a low frequency signal in Case 1, but superior to that with a high frequency signal
in Case 2.

Case 4 (f(t) is a chaotic signal). In this example, the information signal is assumed to be a
chaotic signal, which is one state of a Lorenz system. We suppose that the maximum and
minimum values of the signal are known, and based on (1.2), β(t) is obtained from (1.2).
Figure 13 shows the simulation results with k = 20000. As displayed in Figure 13, 3ĝ(t) =
β̂(t) + d̂ is varied in the range of [8, 9], so it is estimated that d̂ = 8. It is noticed that f̂(t)
closely follows f(t) with a small mismatch after a transient time of 3.5 × 10−4 s, implying the
success of the information signal recovering.

4. Conclusions

This paper provided the cryptanalysis of a chaotic communication scheme based on
parameter identification. The approach was to design a parameter observer to identify the
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true value of the system parameter, which was directly determined by the information
signal. Supported by rigorous proof and illustrated with numerical simulation, it was clearly
demonstrated that the transmitted information can be obtained with the proposed parameter
observer. The results of numerical simulation showed that estimation of the absolute error
was about 10−3 after less than 7 × 10−3 s for the presented cases with different frequencies.
Furthermore, it was shown with simulations that the parameter observer was robust to
parameter change and noise in the transmitter system. Therefore, the security of the analyzed
communication scheme was rather weak under the observer attack, which discouraged its
further applications in practical communications.
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