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This paper presents a control design for flexible manipulators using piezoelectric actuators bonded
on nonprismatic links. The dynamic model of the manipulator is obtained in a closed form through
the Lagrange equations. Each link is discretized using finite element modal formulation based on
Euler-Bernoulli beam theory. The control uses the motor torques and piezoelectric actuators for
controlling vibrations. An optimization problem with genetic algorithm (GA) is formulated for
the location and size of the piezoelectric actuator and sensor on the links. The natural frequencies
and mode shapes are computed by the finite element method, and the irregular beam geometry
is approximated by piecewise prismatic elements. The State-Dependent Riccati Equation (SDRE)
technique is used to derive a suboptimal controller for a robot control problem. A state-dependent
equation is solved at each new point obtained for the variables from the problem, along the
trajectory to obtain a nonlinear feedback controller. Numerical tests verify the efficiency of the
proposed optimization and control design.

1. Introduction

The development of lightweight structures has attracted research attention on coping with
flexibility effects. Structures with a reduced weight are essential to improve the performance
in mobile applications, such as flexible robots, aircrafts, and spacecrafts. The design of these
structures requires a control system, which takes into account the interaction of the applied
forces and the elastic modes. Structure vibration suppression depends not only on control
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design, but also on the sensor/actuator (S/A) selection and placement [1]. This paper
considers piezoelectric S/A pairs bounded on a beam.

Piezoelectric coupling is defined as a relation between an applied electric field
and mechanical strain, or an applied strain and electric field in certain crystals, ceramics,
and films. In general, flexible robot manipulators feature surface bonded or embedded
piezoelectric actuators and/or sensor. The piezoelectric actuator generates a large actuating
force and has a fast response time. Moreover it is smaller than other actuating systems as
electrical motor or hydraulics for the same force [2].

A flexible beam optimization and control design is composed by two parts: control
gain and the placement of actuators and sensors. The proposed control must stabilize the
system against the motion-induced vibration. Design of a smart structure system requires
more than accurate structural modeling, since both structural dynamics and control need to
be considered for active vibration control [3]. A formulation of the dynamic equations, in
modal space, can be seen in Abreu et al. [4]. Optimal control design for location and size and
feedback gain is presented in some works [1, 3, 5]. This paper presents a genetic algorithm
(GA) design for S/A placement and size, considering maximal system energy dissipation
[6, 7]. A limited number of S/A pairs was considered distributed on the beam. Sun et al. [2]
suggest more than one actuator and consider linear velocity feedback.

Flexible structures can be built in complex geometries, which cannot be modeled by
simple beam bending equations. In this paper, the finite element method (FEM) is used for
dealing complex geometry within the realm of the Euler-Bernoulli beam theory. This paper
proposes a piezoelectric control with velocity feedback gain. The piezoelectric actuators and
sensors are fixed without considering the adhesive layer influence.

In flexible structure, a piezoelectric actuator is applied to single-link flexible
manipulators in [8–10] and applied to two-link flexible manipulators in [11]. These works
considered control torque of the motor, determined based on the rigid link dynamics and the
oscillations caused by the torque are suppressed by applying a feedback control voltage to
the piezoelectric actuator.

Robotic systems are modeled as linear with respect to parameters as mass, inertia, and
damping factors, but this assumption is not valid for the state, requiring nonlinear control
design. The SDRE [12] is among the techniques that emerged to deal with highly non-linear
and complex systems, such as the control of flexible robotic dynamics. The SDRE nonlinear
regulator produces a closed-loop solution which is locally asymptotically stable [13, 14].
The procedure to drive the tip position to a desired point via SDRE technique can consider
successive optimal solutions for static equations and feedback control stabilized system.

In this paper we propose a minimum energy positioning control technique for a robot
arm with flexible links, where the motor torque controls the joint angle tracking and reduces
the low frequency vibrations on the links. Piezoelectric sensors and actuators are added to
control the high frequency vibrations beyond the torque control. The lower fundamental
modes are responsible for the most of the beam tip displacement, therefore the first two
eigenfunctions are considered in the paper. Simulation code was created to assess the control
model feasibility and efficiency.

The remainder of this paper is organized as follows: the mathematical formulation
of the dynamic model of flexible links with piezoelectric material and a numerical
approximation for the vibration modes is presented in the next section. Piezoelectric material
control design is discussed in Section 3; an energy approach for location and size of S/A pairs
is presented in Section 4 and the genetic algorithm design in Section 5; physical parameters
of the model and partial results for location and size of S/A pairs are discussed in Section 6;
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Figure 1: A flexible structure with piezoelectric actuators and sensors.

the uncoupled control designs via bounded piezoelectric material and via SDRE methodol-
ogy are summarized in Section 7; numerical results are discussed in Section 8; conclusions
and final considerations follow in Section 9.

2. Dynamic Model of Flexible Links with Piezoelectric Material Pairs

Consider a uniform robot link featuring some piezoelectric actuators bonded on the top face
and sensors bonded on the bottom face, as shown in Figure 1.

