
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 373648, 20 pages
doi:10.1155/2010/373648

Research Article
Stacked Heterogeneous Neural Networks for
Time Series Forecasting

Florin Leon and Mihai Horia Zaharia

Faculty of Automatic Control and Computer Engineering, Technical University “Gheorghe Asachi” of Iaşi,
Boulevard Mangeron 53A, 700050 Iaşi, Romania

Correspondence should be addressed to Florin Leon, florinleon@gmail.com

Received 31 January 2010; Accepted 21 February 2010

Academic Editor: Cristian Toma

Copyright q 2010 F. Leon and M. H. Zaharia. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

A hybrid model for time series forecasting is proposed. It is a stacked neural network, containing
one normal multilayer perceptron with bipolar sigmoid activation functions, and the other with
an exponential activation function in the output layer. As shown by the case studies, the proposed
stacked hybrid neural model performs well on a variety of benchmark time series. The combination
of weights of the two stack components that leads to optimal performance is also studied.

1. Introduction

Many processes found in the real world are nonlinear. Therefore, there is a need for
accurate, effective tools to forecast their behavior. Current solutions include general methods
such as multiple linear regression, nonlinear regression, artificial neural networks, but
also specialized ones, such as SETAR, Self-Exciting Threshold Auto-Regression [1], MES,
multivariate exponential smoothing [2], and FCAR, Functional Coefficient Auto-Regressive
models [3]. The DAN2 model [4] is a dynamic architecture for artificial neural networks
(ANNs) for solving nonlinear forecasting and pattern recognition problems, based on the
principle of learning and accumulating knowledge at each layer and propagating and
adjusting this knowledge forward to the next layer.

Recently, more hybrid forecasting models have been developed, integrating neural
network techniques with conventional models to improve their accuracy. A well-known
example is ARIMA, the Auto-Regression Integrated Moving Average [5]. ARFIMA, Auto-
Regressive Fractionally Integrated Moving Average, is a time series model that generalizes
ARIMA by allowing nonlinear values in modeling events with long memory [6]. The
SARIMABP model [7] combines SARIMA, Seasonal ARIMA, and the back-propagation



2 Mathematical Problems in Engineering

training algorithm to predict seasonal time series for machinery production and soft drink
time series. Another hybrid model, KARIMA [8], combines Kohonen’s self-organizing map
and ARIMA to predict short-term traffic flow.

Other techniques include a combination of the radial basis functions, RBF, neural
networks, and the Univariant Box-Jenkins, UBJ, model [9]. Another model that combines
radial basis functions neural networks with a nonlinear time-varying evolution particle
swarm optimization, PSO, is developed by other authors [10]. It displays dynamically
adaptive optimization for the inertia and acceleration coefficients, accelerating convergence,
and shows good performance on the time series prediction of a power system.

The study of nonlinear phenomena is especially important in the field of system
dynamics. Research in this area proved that nonlinear differential equations are capable
of generating continuous mathematical functions similar to pulse sequences [11]. Also, an
extension to the Fourier/Laplace transform needed for the analysis of signals represented by
traveling wave equations was proposed [12], along with a mathematical technique for the
simulation of the behavior of large systems of optical oscillators.

Artificial neural networks are one of the most accurate and widely used forecasting
models, with applications in social, economical, engineering, foreign exchange, stock
problems, and so forth. Neural network have some characteristics that make them
particularly valuable for forecasting [13].

(i) Unlike traditional model-based methods, NNs are data-driven and self-adaptive,
needing little a priori information about the studied problems.

(ii) NNs are known to have good generalization capabilities. After learning the data
presented to them, they can correctly predict unseen data, even in the presence of
noise.

(iii) NNs are universal approximators [14]; that is, they can approximate any
continuous real function to any degree of accuracy.

(iv) NNs are nonlinear models, and therefore better suited to capture the true nature of
many natural processes.

2. The Proposed Neural Network Architecture

The proposed model is composed of two neural networks, each with one hidden layer, as
shown in Figure 1.

