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“Symplectic” schemes for stochastic Hamiltonian dynamical systems are formulated through
“composition methods (or operator splitting methods)” proposed by Misawa (2001). In the
proposed methods, a symplectic map, which is given by the solution of a stochastic Hamiltonian
system, is approximated by composition of the stochastic flows derived from simpler Hamiltonian
vector fields. The global error orders of the numerical schemes derived from the stochastic
composition methods are provided. To examine the superiority of the new schemes, some
illustrative numerical simulations on the basis of the proposed schemes are carried out for a
stochastic harmonic oscillator system.

1. Introduction

The theory of Hamiltonian dynamical systems is understood as one of the fundamental tools
for the description of dynamical phenomena treated in physics, engineering, and economics.
To investigate the behavior of such a system, numerical simulation is often carried out.
Then, as one of the important subjects in the numerical approach, attention has been paid
to how to construct numerical schemes preserving Hamiltonian dynamical structures, that is,
“symplectic integration schemes” (Hairer et al. [1] and references therein). The symplectic
schemes are superior to numerical realization of the phase flows of Hamiltonian dynamical
systems on long time intervals, and hence one can apply them to various dynamical systems
described in the framework of classical Hamiltonian mechanics.

As an extension of this topic, Milstein et al. [2] have proposed symplectic integrators
for “stochastic Hamiltonian dynamical systems (e.g., Misawa [3])” which are governed
by stochastic differential equations (SDEs) (Ikeda and Watanabe [4]). The stochastic



2 Mathematical Problems in Engineering

Hamiltonian dynamical systems are viewed as “open” Hamiltonian systems perturbed
by random fluctuations from an external world; from the viewpoint of finance, such
systems may also be regarded as dynamical ones describing some risky assets. For the
stochastic systems, they have formulated “symplectic schemes of Runge-Kutta type” which
are analogous to those in deterministic cases. On the other hand, symplectic integrators for
deterministic Hamiltonian systems are often produced through the so-called “composition
methods (operator splitting methods)”, which are formulated on the basis of Lie algebraic
theory and Lie group theory (McLachlan and Quispel [5]). The method is outlined as follows:
Let X denote vector fields on some space with coordinates x, with flows exp(tX), that is,
the solutions of differential equations of the form ẋ(t) = X(x) are given in the form x(t) =
exp(tX)(x(0)). Assume that one can write X = A + B in such a way that exp(tA) and exp(tB)
can both be calculated explicitly. (More generally, this can be relaxed by approximations of
the exponential maps.) In the most elementary case, the method gives the approximation for
x(t) through

x̃(t) = exp(tA) exp(tB)(x) = x(t) +O
(

t2
)

; (1.1)

the last equality is obtained by using the Baker-Campbell-Hausdorff (BCH) formula, which is
well known in Lie algebraic theory. The advantage of this method is that geometric properties
of the true flow exp(tX) are often preserved. If X, A, and B are Hamiltonian vector fields,
then both true flow and the approximating flow are symplectic. Therefore, it seems to be quite
natural to derive symplectic integrators for stochastic Hamiltonian systems by using these
methods.

The purpose of the present paper is to propose some symplectic numerical integration
schemes for stochastic Hamiltonian dynamical systems. Then, on the basis of the author’s
results on composition methods for SDEs (Misawa [6]), the numerical approximation errors
of the new stochastic schemes are estimated.

This paper is organized as follows. In Section 2, we first review the composition
methods for SDEs and the theorem on error estimation to the schemes. In Section 3,
some symplectic schemes by composition methods are proposed for stochastic Hamiltonian
dynamical systems described by SDE with a one-dimensional Wiener process. The
approximation error of numerical solutions through the schemes is also estimated. In
Section 4, in order to examine the superiority of the new schemes, we compare the numerical
solutions from the proposed schemes with those from the stochastic Euler-Maruyama scheme
through an illustrative example. Some concluding remarks are given in the end of the section.

Finally, we would like to quote here another approach to composition methods for
SDEs by K. Burrage and P. M. Burrage [7]. Furthermore, the other contributions related to
our topic can also be found in the recent articles by Malham and Wiese [8] and Bou-Rabee
and Owhadi [9].