This structure can be modeled as an Euler-Bernoulli beam. Assuming m S/A pairs,
when external charges are applied on the actuators, one can write, from the Hamilton
principle, the following partial differential equation [15]:

∂2

∂x2

(
EI

∂2w(x, t)
∂x2

)
+ ρA

∂2w(x, t)
∂t2

=
m∑
k=1

∂2Ma
k(x, t)

∂x2
, (2.1)

where w is the deflection of neutral axis, E, I, ρ, b, and A are Young’s modulus, inertia
moment, density, width, and cross-sectional area of the model, respectively, and Ma

k
is the

force moment induced by actuator k, given by [4]

Ma
k(x, t) =

∫hb/2+ha

hb/2
σxbydy =

∫hb/2+ha

hb/2

d31aEaV
a
k (x, t)

ha
bydy, (2.2)

where ha, hs sand hb are the actuator, sensor, and beam thicknesses, respectively; d31a and
Ea are the piezoelectric strain constant and Young’s modulus of the actuator; V a

k (x, t) is
the voltage applied to actuator k. The evolution of the integral (2.2) results the following
expression

Ma
k = bd31aEaraV

a
k (x, t), (2.3)

where ra denotes the distance measured from the neutral surface of the beam to the mid-
plane of the actuator. The voltage distribution of actuator k can be expressed as V a

k
(x, t) =

V a
k (t)[Ha(x−xk1)−Ha(x−xk2)], where Ha is the Heaviside functions for generalized location

and xk1 and xk2 are the end coordinates of the actuator k. Details of derivation of equation
(2.1) can be seen in Abreu et al. [4].
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Assuming a uniform voltage on the electrode surface of actuator k, the moment can be
expressed as

Ma
k = Pa

k V
a
k (t), (2.4)

where Pa
k = bd31aEara.

2.1. Finite Element Formulation

In order to find the mode shapes and natural frequencies, as well as to solve the control
problem, one can consider an Euler-Bernoulli finite element model with a total of dof -degrees
of freedom, with m piezoelectric S/A pairs. The two-node element presents two degrees of
freedom in each node, deflection, and slope. The inclusion of the piezoelectric material on the
flexible model is accounted by defining the beam properties elementwise, but the bonding
is neglected. In the elements where the material is added, the geometry and stiffness are
changed. In this manner, where the standard two-node cubic Hermite interpolation is used
and considering damping, (2.1) can be rewritten as

Mü + Du̇ + Ku = Pava, (2.5)

where M, D, and K are the global (dof × dof ) mass, damping, and stiffness matrices. The
applied voltage va is assumed to be uniform over the element and is an m-dimensional vector.
The energetic equivalent generalized force Pa is a (dof × m) matrix which maps the applied
voltage to the induced displacements and can be computed by the element contributions

Pa
elem = bd31aEa

[
0 ra 0 −ra

]T
. (2.6)

Here, one can note that Pa actuates on the slopes, that is, as a moment. Finally the nodal
displacements u, neglecting axial deflection, are given by

u =
[
w1 θ1 w2 θ2 · · · wnode θnode

]T
, (2.7)

where w are the nodal transverse deflections and θ = ∂w/∂x are the slopes.
The beam was considered flexible and nonprismatic, therefore subject to motion

induced vibration, which affects the trajectory of the endpoint. Equations (2.8) and (2.9)
show a possibility to consider nonprismatic beams, using a specifically formulation for
computation. An elementwise prismatic approach is adopted for the nonprismatic beam,
where the mass matrix of each element is computed considering an average sectional area
given by

Aelem =
A1 +

√
A1 +A2 +A2

3
, (2.8)
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and the stiffness matrix uses an average bending stiffness given by

EIelem =
EI1 +

4
√
(EI1)3EI2 +

√
EI1EI2 +

4
√
EI1(EI2)3 + EI2

5
, (2.9)

where the index 1 refers to the first node of the element and the index 2 to the second.
For the elements with piezoelectric material [16], the flexural stiffness is considered as

EI = Ea

[
h3
ab

12
+ hab

(
hs +

ha

2
+ hb − dn

)2
]
+ Eb

[
h3
b
b

12
+ hbb

(
hs +

hb

2
− dn

)2
]

+ Es

[
h3
sb

12
+ hsb(hs − dn)

2

]
,

(2.10)

where the subscripts a, b, and s refer to actuator, beam, and sensor respectively; dn is the
distance from the bottom of the sensor to the neutral axis.