The inputs of the model are the recent values of the time series, depending on the size
of the sliding window s. Basically, the stack model predicts the value of the time series at
moment t depending on the latest s values:

yt = f
(
yt−1, yt−1, . . . , yt−s

)
. (2.1)

The neurons in the hidden layers of both networks that compose the stack are normal
multiplayer perceptron (MLP) neurons, with bipolar sigmoid, or hyperbolic tangent,
activation functions:

tanh(x) =
1 − e−2x

1 + e−2x
. (2.2)



Mathematical Problems in Engineering 3

Hidden layer

[tanh]
Wn

p,q

Wn
i

yntyt−1

yt−2

W1[tanh]

W2[exp]

yet

We
j

[tanh]

We
r,v

yt−s

yt
Stack

...

...

...

Figure 1: The architecture of the stacked neural network.

The difference between the two neural networks lies in the output layer of the individual
neural networks that compose the stack. The “normal” network, represented at the top in
Figure 1, has the same activation function, the bipolar sigmoid in the output layer. The
“exponential” network has a simple exponential function instead:

exp(x) = ex. (2.3)

Each network respects the basic information flow of an MLP, where the θ values represent
the thresholds of the neurons:

ynt = tanh

(
∑

i

wn
i ·
(

tanh

(
∑

p

wn
p,q · yp − θnq

))

− θn
)

, (2.4)

yet = exp

⎛

⎝
∑

j

we
j ·
(

tanh

(
∑

r

we
r,v · yr − θev

))

− θe
⎞

⎠. (2.5)

Finally, the stack output ystack
t is computed as a weighted average of the two outputs, ynt and

yet :

ystack
t = w1 · ynt +w2 · yet , (2.6)

with w1,2 ∈ [0, 1] and w1 +w2 = 1.
The training of the networks is performed with the classical back-propagation

algorithm [15], with a momentum term [16] and adaptive learning rate [17]. Besides training
the two components of the stack, the goal of the model is to find the optimal weights w1 and
w2, such that the error of the whole stack is minimized.



4 Mathematical Problems in Engineering

0

40

80

120

160

200

1 26 51 76 101 126 151 176 201 226

Desired
Predicted

Figure 2: The proposed model performance on the sunspot training data (window size 5).

0

40

80

120

160

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Desired

Predicted

Figure 3: The proposed model predictions for the sunspot data (window size 5).

3. Case Studies

3.1. Test Methodology

In the following sections, we consider four classical benchmark problems and one original,
super-exponential growth problem on which we test the performance of our model. In each
case, we divide the available data into 90% for training and 10% for testing. We separately
consider a sliding window size of 5 and 10, respectively.

3.2. The Sunspot Series

Wolfer’s sunspot time series records the yearly number of spots visible on the surface of the
sun. It contains the data from 1700 to 1987, for a total of 288 observations. This data series is
considered as nonlinear and non-Gaussian and is often used to evaluate the effectiveness of
nonlinear models [13, 18].

With a window size of 5 points and considering 28 points ahead, the performance of
the model on the training set is displayed in Figure 2.

The forecasting capabilities of the model are displayed in Figure 3.
In Figure 4, the effect of the weights on the mean square error of the stack on the testing

data is displayed. One can see that the optimal weights are w1 = 100 and w2 = 0, where w1

is the weight of the neural network with sigmoid activation functions, and w2 = 1 – w1 is
the weight of the second neural network, whose output neuron has an exponential activation
function.



Mathematical Problems in Engineering 5

0

5

10

15

20

25
×102

0 20 40 60 80 100

Figure 4: The evolution of MSE when w1 varies (sunspots, window size 5).

Table 1: The errors of the model for the sunspot data (window size 5).

MSE on original data MSE on normalized data

Training
Normal NN 131.865 3.645 × 10−3

Exponential NN 827.933 22.886 × 10−3

Stack 131.865 3.645 × 10−3

Testing
Normal NN 511.531 14.140 × 10−3

Exponential NN 2248.409 62.151 × 10−3

Stack 511.531 14.140 × 10−3

Table 2: The errors of the model for the sunspot data (window size 10).