2. Composition Methods for Numerical Integration of SDEs

Now, we start with a review of composition methods for numerical integration of SDEs
proposed by Misawa [6]. Let (Ω,F, P) be a probability space. We consider an n-dimensional
stochastic differential equation of the Stratonovich type associated with a one-dimensional
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Wiener process W as follows:

dS(t) = b(S(t))dt + g(S(t)) ◦ dW(t), (2.1)

where b and g are n-dimensional C∞ vector functions, respectively. By using these functions,
we define the differential operators X0 and X1 as

X0 =
n
∑

i=1

bi∂i, X1 =
n
∑

i=1

gi∂i, (2.2)

where ∂i = ∂/∂Si. According to Kunita [10], a solution of the SDE under an initial value
S(0) = s can be formally represented in terms of an exponential map derived from a
“stochastic” vector field Yt as follows:

S(t) =
(

expYt
)

(s), (2.3)

where Yt(ω) is the vector field for each t and almost surely (a.s.) ω ∈ Ω given by

Yt = tX0 +W(t)X1 +
1
2

(

∫ t

0
udW(u) −

∫ t

0
W(u)du

)

[X0, X1] +
∑

J ;3≤|J |

{

∑

ΔJ

∗
cΔJW

ΔJ(t)

}

XJ,

(2.4)

and XJ = [· · · [Xj1 , Xj2] · · · ]Xjm] (J = (j1, . . . , jm)), where [X0, X1] is a Lie bracket defined as
X0X1 −X1X0. Here,

∑∗
ΔJ is the sum for all single and double divided indices of a multi-index

J , and WΔJ(t) and cΔJ are multiple Wiener-Stratonovich integrals on time interval [0, t] and
the coefficients, respectively, which are determined through a rule for the divided indices
of J . Moreover, |J | denotes the length of J . We note that (2.2) with (2.4) means that the
solution S(t, ω) equals φ(1, s, ω) a.s., where φ(τ, s, ω) is the solution of the ordinary differential
equation

dφ(τ)
dτ

= Yt(ω)
(

φ(τ)
)

, φ(0) = s, (2.5)

regarding t and ω as parameters.
Now, we proceed to a numerical integration of the stochastic equation (2.1) on the

discretized time series by using the representation of solutions to SDEs mentioned above. It
adopts a uniform discretization of the time interval [0, T] with step size

Δt =
T

N
(2.6)

for a fixed natural number N. Let tn = nΔt (n = 0, 1, 2, . . . ,N) be the nth step point. Then,
for all n ∈ {0, . . . ,N}, we abbreviate Sn = S(tn) and set S0 = S(0) = s0. Moreover, we use
ΔWn for n = 0, 1, . . . ,N to denote the increments W(tn+1) − W(tn); they are independent
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Gaussian random variables with mean 0 and variance Δt, that is, N(0,Δt)-distributed
random variables.

On account of (2.3), we find a series of numerical solutions Sn (n = 0, 1, . . . ,N) to SDE
(2.1) by using

Sn+1 = exp(YnΔt)(Sn) (n = 0, 1, 2, . . . ,N − 1), (2.7)

formally, where YnΔt is a vector field derived by replacing all the multiple Wiener integrals
on time [0, t] by those on time interval Δt in (2.4). In the theory of ordinary differential
equations, exp(YnΔt)(·) is often called the time-Δt map or exponential map. However, it is
usually difficult to find the explicit form of the exponential map, and hence, we need to build
an approximation for (2.7). Hence, we formulate a new stochastic numerical scheme as the
following two procedures, which are composed of the truncation of the vector field (2.4) and
a composition method (or operator-splitting method) applied to the exponential map derived
from the truncated vector field.

Procedure 1. We replace the vector field YnΔt in (2.7) by a “truncated” vector field ̂YnΔt with a
truncation order γ which is defined as

̂YnΔt =
∑

J ;1≤|J |≤γ
HJ(Δt)XJ, (2.8)

where HJ(Δt) is a polynomial function of multiple Wiener integrals for the vector field XJ

with a multi-index J . Then, we define a numerical sequence ( ̂Sn)
N
n=0 through

̂Sn+1 = exp
(

̂YnΔt
)(

̂Sn
)

(n = 0, 1, . . . ,N − 1), (2.9)

where ̂S0 = S(0) = s0.

Procedure 2. For ̂Sn+1 = exp( ̂YnΔt)( ̂Sn), we apply a “composition method” in a way analogous
to that in the theory of ordinary differential equations. Suppose that the vector field ̂YnΔt is of
the form

̂YnΔt = AnΔt + BnΔt, (2.10)

where exp(AnΔt) and exp(BnΔt) can both be explicitly calculated through (2.15). Then an
approximation to the exponential map ̂YnΔt is given by exp(AnΔt) exp(BnΔt). Hence, the
sequence of ( ̂Sn)

N
n=0 in Procedure 1 is approximated by

˜Sn+1 = exp(AnΔt) exp(BnΔt)
(

˜Sn
)

(n = 0, 1, . . . ,N − 1), (2.11)

where ˜S0 = S(0) = s0.
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We regard ( ˜Sn)
N
n=0 as a numerical approximation to the exact discretized solutions

(Sn)
N
n=0.

