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This paper presents a novel prior knowledge-based Green’s kernel for support vector regression
(SVR). After reviewing the correspondence between support vector kernels used in support
vector machines (SVMs) and regularization operators used in regularization networks and the
use of Green’s function of their corresponding regularization operators to construct support vector
kernels, a mathematical framework is presented to obtain the domain knowledge about magnitude
of the Fourier transform of the function to be predicted and design a prior knowledge-based
Green’s kernel that exhibits optimal regularization properties by using the concept of matched
filters. The matched filter behavior of the proposed kernel function makes it suitable for signals
corrupted with noise that includes many real world systems. We conduct several experiments
mostly using benchmark datasets to compare the performance of our proposed technique with
the results already published in literature for other existing support vector kernel over a variety
of settings including different noise levels, noise models, loss functions, and SVM variations.
Experimental results indicate that knowledge-based Green’s kernel could be seen as a good choice
among the other candidate kernel functions.

1. Introduction

Over the last decade support vector machines (SVMs) have been reported by several studies
[1–4] to perform equal or better than other learning machines such as neural networks
for the problem of learning from finite dataset and approximating a given function from
sparse data. Vapnik [1, 2, 5, 6] has laid down the theoretical foundations of the structural
risk minimization (SRM) principle to comprehend the problem of learning from a finite
set of data in the context of regularization theory given by Tikhonov [7, 8]. SRM principle
provides a connection between capacity of the hypothesis space that contains the learning
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models to approximate the given function and the size of the training set. Generally, the
smaller the size of the training set is, the lower the capacity of the hypothesis space should
be to avoid overfitting [1, 2, 6, 9]. This motivates one to understand SVM in the context of
regularization theory and find a linear solution in the kernel space that minimizes a certain
loss function while keeping capacity of the hypothesis space as small as possible. The kernel
function in SVM provides a nonlinear mapping from input space to a higher-dimensional
feature space. Research studies [10, 11] have affirmed that SVM’s regularization properties
are associated with the choice of kernel function used for mapping. In the literature, Babu
et al. [12] proposed local kernel based color modeling for visual tracking. Maclin et al. [13]
presented a method for incorporating and refining domain knowledge for support vector
machines via successive linear programming. Yen et al. [14] used kernel-based clustering
methods for detecting clusters in weighted, undirected graphs. Toma [15] proposed nonlinear
differential equations capable of generating continuous functions similar to pulse sequence
for modeling time series. M. Li and J.-Y. Li [16] introduced a generalized mean-square error
(MSE) to address the predictability of long-range dependent (LRD) series. Bakhoum and
Toma [17] presented an extension to the Fourier/Laplace transform for the analysis of signals
that are represented by traveling wave equations and offered a mathematical technique
for the simulation of the behavior of large systems of optical oscillators. Liu [18] gave
analysis of chaotic, dynamic time series events. Poggio and Girosi [19, 20] described a general
learning approach using regularization theory. Girosi et al. [21, 22] have provided a unified
framework for regularization networks and learning machines. Evgeniou et al. [9], Smola
and Schölkopf [23], and Williamson et al. [24] demonstrated a correspondence between
regularization networks (RNs) and support vector machines (SVMs). Smola et al. [11] and
Scholkopf and Smola [10] have shown a connection between regularization operators used in
regularization networks and support vector kernels and presented a method of using Green’s
functions of their corresponding regularization operators to construct support vector kernels
with equivalent regularization properties. However, the problem of choosing the optimal
regularization operator to construct the corresponding SV kernel for a given training set still
remains unanswered. The work presented herein is focused on using prior knowledge about
the magnitude spectrum of the function to be predicted to design the support vector kernels
from Green’s functions having suitable regularization properties by utilizing the concept of
matched filters, an idea inspired by Scholkopf and Smola [10]. The intuition of matching
Green’s kernel comes from the fact that most real world systems are inevitably contaminated
with noise in addition to their intrinsic dynamics [25, 26] and matched filters are known
to be the optimal choice to recover signals in the presence of additive white noise [27, 28].
However, no mathematical justification is given in the literature for the use of matched
filter theorem to obtain the matching Green’s kernel. No experimental results are so far
available in the literature to compare the performance of knowledge-based Green’s kernel
with existing support vector kernels. In this paper, we provide a mathematical framework for
utilizing the matched filter theorem to design knowledge-based Green’s kernel and conduct
experiments on different datasets (mostly benchmarks) with different levels and models
(Gaussian and Uniform) of additive white noise to evaluate the performance of our proposed
kernel function. Although the assumption of additive white noise will not exactly hold in all
real world cases, we keep up with the time-honored tradition [2–4, 25, 26, 29, 30] of using
benchmark datasets with additive white noise assumption to evaluate the performance of
our proposed method. The focus is on support vector regression (SVR). The rest of the paper
is organized as follows. Section 2 reviews the theory of support vector regression, SV kernels,
regularization networks, and the connection between support vector method and the theory
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of regularization networks. Section 3 provides the theory of Green’s functions and how they
can be used to construct SV kernels. Section 4 describes the theory of matched filters and lays
down the mathematical foundation for building knowledge-based Green’s kernel. Section 5
presents the experimental results and Section 6 concludes the paper.