MSE on original data MSE on normalized data

Training
Normal NN 96.085 2.656 × 10−3

Exponential NN 811.737 22.438 × 10−3

Stack 96.085 2.656 × 10−3

Testing
Normal NN 619.387 17.121 × 10−3

Exponential NN 2466.148 68.170 × 10−3

Stack 619.387 17.121 × 10−3

Table 1 shows the errors both for the training and for testing. It separately presents the
mean square errors for the first, “normal” network, for the second, “exponential” network,
and for their stack, respectively. Since the range of the datasets is very different, we also
display the MSE on the normalized data between 0 and 1, in order to better compare the
performance of our model on data with different shapes.

Next, we increase the size of the sliding window to 10 points. The corresponding
performance of the model on the training set is displayed in Figure 5.

The prediction capabilities of the model are displayed in Figure 6.
The evolution of the mean square error of the stack on the testing data is displayed as

a function of the normal NN weight, w1, in Figure 7. In this case, as in the previous one, the
optimal weights are w1 = 100 and w2 = 0.

Table 2 shows the mean square errors obtained for the increased window size.
In both cases, we see that the normal neural network can approximate the time series

better than the exponential network. When the window size is 10, the model seems to slightly



6 Mathematical Problems in Engineering

0

40

80

120

160

1 26 51 76 101 126 151 176 201 226

Desired
Predicted

Figure 5: The proposed model performance on the sunspot training data (window size 10).

0

40

80

120

160

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Desired
Predicted

Figure 6: The proposed model predictions for the sunspot data (window size 10).

overfit the data compared to the case when the window size is 5, yielding better errors for the
training set, but a little worse errors for the testing set.

3.3. The Canadian Lynx Series

This series contains the yearly number of lynx trapped in the Mackenzie River district of
Northern Canada [19]. The data set has 114 observations, corresponding to the period of
1821–1934.

With a window size of 5 points and considering 11 points ahead, the performance of
the model on the training set is displayed in Figure 8.

The forecasting capabilities of the model are displayed in Figure 9.
The evolution of the mean square error of the stack on the testing data is displayed as

a function of the normal NN weight, w1, in Figure 10. Here, the optimal weights are w1 = 23
and w2 = 77.

Table 3 shows the mean square errors obtained for a window size of 5.
When size of the window is increased to 10 points, the performance of the model on

the training set is that shown in Figure 11.



Mathematical Problems in Engineering 7

0

5

10

15

20

25

30
×102

0 20 40 60 80 100

Figure 7: The evolution of MSE when w1 varies (sunspots, window size 10).

0
10
20
30
40
50
60
70
×102

1 26 51 76

Desired
Predicted

Figure 8: The proposed model performance on the lynx training data (window size 5).

Table 3: The errors of the model for the lynx data (window size 5).

MSE on original data MSE on normalized data

Training
Normal NN 530,416.473 10.974 × 10−3

Exponential NN 383,963.211 7.944 × 10−3

Stack 401,015.900 8.297 × 10−3

Testing
Normal NN 154,951.311 3.206 × 10−3

Exponential NN 113,955.783 2.357 × 10−3

Stack 109,902.034 2.273 × 10−3

The testing performance of the model is displayed in Figure 12.
The optimal weights for this stack are w1 = 99 and w2 = 1, as can be observed from

Figure 13.
Table 4 shows the mean square errors obtained for a window size of 10.
For this dataset, the exponential network can contribute to the stack result. When the

window size is 5, its weight even dominates the stack, and its contribution decreases for
a larger window size. It is possible that this phenomenon appears because for a smaller
window size, the model may look exponential when learning the high peaks. For a larger
window, the model may have a wider perspective, which includes the peaks, and the problem
may seem to become more linear. The errors for a window size of 10 are also much smaller
for the training set, and larger for the testing set, compared to the errors found for a window
set of 5.



8 Mathematical Problems in Engineering

0

10

20

30

40

50

60

70
×102

1 2 3 4 5 6 7 8 9 10

Desired
Predicted

Figure 9: The proposed model predictions for the lynx data (window size 5).

10

11

12

13

14

15

16
×104

0 20 40 60 80 100

Figure 10: The evolution of MSE when w1 varies (lynx, window size 5).