We turn to estimate the approximation error of the numerical scheme described
previously. In stochastic numerics, it is usually measured through “global errors in the mean-
square sense” for the scheme, and hence we first review the following definition (Gard [11],
Kloeden and Platen [12]).

Definition 2.1. Suppose that S(t) and (Sn)
N
n=0 are an exact solution and the numerical

approximation solutions to SDE (2.1), respectively. Moreover, let E0,ξ be the expectation
conditioned on starting at ξ at “initial time” τ . Then the global error order λ is defined by

E0,s

[

∣

∣

∣SN − SN
∣

∣

∣

2
]

= O
(

(Δt)2λ
)

(Δt ↓ 0), (2.12)

where SN = S(NΔt), NΔt = T , and | · | denotes the Euclidean norm on the space Rd. Here,
the condition in the expectation (2.12) means S0 = S0 = s.

It is obvious that the accuracy of the numerical scheme improves with increasing
global order.

We remark that in the framework of “global error order” defined by Saito and Mitsui
[13], the global order for the numerical solutions Sn satisfying (2.12) is given by 2λ.

It is evident that such an error estimation order depends on a truncated order of YΔt

and the way of decomposition of the truncated vector field ̂YΔt. In [6], Misawa gives a way to
calculate the global error order of stochastic numerical schemes determined through the two
procedures mentioned above.

Theorem 2.2 (see [6, Theorem 3.2]). Let γ , α, and β be a truncation order of ̂YnΔt described
in Procedure 1, the least values of “mean square orders” of multiple Wiener integrals which are
included in coefficients of the operators AnΔt and BnΔt, respectively. The mean square order s of a
multiple Wiener integral I(Δt) on time interval Δt mentioned above is defined as E[|I(Δt)|2] =
O((Δt)s) (Δt ↓ 0). Then

E

[

∣

∣

∣SN − SN
∣

∣

∣

2
| X0 = X0 = x

]

= O
(

(Δt)δ−1
)

(Δt ↓ 0) (2.13)

holds, where δ = min(γ + 2, α + β). Therefore, the global error order of stochastic numerical schemes
provided by Procedures 1 and 2 is equal to (δ − 1)/2.

As a preparation for later discussions, we review some examples of our schemes and
the global error orders given in [6].

Example 2.3. Suppose that a truncated vector field ̂YnΔt in Procedure 1 is given by

̂YnΔt = ΔtX0 + ΔWnX1. (2.14)
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We further set AnΔt = ΔtX0 and BnΔt = ΔWnX1 in the decomposition in Procedure 2 and
assume that the explicit forms of both exponential maps for them are obtained. Then, the
numerical scheme (2.11) can be put into the following form.

Scheme 1. One has

˜Sn+1 = exp(ΔtX0) exp(ΔWnX1)
(

˜Sn
)

. (2.15)

In this case, γ , α and β are equal to 1, 2 and 1, respectively, and therefore the above theorem
provides the global order of Scheme 1 as 1.

Example 2.4. For ̂Yn(Δt) in Example 2.3, we set AnΔt =ΔtXA
0 +ΔWnX

A
1 and BnΔt = ΔtXB

0 +
ΔWnX

B
1 , where X0 = XA

0 + XB
0 and X1 = XA

1 + XB
1 . We assume that [XA

1 , X
B
1 ]/= 0 and that the

explicit forms of both exponential maps for them are obtained. Then, the numerical scheme
(2.11) can be put into the following form.

Scheme 2. One has

˜Sn+1 = exp
(

ΔtXA
0 + ΔWnX

A
1

)

exp
(

ΔtXB
0 + ΔWnX

B
1

)(

˜Sn
)

. (2.16)

In this case, α and β are both equal to 1; hence the global order of the scheme (2.10) for the
above AnΔt and BnΔt becomes 0.5. Note that this order is equal to that of the Euler-Maruyama
scheme for SDEs which is the most famous scheme in stochastic numerics.