2. Support Vector Machines and Regularization Networks

Support vector machines introduced by Vapnik and coworkers for pattern recognition and
regression estimation tasks have been reported to be an effective method during the last
decade [31–33]. Initially developed for classification problems, a generalization of support
vector (SV) algorithm known as ε-insensitive SV regression [1, 33] was derived to solve the
problems where the function to be estimated belongs to the set of real numbers.

2.1. ε-Insensitive Support Vector Regression

Suppose that we have {(x1, y1), . . . , (xN, yN)} as the training set with xi ∈ R
d and yi ∈ R,

where yi are the training targets. The problem of calculating an estimate f(xi) of yi for training
data {|xi, yi|i=1,...,N} can be formulated as

f(x) = 〈w · x〉 + b. (2.1)

The goal of ε-insensitive SV algorithm is to calculate an estimate f(xi) of yi by selecting
the optimal hyperplane w and bias b such that f(xi) is at the most ε distance from yi
while keeping the norm ‖w‖2 of the hyperplane minimum. The corresponding quadratic
optimization problem can be written in terms of regularized risk functional as described by
[10, 11], that is, to minimize

R
[
f
]
=
γ

2
‖w‖2 +

1
N

N∑

i=1

∣∣yi − f(xi)
∣∣
ε
, (2.2)

whereR is the regularized risk functional, γ is the regularization constant such that γ ≥ 0, and
the second term on the right-hand side of (2.2) is the empirical risk functional with Vapnik’s
ε-insensitive loss function [1, 2, 34]. By introducing the slack variables, in the sense of [1, 2, 34]
and rewriting the problem in (2.2), we get, that is, to minimize

R
[
f
]
=
γ

2
‖w‖2 +

1
N

N∑

i=1

(
ζi + ζ∗i

)
(2.3)

subject to

yi − 〈w · xi〉 − b ≤ ε + ζi,

〈w · xi〉 + b − yi ≤ ε + ζ∗i ,

ζi, ζ∗i ≥ 0.

(2.4)
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In order to obtain the SV expansion of the function f(x), we use the standard [1, 2, 34, 35]
Lagrangian technique to form the objective function and the corresponding constraints. The
well known formulation of the quadratic optimization problem can be reached by taking the
partial derivatives of the objective function, putting them equal to zero for optimal solution
and substituting the values obtained into the objective function. We follow the lines of [11, 23]
and write the quadratic optimization problem as

minimize

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

N∑

i,j =1

(
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)(
α∗j − αj

)〈
xi · xj

〉
,

+ε
N∑

i =1

(
αi − α∗i

)
−

N∑

i=1

(
α∗i − αi

)
yi

(2.5)

subject to

N∑

i =1

(
αi − α∗i

)
= 0,

0 ≤ αi, α∗i ≤
1
γN

.

(2.6)

This leads to the well-known formulation of SV regression, that is,

f(x) =
N∑

i =1

(
α∗i − αi

)
〈xi.x〉 + b. (2.7)

Comparing (2.7) and (2.1), it shows that the training examples that lie inside the ε-tube
contribute to a sparse expansion of w because the corresponding Lagrange multipliers αi, α∗i
are zero [1, 2, 10, 34, 35].