0
10
20
30
40
50
60
70
×102

1 26 51 76

Desired
Predicted

Figure 11: The proposed model performance on the lynx training data (window size 10).



Mathematical Problems in Engineering 9

0

10

20

30

40

50

60

70
×102

1 2 3 4 5 6 7 8 9 10

Desired
Predicted

Figure 12: The proposed model predictions for the lynx data (window size 10).

25

30

35

40

45
×104

0 20 40 60 80 100

Figure 13: The evolution of MSE when w1 varies (lynx, window size 10).

Table 4: The errors of the model for the lynx data (window size 10).

MSE on original data MSE on normalized data

Training
Normal NN 66,484.341 1.375 × 10−3

Exponential NN 88,404.178 1.829 × 10−3

Stack 66,426.519 1.374 × 10−3

Testing
Normal NN 283,132.166 5.858 × 10−3

Exponential NN 421,951.130 8.730 × 10−3

Stack 283,105.757 5.857 × 10−3

3.4. Ozone

This data represents monthly ozone concentrations in parts per million from January 1955 to
December 1972 made in downtown Los Angeles [20].



10 Mathematical Problems in Engineering

0

2

4

6

8

10

1 26 51 76 101 126 151 176

Desired
Predicted

Figure 14: The proposed model performance on the ozone training data (window size 5).

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23

Desired
Predicted

Figure 15: The proposed model predictions for the ozone data (window size 5).

Table 5: The errors of the model for the ozone data (window size 5).

MSE on original data MSE on normalized data

Training
Normal NN 0.704 12.519 × 10−3

Exponential NN 0.680 12.089 × 10−3

Stack 0.675 12.016 × 10−3

Testing
Normal NN 0.702 12.483 × 10−3

Exponential NN 0.592 10.539 × 10−3

Stack 0.589 10.485 × 10−3

We consider a window size of 5 points and 24 points ahead for prediction. The
performance of the model on the training set is displayed in Figure 14.

The prediction performance of the model results from Figure 15.
The evolution of the mean square error of the stack on the testing data is displayed as

a function of the normal NN weight, w1, in Figure 16. Here, the optimal weights are w1 = 14
and w2 = 86.

Table 5 shows the mean square errors obtained for this time series.



Mathematical Problems in Engineering 11

0.52
0.54
0.56
0.58

0.6
0.62
0.64
0.66
0.68

0.7
0.72

0 20 40 60 80 100

Figure 16: The evolution of MSE when w1 varies (ozone, window size 5).

0

2

4

6

8

10

1 26 51 76 101 126 151 176

Desired
Predicted

Figure 17: The proposed model performance on the ozone training data (window size 10).

Table 6: The errors of the model for the ozone data (window size 10).

MSE on original data MSE on normalized data

Training
Normal NN 0.203 3.609 × 10−3

Exponential NN 0.222 3.949 × 10−3

Stack 0.201 3.569 × 10−3

Testing
Normal NN 1.328 23.615 × 10−3

Exponential NN 1.238 22.014 × 10−3

Stack 1.312 23.336 × 10−3

In the case when the size of the window is increased to 10 points, the performance of
the model on the training set is that shown in Figure 17.

The forecasting capabilities of the model are displayed in Figure 18.
The optimal weights are w1 = 96 and w2 = 4, as it can be seen in Figure 19.
Table 6 shows the mean square errors obtained for a window size of 10.
The behavior of the model on this time series is very similar to that of the lynx time

series, regarding both the change in the weights and the comparison of training and testing
errors.

3.5. UK Industrial Production

This data series contains the index of industrial production in the United Kingdom, from 1700
to 1912 [20].



12 Mathematical Problems in Engineering

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23

Desired
Predicted

Figure 18: The proposed model predictions for the ozone data (window size 10).

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

Figure 19: The evolution of MSE when w1 varies (ozone, window size 10).

Table 7: The errors of the model for the UK industrial production data (window size 5).