Remark 2.5. By further manipulating the BCH formula to eliminate higher-order terms, we
can obtain various schemes which give higher-order approximations to the exponential map.
For example, the scheme corresponding to “leapfrog”, which is well known in deterministic
numerical analysis, is given by

exp((Δt)(X + Y )) = exp
(

ΔtY
2

)

exp(ΔtX) exp
(

ΔtY
2

)

+O
(

(Δt)3
)

. (2.17)

In a way analogous to that in (2.11), we define a stochastic leapfrog scheme as follows:

˜Sn+1 = exp
(

BnΔt
2

)

exp(AnΔt) exp
(

BnΔt
2

)

(

˜Sn
)

(n = 0, 1, . . . ,N − 1). (2.18)

Then, using the BCH formula, we can produce numerical schemes having a better error order
than that of scheme (2.11). In detail, see Remark 3.3 and Example 3.2 in [6].

3. Symplectic Integrators of Stochastic
Hamiltonian Dynamical Systems

Now, we proceed to derive symplectic integrators for stochastic Hamiltonian dynamical
systems in terms of composition methods mentioned in the previous section. We start with
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the definition of stochastic Hamiltonian dynamical systems defined in [3]. Consider the
following 2�-dimensional stochastic dynamical system with one Wiener process:

d

(

xi(t)
x�+i(t)

)

=
(

∂�+iH0(x(t))
−∂iH0(x(t))

)

dt +
(

∂�+iH1(x(t))
−∂iH1(x(t))

)

◦ dW(t) (i = 1, . . . , �), (3.1)

where x = (xk)2�
k=1 and ∂j = ∂/∂xj (j = 1, 2, . . . , 2�), respectively. In (3.1), Hα(x) (α = 0, 1) are

smooth scalar functions on R2� . Formally, one may regard this as a Hamiltonian dynamical
system

d

dt

(

xi

x�+i

)

=

(

∂�+îH(x)
−∂îH(x)

)

(i = 1, . . . , �) (3.2)

with a “randomized” Hamiltonian ̂H given by

̂H = H0 +H1γt, (3.3)

where γt is a one-dimensional Gaussian white noise. Hence, we call (3.1) and Hα (α = 0, 1)
an (�-dimensional) stochastic Hamiltonian dynamical system and the Hamiltonian, respectively.
In the following, for simplicity, we set � = 1 and denote x1(t) and x2(t) by q(t) and p(t),
respectively, that is, we treat the following stochastic Hamiltonian dynamical system:

d

(

q(t)
p(t)

)

=

⎛

⎜

⎜

⎝

∂

∂p
H0
(

p(t), q(t)
)

− ∂
∂q
H0
(

p(t), q(t)
)

⎞

⎟

⎟

⎠

dt +

⎛

⎜

⎜

⎜

⎝

∂

∂p
H1
(

p(t), q(t)
)

− ∂
∂q
H1
(

p(t), q(t)
)

⎞

⎟

⎟

⎟

⎠

◦ dW(t). (3.4)

Let tn = nΔt (n = 0, 1, 2, . . . ,N) be the nth step-point in a uniform discretization
of the time interval [0, T] with step size Δt = T/N for fixed natural number N. Suppose
that {(pn, qn)}Nn=0 is a series of the numerical solutions for the above Hamiltonian system
derived by some numerical scheme on the above time discretization. In the same manner
as that in the case of the numerical scheme on deterministic Hamiltonian systems, we call
the numerical scheme for stochastic Hamiltonian dynamical systems “symplectic”, which
produces numerical solutions satisfying

det

(

∂
(

pn+1, qn+1
)

∂
(

pn, qn
)

)

= 1 (3.5)

on any step point n. In consideration of the advantages of using symplectic schemes for usual
deterministic systems, we also may expect to obtain more stable numerical orbits by using
these schemes than by using ordinary numerical schemes, for example, the Euler scheme.

Now, we produce the symplectic schemes by using the composition methods
mentioned in Section 2. First, as an example of symplectic scheme on the basis of Scheme 1,
we can provide the following scheme.
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Scheme 3. One has

(

q̃n+1

p̃n+1

)

= exp(AnΔt) exp(BnΔt)
(

qn
pn

)

, (3.6)

where a truncated vector field ̂YnΔt shown by (2.14) and the splitting vecter fields AnΔt and
BnΔt are given by

̂YnΔt = ΔtX0 + ΔWnX1 =
(

∂pH0∂q − ∂qH0∂p
)

Δt +
(

∂pH1∂q − ∂qH1∂p
)

ΔWn, (3.7)

AnΔt = ΔtX0 =
(

∂pH0∂q − ∂qH0∂p
)

Δt, (3.8)

BnΔt = ΔWnX1 =
(

∂pH1∂q − ∂qH1∂p
)

ΔWn, (3.9)

respectively.