The expression given by (2.7) corresponds to linear SV regression. In order to obtain
nonlinearity, SV algorithms can be quipped with nonlinear operators ϕ(·) mapping from
input space into a high-dimensional feature space, ϕ : X → F as described in [36, 37]. The
kernel function is defined as

k
(
x, x′

)
= 〈ϕ(x) · ϕ

(
x′
)
〉, (2.8)

∫

X2
k
(
x, x′

)
f(x)f

(
x′
)
dx dx′ ≥ ∀f ∈ L2(x). (2.9)

According to Mercer theorem, the kernel is any continuous and symmetric function that
satisfies the positivity condition given by (2.9). Such a function k(x, x′) defines a dot product
in the feature space given by (2.8) [36].

Hence, by making use of (2.8), (2.7) can be written as

f(x) =
N∑

i =1

(
α∗i − αi

)〈
ϕ(xi) · ϕ(x)

〉
+ b =

N∑

i =1

(
α∗i − αi

)
k(xi, x) + b. (2.10)
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2.2. Regularization Networks

The idea of regularization method was first given by Tikhonov [8] and Tikhonov and
Arsenin [7] for the solution of ill-posed problems. Assume that we have a finite dataset
{(x1, y1), . . . , (xN, yN)}, independently and identically drawn from a probability distribution
p(x, y) in the presence of noise. Assume that the probability distribution p(x, y) is unknown.
One way of approaching the problem is to estimate the function f by minimizing a certain
empirical risk functional:

Remp
[
f
]
=

1
N

N∑

i =1

∣∣yi − f(xi)
∣∣
ε. (2.11)

The problem of approaching the solution through minimizing (2.11) is ill-posed because the
solution is unstable [2]. Hence, the solution is to utilize the idea proposed by [7, 8] and add
a capacity control or stabilizer [22] term to (2.11) and minimize a regularized risk functional:

RRN
[
f
]
=

1
N

N∑

i =1

∣∣yi − f(xi)
∣∣
ε +

γ

2
∥∥λf

∥∥2
, (2.12)

where λ is a linear, positive semidefinite regularization operator. The first term in (2.12)
corresponds to finding a function that is as close to the data examples as possible in terms
of Vapniks ε-insensitive loss function whereas the second term is the smoothness functional
and its purpose is to restrict the size of the functional space and to reduce the complexity of
the solution [23]. The filter properties of λ are given by λ∗λ, where ∗ represents the complex
conjugate. Following the lines of [11, 23], the problem of minimizing the regularized risk
functional given by (2.12) can be transformed into constrained optimization problem by
utilizing the standard Lagrange multipliers technique and a formulation similar to (2.5)
can be obtained where a direct relationship between SV technique and the RN method can
be observed. In other words, training an SVM with a kernel function obtained from the
regularization operator λ is equivalent to implementing RN to minimize the regularized
risk functional given by (2.12) with λ as the regularization operator. We refer the reader to
[2, 11, 23] for the detailed discussion on the relationship between the two methods, that is,
SV and RN.

3. Green’s Functions and Support Vector Kernels

The idea of Green’s functions was introduced in the context of solving inhomogeneous
differential equations with boundary conditions. However, Green’s functions of their
corresponding regularization operators can be used to design kernel functions that exhibit
the regularization properties given by their corresponding regularization operators, satisfy
the Mercer condition, and qualify to be SV kernels [11, 23, 35]. Green’s kernel of a discrete
regularization operator λ[n] can be written as [38]

G
(
x, x′

)
=

N∑

i=1

λ[n]φn(x)φn
(
x′
)
, (3.1)
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where φn{n = 1, . . . ,N} are the basis of the orthonormal eigenvectors of G corresponding to
nonzero eigenvalues λ[n] such that λ[n] confers the spectrum of G. The expression given by
(3.1) assumes one-dimensional case. A generalization to multidimension is straight forward
and will be discussed later. From [38], it can be easily shown that G satisfies the condition of
positive definiteness and the series converges absolutely uniformly since all the eigenvalues
of G are positive. As G(xi, xj) = G(xj , xi), it also satisfies the symmetry property and Mercer
theorem can be applied to prove that G is an admissible support vector kernel [39] and it can
be written as a dot product in feature space, that is,

G
(
xi, xj

)
=
〈
φ(xi) · φ

(
xj
)〉
. (3.2)