MSE on original data MSE on normalized data

Training
Normal NN 1.185 0.132 × 10−3

Exponential NN 0.988 0.111 × 10−3

Stack 0.988 0.111 × 10−3

Testing
Normal NN 296.895 33.281 × 10−3

Exponential NN 9.810 1.099 × 10−3

Stack 9.810 1.099 × 10−3

We first consider the performance of the model on the training set with a window size
of 5 points and 21 points ahead, as displayed in Figure 20.

The forecasting capabilities of the model are shown in Figure 21.
The evolution of the mean square error of the stack on the testing data is displayed as

a function of the normal NN weight, w1, in Figure 22. The optimal weights are w1 = 0 and w2

= 100.
Table 7 shows the mean square errors obtained for a window size of 5.



Mathematical Problems in Engineering 13

0

25

50

75

100

1 26 51 76 101 126 151 176

Desired
Predicted

Figure 20: The proposed model performance on the UK industrial production training data (window size
5).

0

25

50

75

100

1 3 5 7 9 11 13 15 17 19

Desired
Predicted

Figure 21: The proposed model predictions for the UK industrial production data (window size 5).

Table 8: The errors of the model for the UK industrial production data (window size 10).

MSE on original data MSE on normalized data

Training
Normal NN 0.861 9.682 × 10−5

Exponential NN 0.862 9.702 × 10−5

Stack 0.862 9.702 × 10−5

Testing
Normal NN 319.766 3597.439 × 10−5

Exponential NN 7.264 81.724 × 10−5

Stack 7.264 81.724 × 10−5

When the size of the window is increased to 10 points, the performance of the model
on the training set is the one shown in Figure 23.

The prediction capabilities of the model are displayed in Figure 24.
Just like in the previous case, the optimal weights are w1 = 0 and w2 = 100, as one can

see in Figure 25.
Table 8 shows the mean square errors obtained for a window size of 10.



14 Mathematical Problems in Engineering

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Figure 22: The evolution of MSE when w1 varies (UK industrial production, window size 5).

0

25

50

75

100

1 26 51 76 101 126 151 176

Desired
Predicted

Figure 23: The proposed model performance on the UK industrial production training data (window size
10).

Unlike the previous problems, the exponential nature of this time series makes it
difficult for a normal neural network. Therefore, the exponential network dominates the
stack, independent of the size of the window. One can notice that although the normal
network can approximate the training set fairly well, with errors comparable to those of
the exponential network, there is a clear difference in performance for the prediction phase,
where only the exponential network can find a good trend for the time series.

3.6. Super-Exponential Growth

In order to test the limits of our model, we devised a function given by the following equation:

f(x) =
(

x

100
+ 1
)x/15+1

+ 5 · sin
(
x

10

)
·
√
x. (3.1)

The first term of this function is chosen in such a way that both the base and the exponent
increase with x, thus producing a super-exponential growth. The second term is a kind of
sinusoid that would account for fluctuations to the regular growth model. The values of the
coefficient are chosen in such a way that at first, for low values of x, the oscillatory behavior
is more important, and then, as x increases, the super-exponential term begins to dominate
the value of the function.

Since the function is super-exponential, and the activation function of the second
neural network is only exponential, it is expected that our stack model will learn the training



Mathematical Problems in Engineering 15

0

25

50

75

100

1 3 5 7 9 11 13 15 17 19

Desired
Predicted

Figure 24: The proposed model predictions for the UK industrial production data (window size 10).

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Figure 25: The evolution of MSE when w1 varies (UK industrial production, window size 10).

data well, but will fail to extrapolate to the prediction set. This drawback can be compensated
by allowing different activation functions, such as a double-exponential function ab

x
, to the

output layer of the neural network.
With a window size of 5 points and considering 21 points ahead, the performance of

the model on the training set is displayed in Figure 26.
The forecasting capabilities of the model are displayed in Figure 27.
The evolution of the mean square error of the stack on the testing data is displayed as

a function of the normal NN weight, w1, in Figure 28. Here, the optimal weights are w1 = 0
and w2 = 100.

Table 9 shows the mean square errors obtained for a window size of 5.
When size of the window is increased to 10 points, the performance of the model on

the training set is that shown in Figure 29.
The forecasting capabilities of the model are displayed in Figure 30.
In a similar way to the case with a window size of 5, the optimal weights are w1 = 0

and w2 = 100, as it can be seen in Figure 31.
Table 10 shows the mean square errors obtained for a window size of 10.