2.2. Modal Analysis

The finite element modal problem is solved by a classical eigenproblem solution method.
However, one can consider the time and space separability principle to the control analysis.
Thus, the displacement can be written as

u =
∞∑
i=1

φi(x)ηi(t) ≈
n∑
i=1

φi(x)ηi(t) = Φη, (2.11)

where φi(x) are the mass normalized orthogonal mode shapes and ηi(t) are generalized
modal amplitudes. Truncating the representation of u to n modes, the dynamics of the flexible
structure with m distributed piezoelectric S/A pairs, in terms of modal coordinates, can be
expressed as

MΦη̈ + DΦη̇ + KΦη = Pava, (2.12)

where Φ is the truncated modal matrix and η = [η1 η2 · · ·ηn]T is a vector of modal amplitudes.
Premultiplying both sides by ΦT, (2.12) can be transformed in the reduced modal

space as

Mη̈ + Dη̇ + Kη = P
a
va, (2.13)

where

M = ΦMΦ, D = ΦDΦ, K = ΦKΦ, P
a
= ΦTPa (2.14)
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are (n × n) diagonal matrices because of the orthogonality of the eigenvectors, except P
a

which is (n × m) matrix and represents the actuator force.
In open state space form (2.13) can be rewritten as

ξ̇ = Aξ + Bva,

A =

⎡
⎣ 0n×n In×n

−M
−1

K −M
−1

D

⎤
⎦, B =

⎡
⎣ 0n×m

−M
−1

P
a

⎤
⎦, (2.15)

where ξ = [η η̇]T is the state vector, A is the system matrix (2n × 2n), B is the control matrix
(2n × m), and va is the control input vector of the actuator.

2.3. Sensor Equations

The sensors are considered with the same length and axial position than the actuators, but
vertically opposite (Figure 1). On a sensor k, the open circuit voltage V s

k
(t) due to the bending

effect can be estimated by the normal strains in the axial direction εx of the beam. For each
sensor, for a specific vibration mode, it is given by

V s
k (t) =

hs

Se

∫Se

Se

h31sεxdSe = −
hs

xk2 − xk1

∫x2(k)

x1(k)

h31sεxdx

= − hs

xk2 − xk1

∫x2(k)

x1(k)

g31sEsrs
∂2w

∂x2
dx = Cs

k[θ(x2) − θ(x1)],

(2.16)

where hs is the sensor thickness, Se is the electrode surface, and h31s is the piezoelectric
constant, Cs

k
= −[hs/(xk2 − xk1)]g31sEsrs; Es is the Young’s modulus of the sensor, rs is the

distance measured from the neutral axis of the beam to the midplane of the sensor layer,
and g31s is the piezoelectric stress constant [17]. The input voltage applied to the conjugated
actuator is determined by using the control law discussed below after obtaining the sensor
output voltage.

3. Piezoelectric Material Control Design

In this paper it is proposed a constant gain negative velocity feedback control to the actuator
[16], expressed as

V a(t) = −GV̇ s(t), (3.1)

where G is the feedback gain. V s(t) is the voltage generated by the sensor, obtained by
integrating the electric charge developed on the piezoelectric sensor surface, (2.16).
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Returning to the right side of (2.12), one can write

Pava = −PaGv̇s

= −PaGCsu̇

≈ −PaGCsΦη̇,

(3.2)

where G is an (m ×m) feedback gain matrix and Cs is an (m× dof ) output sensor matrix. The
resulting S/As control law for the system equation is expressed as

Mη̈ + Dη̇ + Kη = −P
a
GC

s
η̇. (3.3)

Using the sensor equations and the proposed control, (2.15) can be expressed in the
corresponding closed-loop state space form as

ξ̇ = (A + B)ξ = Aclξ,

Acl =

⎡
⎣ 0n×n In×n

−M
−1

K −M
−1

D −M
−1

P
a
GC

s

⎤
⎦. (3.4)

Since the mode shapes are mass normalized, the following simplifications are valid:

M = I = diag(δii),

M
−1

K = Ω2 = diag
(
ω2

i

)
,

M
−1

D = 2ζΩ = diag(2ζiωi),

(3.5)

where δii is the Kronecker delta, ωi and ζi are the natural frequency and structural damping
ratio of ith vibration mode. The actuator force, feedback gain, and output matrices can be
computed as

P
a | P

a

ik = Ead31abra[θi(xk2) − θi(xk1)],

G = diag(Gk),

C
s | C

s

ki = −
hs

xk2 − xk1
Esg31srs[θi(xk2) − θi(xk1)].

(3.6)

4. Energy Approach for Location and Size of S/A Pairs Optimal Design

Controlling structural vibration depends not only on the control law, but also on the selection
and location of the actuators and sensors [18]. This paper proposes feedback control for
the actuator and sensor placement and size optimization, based on maximizing the control
energy dissipation [1]. This procedure takes into account the mass and stiffness of actuators
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and sensors and their effect on the mechanical behavior of the structure. This influence is
combined to the control characteristics to obtain an objective function that depends on the
actuators location and size and the feedback gain.

The dynamic of the beam with m piezoelectric sensors and actuators is expressed in
(3.3), in terms of modal coordinates.

Theorem 4.1. The total energy stored in the system can be considered a Lyapunov function as

W = T +U =
1
2
η̇T Mη̇ +

1
2
ηT Kη > 0, (4.1)

where T is the kinetic energy, U is the potential energy, and η is the generalized coordinates vector,
associated with beam deflections.