At this point, we refer the reader to literature [10, 11, 23, 35] for useful discussion on regular-
ization properties of commonly used SV kernels. We can also utilize (3.1) to obtain periodic
kernels for given regularization operators. For example [10], by taking λ[n] as eigenvalues of
the given discrete regularization operator and Fourier basis {1/2π, sin(nx), cos(nx), n ∈ N}
as corresponding eigenvectors, we get Green’s kernel:

k
(
x, x′

)
=

M∑

n=1

λ[n]
(
sin(nx) sin

(
nx′

)
+ cos(nx) cos

(
nx′

))
,

k
(
x, x′

)
=

M∑

n=1

λ[n] cos
(
n
(
x − x′

))
.

(3.3)

Capacity control can be achieved by restricting the summation to different eigensub-
spaces with different values of M. Excluding the eigenfunctions that correspond to high
frequencies would result in increased smoothness thereby decreasing the system capacity
and vice versa. A general lowpass smoothing functional is a good choice if there is no prior
information available about the frequency distribution of the signal to be predicted. However,
(3.1) can be seen as a reasonable choice for building kernels if there is some prior information
available about the magnitude spectrum of the signal that we would like to approximate by
utilizing the concept of matched filters [10].

4. Matched Filter and Knowledge-Based Matched Green’s Kernel

Matched filter [40, 41] is the optimum time invariant filter among all linear or nonlinear filters
to recover a known signal from additive white noise [42]. Assume the input signal f(x) in
the presence of additive white noise n(x) passing through the matched filter with impulse
response h(x). The output of the filter is given by

y(x) = h(x) ⊗
(
f(x) + n(x)

)
, (4.1)

where ⊗ denotes the convolution operation. Our aim is to obtain the conditions for which
signal-to-noise ratio (SNR) at the filter output takes its maximum value since it is
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understandable that the probability of recovering a signal from noise is high when SNR is
maximum [27]. From [27, 42, 43] the impulse response of the matched filter is given by

h(x) = Af(x1 − x), (4.2)

where A is the filter gain constant and x1 is the point at which the output power of the filter
takes its maximum value. The maximum SNR is given by

(SNR)max =
2
N0

∫∞

−∞
f2(x1 − α)dα, (4.3)

where N0 is the noise power density. We refer the reader to original literature [27, 42, 43] for
details and the proof of matched filter theorem. For simplicity we will assume unity gain,
that is, A = 1. It is noteworthy in (4.2) that the filter impulse response is independent of noise
power density N0 with the prior assumption of white noise. Secondly, maximum SNR (4.3)
is a function of signal energy and is independent of signal shape [42].

In order to design a matching kernel based on prior knowledge, it is sufficient to have
an estimate of the magnitude spectrum of the signal to be predicted as prior knowledge about
the signal as opposed to the theory of matched filters where complete knowledge of the signal
is required to recover the signal from noise. From (4.2) it can be seen that the impulse response
of the optimum filter is time reversed signal f(x) with x1 delay. Nevertheless, in order to
obtain matching kernel we are only interested in magnitude spectrum of matched filter which
can be obtained by taking the Fourier transform of h(x) in (4.2) and multiplying it with its
complex conjugate:

H
(
ejω

)
=
∫∞

−∞
h(x)e−jωxdx =

∫∞

−∞
f(x1 − x)e−jωxdx

= e−jωx1

∫∞

−∞
f(x1 − x)ejω(x1−x)dx = F∗

(
ejω

)
e−jωx1 ,

(4.4)

|H(ω)|2 = H
(
ejω

)
H∗

(
ejω

)
= |F(ω)|2, (4.5)

|H(ω)| = |F(ω)|, (4.6)

where H(ejω) is the frequency response of matched filter, |H(ω)| is the magnitude response
and |F(ω)| is the magnitude spectrum of the matched filter and the signal f(x), respectively.
An important note at this point is that (4.6) does not depend on delay x1 whereas in the case
of matched filters it is necessary to have a delay to make the impulse response realizable.
Hence the matching kernel can be obtained by simply calculating the magnitude spectrum of
f(x) and utilizing (3.1). As f(x) is the signal to be predicted, we assume that its magnitude
spectrum does not significantly change from the training targets y(x) in (2.2) and this is
the prior knowledge that we acquire from y(x) about f(x) to obtain Green’s kernel. This is a
weak condition since many signals with completely different characterization in time domain
share the similar magnitude spectrum.
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Figure 1: Time and frequency domain representation of two different signals.