16 Mathematical Problems in Engineering

−30
0

30
60
90

120
150
180

101 201 301 401 501 601 701 801

Desired
Predicted

Figure 26: The proposed model performance on the super-exponential growth training data (window size
5).

−30

0

30

60

90

120

150

180

1 11 21 31 41 51 61 71 81 91

Desired
Predicted

Figure 27: The proposed model predictions for the super-exponential growth data (window size 5).

Table 9: The errors of the model for the super-exponential growth data (window size 5).

MSE on original data MSE on normalized data

Training
Normal NN 2.825 6.783 × 10−5

Exponential NN 1.593 3.824 × 10−5

Stack 1.593 3.824 × 10−5

Testing
Normal NN 826.936 19.851 × 10−3

Exponential NN 172.645 4.144 × 10−3

Stack 172.645 4.144 × 10−3

This time series poses similar problems as the previous one. The only difference is that
the super-exponential nature of the proposed function exceeds the prediction possibilities of
the exponential network. For this kind of problems, other types of activation functions can be
used. The stacked model proposed here is flexible enough to accommodate different types of
neural networks, with different activation functions.



Mathematical Problems in Engineering 17

0
100
200
300
400
500
600
700
800
900

0 20 40 60 80 100

Figure 28: The evolution of MSE when w1 varies (super-exponential growth, window size 5).

−30
0

30
60
90

120
150
180

101 201 301 401 501 601 701 801

Desired
Predicted

Figure 29: The proposed model performance on the super-exponential growth training data (window size
10).

Table 10: The errors of the model for the super-exponential growth data (window size 10).

MSE on original data MSE on normalized data

Training
Normal NN 5.270 12.651 × 10−5

Exponential NN 1.047 2.513 × 10−5

Stack 1.047 2.513 × 10−5

Testing
Normal NN 939.119 22.544 × 10−3

Exponential NN 76.707 1.841 × 10−3

Stack 76.707 1.841 × 10−3

3.7. Comparison with Other Forecasting Models

We compare the model fitting performance of our stack neural network with several other
models, using the implementations in the Statistical Analysis System (SAS) 9.0 software
package [21]. We compare the mean square error of our model for the two different window
sizes with the error of the best model in SAS. Table 11 presents this comparison.

The best error for a problem is shown in bold letters. It can be seen that our model
outperforms the models implemented in SAS for all but the last benchmark problems.
The reason for the greater error for the super-exponential growth problem is the inherent
limitation of choosing an exponential instead of a super-exponential activation function.



18 Mathematical Problems in Engineering

−30

0

30

60

90

120

150

180

1 11 21 31 41 51 61 71 81 91

Desired
Predicted

Figure 30: The proposed model predictions for the super-exponential growth data (window size 10).

0
100
200
300
400
500
600
700
800
900

1000

0 20 40 60 80 100

Figure 31: The evolution of MSE when w1 varies (super-exponential growth, window size 10).

Table 11: Comparative performance of the proposed model with other forecasting models.

Time series
MSE of the stacked

neural network with
a window size of 5

MSE of the stacked
neural network with
a window size of 10

MSE of the best SAS
model

Name of the best
SAS model

Sunspots 131.865 96.085 549.21 Simple exponential
smoothing

Lynx 401,015.900 66,426.519 1,410,768 Simple exponential
smoothing

Ozone 0.704 0.201 1.079 Simple exponential
smoothing

UK Industrial
Production 0.988 0.862 1.339 Log random walk

with drift
Super-
Exponential
Growth

1.593 1.047 1.59 × 10−5 Double exponential
smoothing



Mathematical Problems in Engineering 19

4. Conclusions

Despite its simplicity, it seems that the stacked hybrid neural model performs well on a
variety of benchmark problems for time series. It is expected that it can have good results
for other important problems that show dynamical and predictive aspects. The model
can be easily extended to incorporate other activation functions that can be suitable for a
particular problem, such as a double-exponential function ab

x
. It is also possible to include

nondifferentiable functions in the model, if one adopts an evolutionary algorithm for training
the neural networks, instead of the classical back-propagation algorithm.