Proof. The proof of this theorem presents no great difficulties. We needed to show that the
derivative of the function (4.1) is negative definite. Differentiating it with respect to time
gives

Ẇ = Ṫ + U̇ =
1
2
η̇T Ṁη̇ + η̇T Mη̈ +

1
2
ηT K̇η + η̇T Kη. (4.2)

The terms η̇T Ṁη̇ and ηT K̇η are equal to zero, since the matrices M and K are time
independent for the beam. Isolating η̇T and using (3.3) yield

Ẇ = Ṫ + U̇ = −η̇TDη̇ − η̇TP
a
GC

s
η̇ < 0, (4.3)

where the first and the second terms describe the removed system energy rates by the internal
damping and by the control feedback, respectively. In this manner Ẇ is negative definite.

Integrating (4.3) results

W(t0) = Wf +Wc =
∫∞
t0

η̇TDη̇dt +
∫∞
t0

η̇T P
a
GC

s
η̇dt, (4.4)

where W(t0) denote the initial energy of the system, Wf and Wc represent energy dissipated
by internal damping and by the control action, respectively.

The quadratic cost function for the regulator problem is considered for maximizing
the energy dissipation

Wc =
∫∞

0
ξTQξdt, (4.5)
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where Q is positive semidefinite weighting matrix, and their elements are selected connecting
output of the sensor feedback with the input on the actuator

Q =

[
0n×n 0n×n

0n×n P
a
GC

s

]
. (4.6)

Equation (4.5) can be reduced, by standard-state transformation techniques, to the
expression

Wc = ξT
0 Pξ0, (4.7)

where ξ0 are the initial conditions. The determination of the matrix P can be reduced to
solving a matrix Lyapunov equation

Acl
TP + PAcl + Q = 0. (4.8)

For effective vibration suppression, it is reasonable to derive a method to increase the
energy dissipated by the control. It is well known that Wc depends on the placement and
the size of the piezoelectric pairs, as well as the feedback matrix gain. Therefore, Wc can be
used as an optimization criterion to determine locations and size [1]. Since, one wishes to
maximize the energy dissipated, one can write

minimize J(x, L) = −Wc. (4.9)

It is noticeable that Wc depends on the initial conditions of the flexible structure. In some
works, such as [1, 6, 19], in order to eliminate this dependence, it is assumed an initial
state as a random variable. The initial condition is modeled as a random variable uniformly
distributed on the surface of the 2n-dimensional unit sphere, then the expected value of J∗

scaled by n can be given by [20].

J∗ =
∫T

0
tr
(
ξTP

a
GCSξ

)
dt = tr(P), (4.10)

where tr(P) represent the trace of matrix P. The stability of the feedback matrix Acl is an
important condition for the existence of the feedback control. It can be shown that for our
problem the stability for Acl is assured.

5. Genetic Algorithm

In this section, a genetic algorithm optimization problem is formulated to find the placement
(xk) and sizes (Lk) of the m piezoelectric S/A pairs bonded onto the beam, which minimize J
given by (4.10). Genetic algorithms basically are random adaptive search techniques derived
from the Darwinian evolutionary principle of “survival of the fittest.” The design variables
are coded as a string that corresponds to the individual chromosome, and the objective
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function value corresponds to the fitness. The artificial recombination among the population
of strings (individuals) is based on the fitness and the accumulated knowledge. A new set of
individuals is created by using parent selection, crossover, and mutation from the old set of
individuals in every new generation.

Each individual is coded in a form that the first chromosome contains m binary
positions with n1 genes each one, that is, each S/A pair can take 2n1 possible positions in the
beam. The second chromosome shows m integer numbers to encode the size, of a group with
n2 possible values. Thus, the binary-integer encoded GA is developed and implemented.

The parent selection is done using a tournament operator based in [21]. Since the initial
population is random and using the crossover and mutation operators, the S/A pairs can be
out of order or overlapped (infeasible solutions). Therefore, a penalization was considered to
measure the constraint violation, given by

g =

⎧⎪⎪⎨
⎪⎪⎩

m∑
k=2

(
xk1 − x(k−1)2

)
if xk1 < x(k−1)2,

0, otherwise.

(5.1)

In the tournament, two individuals are compared at a time, and the following criteria
are always enforced.

(i) Any feasible solution is preferred to any infeasible solution.

(ii) Among two feasible solutions, the one having better objective function value is
preferred.

(iii) Among two infeasible solutions, the one having smaller constraint violation is
preferred.

The binary-encoded part uses one-point crossover, and the mutation is done in one
gene. For the integer-encoded part, the crossover is similar with the standard binary-encoded
GA; the only difference is that the base of the integer-encoded GA is n2. Elitism is used to
increase the performance, and the stop criterion is the total number of generations.

6. Simulations for S/A Pairs Optimization

This section presents the results for a cantilever beam (analogically for robot links) to verify
the feasibility and reliability of the optimization technique presented before. In the first
example, the beam, actuators, and sensors present a similar stiffness and mass density. In
the second one, the sensor is a piezofilm, so it is more flexible than the piezoceramic used in
the first one. Moreover, the aluminum beam is lighter than the steel beam.

Example 6.1. In this example the nonzero feedback matrix gain values G are set as a constant
1 (one). Structural damping ratio for any vibration mode is equal to 0.1. Table 1 presents
mechanical and geometrical properties of the beam and piezoelectric actuators and sensors.
The initial conditions of the generalized coordinate vector, in this case, are given by

η(0)T =
[
0.1 0.1 0.1

]
,

η̇(0)T =
[
0.1 0.1 0.1

]
.