Figure 1 shows the time and the frequency domain representation of two different
signals. Signal in Figure 1(a) is a sinusoid whereas signal in Figure 1(b) is the modified Morlet
wavelet. Despite their completely different time domain characterization they share similar
frequency localization given by Figures 1(c) and 1(d), respectively.

In order to be capable of using (3.1) to obtain our desired kernel function we need
its eigenvalues and we will use Fourier basis {1/2π, sin(nx), cos(nx), n ∈ N} as the
corresponding eigenfunctions since complex exponentials are the eigenfunctions of any linear
time-invariant (LTI) system that includes matched filters and sinusoids can be expressed as
linear combination of complex exponentials using Eulers formula [44]. The eigenvalues of
and LTI system are given by frequency response H(ejω) which is a complex-valued quantity
[45]. Frequency response can however be written as

H(ω) = |H(ω)|ejθ(ω), (4.7)

namely as a product of magnitude response |H(ω)| and phase response θ(ω) [3]. Since we
are only interested in smoothness properties of the kernel and not the phase response, it
is adequate to take the magnitude response |H(ω)| as eigenvalues of the system. Another
reason for this is that in order to have positive definite Green’s kernel function the eigenvalues
need to be strictly positive [38]. Hence, matching Green’s kernel function can be obtained by
using (3.1):

G
(
x, x′

)
=

N−1∑

n=1

|H(ωn)|
(
sin(ωnx) sin

(
ωnx

′) + cos(ωnx) cos
(
ωnx

′))

=
N−1∑

n=1

|H(ωn)| cos
(
ωn

(
x − x′

))
,

(4.8)



Mathematical Problems in Engineering 9

where ωn is the discrete time counterpart of continuous frequency variable ω, such that ωn =
2πn/N, 0 ≤ n ≤ N − 1, that is, normalized to have a range of 0 ≤ ωn ≤ 2π . By making use of
(4.6) and ignoring the constant eigenfunction with n = 0, we get

G
(
x, x′

)
=

N−1∑

n=1

|F(ωn)| cos
(
ωn

(
x − x′

))
, (4.9)

which is a positive definite SV kernel that exhibits matched filter regularization properties
given by |F(ω)|. From the algorithmic point of view, we only need to compute magnitude of
the discrete Fourier transform of the training targets with the assumption that the function
f(x) to be predicted takes a similar magnitude spectrum with additive noise. To control
the model complexity of the system we introduce two variables to restrict the summation
calculation to desired eigensubspaces and write (4.9) as

G
(
x, x′

)
=

j∑

n=i
|F(ωn)| cos

(
ωn

(
x − x′

))
, (4.10)

where i and j are the kernel parameters for Green’s kernel similar to the kernel parameters
of other SV kernel such as kernel width σ in the case of Gaussian RBF kernel or degree of the
kernel d in the case of polynomial kernel. Similar to other SV kernels an optimal value for i
and j is required to achieve the best results.

Analogous to the conventional Gaussian kernel that exhibits Gaussian lowpass filter
behavior, that is, λ(ω) = exp[σ2‖ω‖2/2] [10, 11] (recall that the Fourier transform of a
Gaussian function is also a Gaussian function) the knowledge-based Green’s kernel obtained
from the eigenvalues of the matched filter exhibits the matched filter properties. This property
makes the knowledge-based Green’s kernel an optimal choice for noise regime since matched
filters are the optimal filters for noise-corrupted data regardless of the signal shape and the
noise level. Since most of the real world systems are unavoidably contaminated with noise
in addition to their intrinsic dynamics [25, 26, 30], we keep up with the long-established
tradition [2–4, 25, 26, 29, 30] of using benchmark datasets with additive white noise to
evaluate the performance of the proposed techniques and conduct several experiments on
mostly benchmark datasets ranging from simple regression models to chaotic and nonlinear
time series with additive white noise in order to compare the performance of our technique
with that of existing support vector (SV) kernels. Nevertheless, the advantage of knowledge-
based Green’s kernel comes at the cost of slightly increased computational complexity.
However for most of the practical signals only a small portion of the whole eigensubspace
turns out to be nonzero thereby lessening the computational load. Another way to overcome
this problem is the efficient algorithmic implementation.