Acknowledgment

This work was supported in part by CNCSIS grant code 316/2008, Behavioral Patterns Library
for Intelligent Agents Used in Engineering and Management.

References

[1] H. Tong, ThresholdModels in Nonlinear Time Series Analysis, vol. 21 of Lecture Notes in Statistics, Springer,
New York, NY, USA, 1983.

[2] D. Pfeffermann and J. Allon, “Multivariate exponential smoothing: method and practice,” Interna-
tional Journal of Forecasting, vol. 5, no. 1, pp. 83–98, 1989.

[3] J. L. Harvill and B. K. Ray, “A note on multi-step forecasting with functional coefficient autoregressive
models,” International Journal of Forecasting, vol. 21, no. 4, pp. 717–727, 2005.

[4] M. Ghiassi and S. Nangoy, “A dynamic artificial neural network model for forecasting nonlinear
processes,” Computers and Industrial Engineering, vol. 57, no. 1, pp. 287–297, 2009.

[5] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer Series in Statistics, Springer,
New York, NY, USA, 2nd edition, 1991.

[6] N. Ravishanker and B. K. Ray, “Bayesian prediction for vector ARFIMA processes,” International
Journal of Forecasting, vol. 18, no. 2, pp. 207–214, 2002.

[7] F. M. Tseng, H. C. Yu, and G. H. Tzeng, “Combining neural network model with seasonal time series
ARIMA model,” Technological Forecasting and Social Change, vol. 69, no. 1, pp. 71–87, 2002.

[8] M. V. D. Voort, M. Dougherty, and S. Watson, “Combining Kohonen maps with ARIMA time series
models to forecast traffic flow,” Transportation Research Part C, vol. 4, no. 5, pp. 307–318, 1996.

[9] D. K. Wedding II and K. J. Cios, “Time series forecasting by combining RBF networks, certainty
factors, and the Box-Jenkins model,” Neurocomputing, vol. 10, no. 2, pp. 149–168, 1996.

[10] C.-M. Lee and C.-N. Ko, “Time series prediction using RBF neural networks with a nonlinear time-
varying evolution PSO algorithm,” Neurocomputing, vol. 73, no. 1–3, pp. 449–460, 2009.

[11] G. Toma, “Specific differential equations for generating pulse sequences,” Mathematical Problems in
Engineering, vol. 2010, Article ID 324818, 11 pages, 2010.

[12] E. G. Bakhoum and C. Toma, “Mathematical transform of traveling-wave equations and phase aspects
of quantum interaction,” Mathematical Problems in Engineering, vol. 2010, Article ID 695208, 15 pages,
2010.

[13] M. Khasei and M. Bijari, “An artificial neural network (p, d, q) model for timeseries forecasting,”
Expert Systems with Applications, vol. 37, no. 1, pp. 479–489, 2010.

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[15] A. E. Bryson and Y. C. Ho, Applied Optimal Control, Blaisdell, New York, NY, USA, 1969.
[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error

propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E.
Rumelhart and J. L. McClelland, Eds., vol. 1, pp. 318–362, MIT Press, Cambridge, Mass, USA, 1986.

[17] F. M. Silva and L. B. Almeida, “Acceleration techniques for the backpropagation algorithm,” in Neural
Networks, L. B. Almeida and C. J. Wellekens, Eds., pp. 110–119, Springer, Berlin, Germany, 1990.

[18] M. Ghiassi and H. Saidane, “A dynamic architecture for artificial neural networks,” Neurocomputing,
vol. 63, pp. 397–413, 2005.



20 Mathematical Problems in Engineering

[19] L. Stone and D. He, “Chaotic oscillations and cycles in multi-trophic ecological systems,” Journal of
Theoretical Biology, vol. 248, no. 2, pp. 382–390, 2007.

[20] G. Janacek, Practical Time Series, Oxford University Press, Oxford, UK, 2001.
[21] SAS Institute, “SAS (Statistical Analysis System),” http://www.sas.com/.