(6.1)
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Table 1: Beam and piezoelectric properties (Example 6.1).

Beam Actuators Sensors
Young’s modulus (GPa) 210 × 109 139 × 109 139 × 109

Mass density (kg m−3) 7500 7810 7810
Stress constant d31 (m V−1) — 11 × 10−11 —
Strain constant g31 (Vm N−1) — — 0.01
Thickness (m) 2 × 10−3 → 1.6 × 10−3 40 × 10−6 40 × 10−6

Width (m) 0.03 0.03 0.03
Length (m) 0.5 — —

Table 2: Optimal placement and size of S/A.

Pairs
Modes

1st 1st and 2nd 1st, 2nd and 3rd
xk (m) Lk (m) xk (m) Lk (m) xk (m) Lk (m)

1 0.0000 0.200 0.0000 0.200 0.0000 0.075
2 0.2063 0.100 0.2063 0.200 0.1269 0.125
3 0.5000 0.050 0.5000 0.050 0.3333 0.100

Using the genetic algorithm proposed in Section 5, the placement optimization of
three S/A pairs in a cantilever beam with 64 possible positions is presented. There are four
possible sizes for each pair, Lk = [0.050 0.075 0.100 0.200]mm. The population size and
the number of generations are 300 and 100, respectively. The variation in the results for
one to four vibration modes controlled simultaneously is investigated. Table 2 shows the
optimal positions in relation to the number of combined controlled modes. The convergence
of the fitness function for three modes combined is shown in Figure 2. Note that the fitness
stabilized when the number of generation is around 15; after that, no chances of fitness
appear.

The positions found for the third piezoelectric pair for one and two vibration modes
combined (x31 = 0.5 m) mean that the last S/A pair is out of the beam. This position is the
64th possibility.

With this result, for location and size of the S/A pairs, it is noticeable that the control
gain depends on the location, and this can help in the effectiveness of the vibration control.

Example 6.2. The results obtained in this example were used in the continuity of this paper
to find the best locations and sizes for the S/A pairs in the flexibly link. Again, the non-zero
feedback matrix gain values G are set as a constant 1 (one). Structural damping ratio is equal
to 0.008 and 0.005, for the first and second modes, respectively. Table 3 presents mechanical
and geometrical properties of the beam and piezoelectric actuators and sensors. The initial
conditions are the same of the previous example.

Figures 3 (case 1) and 4 (case 2) show the objective function that depends on xk and Lk

variables of a second S/A pair. The values results were obtained considering two vibration
modes. In the first case, an S/A pair with length 0.1 m was fixed in the origin. It can be seen
clearly in this figure, that the best place and length for the second pair are 0.10 m and 0.15 m,
respectively. For the second case, an S/A pair with length 0.15 m was fixed in the origin. And
now, it can be noted that there are two possible solutions with almost the same value for the
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Figure 2: Convergence of the fitness function for 3 vibration modes.
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Figure 3: Dissipated energy objective function due to piezoelectric control (case 1).

objective function. The first possible position for the second pair is right after the first one at
0.15 m with size 0.10 m. And the second possible solution is approximately at 0.35 m with size
0.15 m.

Considering the characteristics of the first case (an S/A pair with length 0.1 m fixed in
the origin) a new GA was performed. The objective of the problem is to find the placement
and size of the second S/A pair in a cantilever beam with 64 possible positions and four
possible sizes, Lk = [0.075 0.0100 0.125 0.150]m. The population size and the number
of generations are 300 and 100, respectively. The position and size found for the second
piezoelectric was 0.1 m and 0.15 m, as we expected from Figure 3. This result will be used
in the continuity of this paper. The first two natural frequencies obtained for the flexible link
(considered as a cantilever beam) are 3 Hz and 12.7 Hz, respectively.
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Figure 4: Dissipated energy objective function due to piezoelectric control (case 2).

Table 3: Beam and piezoelectric properties (Example 6.2).

Beam Actuators Sensors
Young’s modulus (GPa) 65 × 109 64 × 109 2 × 109

Mass density (kg m−3) 2890 7700 1780
Stress constant d31 (m V−1) — −32 × 10−11 —
Strain constant g31 (Vm N−1) — — 216 × 10−3

Thickness (m) 1 × 10−3 → 0.6 × 10−3 815 × 10−6 28 × 10−6

Width (m) 25 × 10−3 25 × 10−3 25 × 10−3

Length (m) 0.7 — —

7. Manipulators Motion and Control

7.1. Equations of Manipulators Motion

The closed form equations of motion are derived using Lagrange’s equations, written as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi, i = 1, 2, . . . ,N + n, (7.1)

where L = T −U, T is the kinetic energy, U the potential energy, qi the generalized coordinate,
associated with joint coordinates and link deflections, and Fi are the generalized forces. N is
the number of links and n the number of modes. It can be written in compact matrix notation
[22], resulting

Mr(q)q̈ + Cr(q, q̇)q̇ + Krq + Drq̇ + g(q) = Γ, (7.2)

where q = [α,η]T is the generalized coordinates vector, α ∈ RN is the joint coordinates vector,
η ∈ Rn is the elastic modes coordinates vector, Mr(q) is the positive definite symmetric inertia
matrix, Cr(q, q̇) is the Coriolis and centrifugal forces matrix, g(q) is the gravitational torque
vector, Kr is the positive definite stiffness diagonal matrix, Dr is the positive semi-definite
link diagonal modal damping matrix, and Γ = [τ , 0](N+n) × 1 is the joint input torque vector.
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Variable tip mass (payload) can be estimated by the change of the fundamental frequency
which can be excited by a preliminary perturbation.