A generalization of the kernel function given by (4.10) to N dimensions can be easily
made by

K(x,y) =
d∏

i=1

ki
(
xi, yi

)
(4.11)
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Figure 2: SV regression using Green’s kernel with the value of j = 25, 8, 6, 3.

(see [2] for proof of the theorem). Alternatively,

K(x,y) = k(‖x − y‖) (4.12)

can also be used [10].

5. Experimental Results

5.1. Model Complexity Control

The purpose of this experiment is to examine the ability of Green’s kernel to control the
complexity of an SV model trained with Green’s kernel. Sinc function is used as training and
testing data. The training data is approximated with different models built only by reducing
the size of eigensubspace in kernel matrix computation, that is, by reducing the value of
kernel parameter j while keeping the SV regularization parameter C, and kernel parameter i
constant throughout the experiment. In other words, the complexity of the model is reduced
by reducing the number of nonzero eigenvalues, that is, reducing the value of j thereby
removing the high capacity eigenfunctions to obtain a smoother approximation. The value
of i = 1 was used for all the models.

Figure 2 shows the regression results obtained for different values of j. It is evident
from the figure that reducing the size of eigensubspace produces smoother approximations
which highlights the ability of Green’s kernel as a regularizer. No GOF criteria are used in this
experiment since the point of interest is to produce a smoother approximation not necessarily
a good approximation.
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Figure 3: Regression results obtained by (b) Green’s kernel, (c) Gaussian RBF kernel, (d) Bspline kernel,
and (e) Exponential RBF kernel, and (f) Polynomial kernel.

5.2. Regression on Sinc Function

Sinc function given by (5.1) has become a benchmark to validate the results of SV regression
[2, 3, 10, 34, 35, 46]:

sinc(x) =
sin(πx)
πx

. (5.1)

The training data is 27 points with zero mean, 0.2 variance additive Gaussian white noise.
Mean square error was used as the figure of merit. Figure 3 shows the regression results
obtained by Green’s kernel and other commonly used SV kernels. Although the results
obtained by Gaussian RBF and Bspline kernel are very similar, we prefer to use Gaussian
RBF because only Bspline of odd order n is admissible support vector kernels [10] and this
restricts the model complexity control.

Figure 4 shows the magnitude spectrum of the training signal and the actual sinc
function. Magnitude spectrum of the training signal is used as the prior knowledge about
the actual signal, that is, the signal to be predicted and used to construct the matching
Green’s kernel. Table 1 shows the regression results obtained with different kernel functions.
Results indicate that Green’s kernel achieved better performance than any other support
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Figure 4: Magnitude spectrum of (a) training signal and (b) actual sinc function.

Table 1: Performance comparison of different kernels for sinc function.

Kernel function MSE No. of SV CPU Time (Sec.)
1 Green’s kernel 0.0126 22 0.007
2 Gaussian RBF 0.0152 22 0.034
3 Bspline 0.0163 23 0.17
4 Exponential RBF 0.0214 24 0.035
5 Polynomial 0.0559 24 0.033

vector kernel for the given function. The CPU time is the kernel matrix computation time in
seconds on an Intel (R) 2.8 GHz, 2 GB Memory system using Matlab 7. The CPU time for other
kernel functions was computed using [47]. The lesser computational time of knowledge-
based Green’s kernel is owed to efficient algorithmic implementation which only includes
nonzero eigenvalues in kernel matrix computation. The (near) optimal values of SVM hyper-
parameters for each kernel function were selected after several hundred trials.

5.3. Regression on Modified Morlet Wavelet Function

Modified Morlet wavelet function is described by

Modified Morlet Wavelet Function, ψ(x) =
cos(ω0x)
cosh(x)

. (5.2)

This function was selected because of its complex model. A signal of 101 data points with zero
mean, 0.3 variance white noise was used the training set. The (near) optimal values of SVM
hyperparameters for each kernel function were selected after several hundred trials. Figure 5
shows the performance of the different SV kernels for modified Morlet wavelet function and
the magnitude spectrum of training and actual signals. Although the training function is
heavily corrupted with noise, there is still some similarity between the magnitude spectrum
of two functions and this similarity is used as the prior knowledge about the problem. As
shown in Table 2, again, Green’s kernel performed better than any other kernel for heavily
noise corrupted data.