7.2. Tip Position Control

Under certain conditions, achieving the suppression of elastic link vibrations by the motor
torque alone may be very difficult. Hardware limitations, such as motor saturation and
motor noise, may prevent the control of high frequency vibration modes. To address these
shortcomings we use a hybrid controller consisting of the servo-motor and piezoelectric
actuators and sensors bonded to the flexible links as shown in Figure 1. The vibration
feedback control voltage to the piezoceramic actuator based on the voltage of the piezofilm
sensor is show in Section 3.

The total control pruposes is an uncoupled combination of motor torque control and
piezoelectric material control. The various matrices from (7.2), substituting the matrices from
(3.3), including the piezoelectric actuator control, can be partitioned as

Mr(q) =

[
Mαα Mαη

MT
αη M

]
, Cr(q, q̇) =

[
Cαα Cαη

Cηα Cηη

]
, Dr =

[
0 0

0 D

]
,

Kr =

[
0 0

0 K

]
, g(q) =

[
gη(α)

gα(η)

]
, Γ =

[
τ

Pava(t)

]
,

(7.3)

where the indexes αα, αη are the terms from the matrices corresponding to rigid body
motions and coupling of rigid and flexible motion.

7.3. Control via State-Dependent Riccati Equations

The SDRE method is used for positioning control, which implies in a vibration control on
the flexible link. In this paper, this method is used to derive the control of the joint torques.
The complete control of the tip position includes the joints control by the SDRE method and
the piezoelectric actuators. The actuation frequencies ranges of the motor and piezoelectric
inserts are chosen to be nonoverlapping, so that their controls are uncoupled.

The dynamic system defined by (7.2) and (7.3) can be parameterized in first-order
equations and written in the state-dependent coefficient (SDC) form

ẋ = Ar(x)x + Br(x)Γ,

y = S(x)x,
(7.4)

where x ∈ R2(N+n) is a state time dependent, ẋ ∈ R2(N+n) is the vector of the first-order time
derivatives of the states, Γ ∈ Θ ∈ RN+m is the control vector, Θ is the control constraint set.
This system represents the constrains from the nonlinear regulator problem, together with
x(t0) = x0, x(∞) = 0, respectively the initial and final conditions.
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The coefficient dependent matrices are given by

Ar(x) =

[
0 I

−M−1
r Kr −M−1

r (Cr + Dr)

]
, Br(x) =

[
0

M−1
r

]
,

Qr(x) = ST(x)S(x), S(x) = diag
{√

qrk
}
k=1,...,2(N+m),

(7.5)

where Ar ∈ R2(N+n)×2(N+n) and Br ∈ R2(N+n)×2(m). The state and control dependent coefficients
are given by f(x) = Ar(x)x, br(x) = Br(x), and d(x) = S(x)x [12]. It is assumed that f(0) = 0,
implying that the origin is an equilibrium point.

A state feedback rather that output feedback is adopted to enhance the control
performance. The nonquadratic cost function for the regulator problem is given by

Jr =
1
2

∫∞
t0

[
xTQr(x)x + ΓTR(x)Γ

]
dt, (7.6)

where Qr(x)x is semipositive definite matrix and R(x) positive definite. They are weighting
matrices on the outputs and control inputs, respectively. These are the weighting matrices on
the output and control input, respectively. They are assumed to be constant for the piecewise
linear approach.

Assuming full state feedback, the control law is given by

Γ = −R−1(x)BT
r (x)Π(x)x. (7.7)

The state-dependent Riccati equation to obtain Π(x) is given by

AT
r (x)Π(x) +Π(x)Ar(x) −Π(x)Br(x)R−1(x)BT

r (x)Π(x) + Qr(x) = 0. (7.8)

We remark four theorems [13, 14] about SDRE technique.

Theorem 7.1. In the neighborhood Σ about the origin the SDRE method guarantees a closed-loop
solution, local asymptotic stability.

Note that the closed-loop solution is given by

ẋ = Ar(x)x − Br(x) − R−1(x)BT
r (x)Π(x)x = Ad(x)x. (7.9)

Ad(x) is guaranteed to be stable at every point x from Riccati equation Theory. And in a neighborhood
about the origin it is shown in [13, 14] that the system (7.9) is asymptotic stabile.

Theorem 7.2. In the scalar case, the SDRE method reaches the optimal solution of the feedback
regulator problem performance index (7.5), even when Qr and R are functions of x.

There exists only one SDC parameterization in the scalar case ar(x) = f(x)/x. It can be show
that the state-dependent Riccati equation from this parameterization has a positive-definite solution.
The first and the second necessary conditions for optimality are satisfied. This theorem is proved in
[13].
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Theorem 7.3. In general multivariable case, the SDRE nonlinear feedback controller satisfies the first
necessary condition for optimality, ∂H/∂Γ = 0H is the Hamiltonian from the problem (7.4)–(7.6),
while the second necessary condition for optimality, λ̇ = −∂H/∂x, is asymptotically satisfied at a
quadratic rate as x goes to zero.

The Hamiltonian is given by

H(x,Γ, λ) =
1
2

(
xTQr(x)x + ΓTR(x)Γ

)
+ λT (Ar(x)x + Br(x)Γ), (7.10)

which implies that

HΓ = R(x)Γ + Br(x)λ = 0,

Γ = −R−1(x)BT
r (x)λ.

(7.11)

Then one assume the costate

λ = Π(x)x. (7.12)

Substituting λ into Γ yields the SDRE controller.

Theorem 7.4. The system (7.4) is pointwise controllable and observable, for a region in neighborhood
Σ about the origin.

For controllability this mean full rank for the matrix [Br
...Al

rBr] l=1,...,2(N+n−1) from the static
problem ẋ = Arx + BrΓ, in this neighborhood. SDRE method considers a solution for this static
pointwise problem, for small time interval.

The detailed proofs from these theorems can be seen in [13, 14].
In fact, in our case we cannot obtain the Riccati solution analytically, due to its complex

invertibility of the inertia matrix, therefore we used some numerical features, described in
the following steps. The SDRE technique to obtain a suboptimal solution for the flexible
manipulator problem with piezoelectric actuators has the following procedure [12].

Step 1. Define the space-state model of the manipulator in the state-dependent coefficient
form (7.4).

Step 2. Measure the state of the system x(t), that is, define x(0) = x0, and choose the
coefficients of weight matrices Qr and R.

Step 3. Solve the Riccati equation (7.8) for the state x(t) considering pointwise static solutions,
that is, solve AT

r Π +ΠAr −ΠBrR−1BT
r Π + Qr = 0 for each step.

Step 4. Calculate the input signal from (7.7).

Step 5. Integrated the system (7.4) and update the state of the system x(t) with these results.
Go to Step 3.
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Figure 5: Block-diagram of the proposed control algorithm.

8. Simulations and Results of the Flexible Manipulator Control

The optimization and control laws were tested on a single flexible link and on a simplified
planar robot model with a rigid first link and a flexible second link. Gravitational effects were
ignored; the motion of the flexible beam is in the horizontal plane. The generalized coordinate
vector is q = (α1, α2, η1, η2). The inertial matrix, the Coriolis, and centrifugal effects matrix are
taken from [23]. Dimensional and mechanical properties of the aluminium flexible link and
piezoelectric materials are shown in Table 3.

The proposed control take an initial position z0 for the two link manipulator and drives
the tip to a final desired position, without any trajectory constraint, which means that the
control tries to find the minimum energy trajectory. Then the optimal problem, for pointwise
static solutions, can be reformulated as minimizing the cost functional

Jz =
1
2

∫∞
0

[
zTQrz + ΓTRΓ

]
dt, (8.1)

such that ż = Arz + BrΓ, z(0) = z0, z(∞) = 0, where the vector z = [x − xd], xd is the desired
tip position with joint coordinates and zero for the modal deflections. Assuming the initial
conditions, the next state z(t) for each step is obtained considering the control by the torques
of the joints and the feedback of the piezoelectric material, as shown in Figure 5.

The resulting equation was coded into a Matlab software, where the fourth-order
Runge-Kutta method was used to integrate by solving the equations. The Riccati equation
was solved using the Matlab function “LQR.”

The lower fundamental modes are responsible for most of the link’s tip displacement,
therefore the first two eigenfunctions are considered in the paper.

8.1. Simulations of the Manipulator Controlled Dynamics

The first simulation (Figure 6), shows the dynamic behaviour, of the flexible link, without
vibration control.

The second simulation (Figures 7(a)–7(d)), shows the displacement at joints when the
torque control is used. It is simulated for two different cases. At first moment, (Figures 7(a)
and 7(b)), the initial joint coordinates are α1 = 5π/4, α2 = −π and deflections η1 = 0, η2 = 0.
In this position the links are overlapping by π/4 at the axes x and y. The desired point, for the
joints, to drive the robot arm is α1 = π/4, α2 = 0, and for the deflections η1 = 0, η2 = 0. At the
second moment, (Figures (c) and (d)), the initial point is α1 = 0, α2 = 0, and the desired point
α1 = 1, α2 = 1. The robot arm positions for these two cases are shown in (Figures 7(e)–7(h)).
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Figure 6: Deflection of φ1 and φ2.

The matrices Qr and R, for the pointwise static problem, after some trial the matrices,
were chosen as Q = diag{50, . . . , 50} and R = diag{500, . . . , 500}.