The purpose of next two experiments is to evaluate the performance of the proposed
kernel function against the conventional Gaussian kernel in a broader perspective, that
is, across different noise models, noise levels, prediction steps (short-term and long-term
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Figure 5: (a) Training signal, magnitude spectrum of (b) training signal, (c) actual (modified Morlet
wavelet function) signal, regression results (d) Green’s kernel, (e) Gaussian RBF kernel.

Table 2: Performance comparison of different kernels for modified Morlet wavelet function.

Kernel function MSE No. of SV CPU Time (Sec.)
1 Green’s kernel 0.0087 53 0.095
2 Gaussian RBF 0.0272 54 0.45
3 Bspline 1.0173 59 2.37
4 Polynomial 1.0358 59 0.447

prediction for time series), and different variations of SVM that use different loss functions
and optimization schemes. To perform a faithful comparison, we use the results already
published in literature as our reference point and use the same datasets, noise model,
noise level, and loss function as suggested by the corresponding authors. For the next two
experiments, long-term and short-term prediction of chaotic time series is considered as
a special case of regression. We use Mackey-Glass, a high-dimensional chaotic benchmark
time series, originally introduced as a model of blood cell regulation [48]. Mackey Glass is
generated by the following delay differential equation [3]:

dx(t)
dt

=
ax(t − τ)

1 + x10(t − τ)
− bx(t) (5.3)

with a = 0.2, b = 0.1, and τ = 17.
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Table 3: Mackey-Glass time series prediction results using SVM and LS-SVM.

Noise Normal Uniform
SNR 22.15% 44.3% 6.2% 12.4% 18.6%
Prediction Step 1S 100S 1S 100S 1S 100S 1S 100S 1S 100S
RBF kernel SVM [3] 0.017 0.218 0.040 0.335 0.006 0.028 0.012 0.070 0.017 0.142
Green’s kernel SVM 0.00051 0.0989 0.0019 0.0665 0.00017 0.0623 0.00033 0.0661 0.00052 0.115
RBF kernel LS-SVM [4] 0.016 0.165 0.032 0.302 0.005 0.026 0.010 0.064 0.018 0.136
Green’s kernel LS-SVM 0.00051 0.0973 0.0016 0.067 0.00011 0.0631 0.00029 0.0645 0.00059 0.0748

5.4. Chaotic Time Series Prediction Using SVM and LS-SVM

For comparison purposes, we use Muller et al. [3] that employs SVM with Gaussian RBF
kernel and Zhu et al. [4] that utilizes LS-SVM with Gaussian RBF kernel for short-term (1
step) and long-term (100 step) prediction of Mackey-Glass system for different noise models
and noise levels. Table 3 shows the mean square error obtained by Green’s kernel using SVM
and LS-SVM over different noise settings in comparison to the results reported by [3, 4]. 1S
and 100S denote the 1 step and 100 step prediction of time series. We use the same definition
of SNR as used by the corresponding authors, that is, ratio between the standard deviation
of the respective noise and the underlying time series. Experimental results indicate that
knowledge-based Green’s kernel should be considered as a good kernel choice for noise-
corrupted data.

6. Conclusion

This paper provides a mathematical framework for using Green’s functions to construct
problem specific admissible support vector kernel functions based on the prior knowledge
about smoothness properties of the function to be predicted. Matched filter theorem is used to
incorporate domain knowledge of the magnitude spectrum of the signal to be predicted into
support vector kernels to achieve desired regularization properties. It has been shown that
the knowledge-based matching Green’s kernel is a positive definite SV kernel that exhibits
matched filter behavior. Since matched filters are known to be the optimal choice for noise
corrupted data, the key contribution of the proposed technique is its noise robustness (see
Figure 5) which makes it suitable for many real world system. Experimental results show
that the knowledge-based Green’s kernel has the ability to control the model complexity
(see Figure 2) of the system and shows good generalization performance compared to other
existing support vector kernels (see Tables 1, 2, and 3). Future research would include
implementation of Green’s kernel on real world problems such as speech synthesis and ultra
sound image analysis.
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