The third simulation, (Figures 8 and 9), show the vibration control of the flexible link
with the torque feedback gain. The initial conditions are the same as in the first case above. In
space coordinates the initial point is x0 = y0 = 0.2828, and the desired point xd = yd = 0.7071.

Figure 9 shows that the endpoint of the robot initially vibrates, but it is controlled in a
short time.

The next simulation, (Figure 10), shows the vibration control of the flexible link with
the torque feedback gain and including the piezoelectric constant amplitude controller. The
initial conditions are the same as in Figures 7(a) and 7(b). The gain G = diag{0.1, 0.1}.

An important aspect, which was not modeled in this work, is the fact that the strain
of the piezoelectric actuator is limited; however the chosen feedback gains do not extrapolate
these limitations.

The actuator feedback gain Va(t) from the control system with piezoelectric control is
shown in Figure 11. It is noticeable that the force applied of the actuator produces a moment
that opposes the link deflection.

In a flexible link manipulator, system parameters, like the payload, cannot be known
exactly, and this can introduce significant uncertainties in the dynamic model. Also, it can be
the deviations from nominal values of the material properties or physical parameters; these
can affect the efficient of the simulation when compared with a practical case.

We can note that the state feedback is given by the analytical simulation of the physical
system. It could be interesting to introduce also a control provided from the measured
response of the system, through the piezofilm, but we do not consider this in the paper.

Using the SDRE method implies that the controllability of the static problem depends
on the size from the time step. In this paper this chosen size was 0.001 sec. Controllability is
lost for large time steps. In our case, with high frequencies, the time step is also important for
characterizing correct frequency period.

The choice of the best values for the state weighting matrix Qr is very important.
A good choice can improve the efficiency of the controllers. In this paper we have tested
some weighting matrices and concluded that, for our control design, the good results are
obtained with values around Qr = diag{50, . . . , 50}. Smaller or greater values affect the
control efficiency.
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Figure 7: Joint displacement.

The stability analysis for this system may be examined around the origin [12]. The
linearization technique was used for

f(x) = Ar(x)x, wr(x,Γ) = Br(x)Γ,

Jf =
[
∂f
∂x

]
x=0

, Jh =
[
∂wr

∂Γ

]
x=0

,
(8.2)
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Figure 8: Step response of the flexible link using SDRE.
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Figure 9: Trajectory in space coordinates an endpoint of the robot arm, in meters. The start point and
desired point are set by rectangles. The inset shows the start of the movement in a larger scale for better
visualization.

where Jf and Jh are the Jacobian matrices of f(x) and wr(x,Γ) at x = 0, respectively. If
the eigenvalues of the Jacobian have negative real parts, the point x = 0 is a locally stable
equilibrium point. If one of the real parts are positive, then the point x = 0 is an unstable
equilibrium point. In our case, Jf = Ar(0), Jh = Br(0). Then, a necessary condition for
a local stability is that the pair {Ar(0), Br(0)} has to be stabilizable. It was obtained one
positive eigenvalue, so that we have an unstable equilibrium point at the origin. Even so,
the linearized system is pointwise controllable and observable for a region of interest Σ. This
fact is shown in [12], and we have also verified the controllability for our system. The stability
is obtained by full state feedback gain Γ = −R−1(x)BT

r (x)Π(x)x.



Mathematical Problems in Engineering 21

Deflection mode 1

0 1 2 3 4

t (s)

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04
φ

1

(a)

Deflection mode 2

0 1 2 3 4

t (s)

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

φ
2

(b)

Figure 10: Step response of the flexible link using SDRE and piezoelectric controllers.
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Figure 11: Actuator feedback control voltage response for the beam in vibration.

9. Conclusions

This paper introduces a technique for optimization of placement and size of piezoelectric
material for the optimal vibration control of flexible robot links. A GA technique was used
on the optimal control strategies for choosing the best location and size for some given
discretization. Piezoelectric actuators and sensors are added to the system to control the
frequency vibrations considering that the properties of the structure changes where the
actuators and sensors are added. This technique can be used to build lightweight structures
with controlled vibration levels, as manipulators with flexible links, while preserving the
stiffness and precision. It also reduces the energy consumption and suits the needs for
aerospace systems or for tasks that demand lightness, precision, and agility.
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The simulations for the control system have confirmed effectiveness for this control
technique. The numerical results indicate that the location and size of the sensor/actuators
may have significant influence on the integrated system control performance. Also the
feedback gain affects directly the control efficiency. The suboptimal State-Dependent Riccati
Equation technique, together with the piezoelectric actuators and sensors, can control the
vibrations on the flexible link in a short time span.

The control with the motor torques alone could be efficient for low frequencies, but
for high frequencies (mainly) the simulations show that piezoelectric actuators increase
the control effectivity. The control using just motor torques can be more complicated in
some practical applications, where the frequent torque change requires more robust motors.
Piezoelectric actuators are more efficient in high frequencies.

The results in the paper show that the SDRE method is at least as efficient with
vibration control as other robust control methods, although it requires some heuristic
weighting matrices.
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