It is easy to see that the above composition scheme is symplectic, since for each fixed
stochastic parameter ω, AnΔt, and BnΔt are Hamiltonian vector fields with the Hamiltonians
H0Δt and H1ΔWn on time interval [tn, tn+1], respectively, and hence the composition of their
exponential maps is symplectic (McLachlan and Quispel [5]). Moreover, as mentioned in
Section 2, the global error order of this scheme is 1.

Next, we give an example of the symplectic scheme on the basis of Scheme 2.

Scheme 4. One has

(

q̃n+1

p̃n+1

)

= exp(AnΔt) exp(BnΔt)
(

qn
pn

)

, (3.10)

where for the same truncated vector field ̂YnΔt as Scheme 3, we choose AnΔt and BnΔt as
follows:

AnΔt = ΔtXA
0 + ΔWnX

A
1 = Δt

(

∂pH
A
0 ∂q − ∂qH

A
0 ∂p
)

+ ΔWn

(

∂pH
A
1 ∂q − ∂qH

a
1 ∂p
)

, (3.11)

BnΔt = ΔtXB
0 + ΔWnX

B
1 = Δt

(

∂pH
B
0 ∂q − ∂qH

B
0 ∂p
)

+ ΔWn

(

∂pH
B
1 ∂q − ∂qH

B
1 ∂p
)

, (3.12)

under the conditions HA
0 +HB

0 = H0 and HA
1 +HB

1 = H1.
We can also prove that this scheme is symplectic, since for each fixed stochastic

parameter ω, AnΔt, and BnΔt are also Hamiltonian vector fields with the Hamiltonians
ΔtHA

0 + ΔWnH
A
1 and ΔtHB

0 + ΔWnH
B
1 on time interval [tn, tn+1]. We note that the global

error order of this scheme is 0.5 as mentioned in Section 2.

Remark 3.1. If concrete Hamiltonians H0 and H1 are given, one can also check the condition
(3.5) for each scheme mentioned above by direct calculation.
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4. Illustrative Examples

In this section, as an illustrative example of Schemes 3 and 4, we will show the numerical
solutions to a stochastic harmonic oscillator system by the symplectic schemes and compare
them with the numerical results by the Euler scheme.

Let us consider the following stochastic Hamiltonians dynamical system (3.4) with the
Hamiltonian H0 = (1/2)p2 + (1/2)q2 and H1 = σH0:

d

(

q(t)
p(t)

)

=
(

p(t)
−q(t)

)

dt + σ
(

p(t)
−q(t)

)

◦ dW(t), (4.1)

where σ is a constant. It is evident that this is a stochastic system with the “conserved
quantity” H0 [3, 6]; that is, the solution (q(t), p(t)) randomly moves on a circle determined
by H0(q(t), p(t)) = H0(q(0), p(0)) = (1/2)(q(0)2 + p(0)2) on p-q plane. We call such a system a
stochastic harmonic oscillator system.

Now, in order to investigate the advantage of our symplectic schemes, we will produce
numerical solutions to this system by the new schemes and the “Euler scheme” [11–13]. Then,
by straightforward calculation of the definitions of the schemes together with the exponential
maps (2.5), the Euler scheme, Schemes 3 and 4 under setting HA

0 , HA
1 , HB

0 , and HB
1 as HA

0 =
(1/σ)HA

1 = (1/2)p2 and HB
0 = (1/σ)HB

1 = (1/2)q2 for this system are given as follows.

Euler Scheme:

(

qn+1

pn+1

)

=
(

qn
pn

)

+

⎛

⎜

⎜

⎝

pn −
1
2
qn

−qn −
1
2
pn

⎞

⎟

⎟

⎠

Δt +
(

pn
−qn

)

σΔWn. (4.2)

Scheme 5 (Scheme 3 for (4.1)). One has

(

qn+1

pn+1

)

=
(

cos(Δt) − sin(Δt)
sin(Δt) cos(Δt)

)(

cos(σΔWn) − sin(σΔWn)
sin(σΔWn) cos(σΔWn)

)(

qn
pn

)

. (4.3)

Scheme 6 (Scheme 4 for (4.1)). One has

(

qn+1

pn+1

)

=
(

p̂n(Δt + σΔWn) + q̂n
p̂n

)

, (4.4)

where

(

q̂n
p̂n

)

=
(

qn
−qn(Δt + σΔWn) + pn

)

. (4.5)
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Figure 1: Numerical sample paths of “p” of a stochastic harmonic oscillator system (SHOS) via Euler
scheme, Composition 1 (Scheme 6) and Composition 2 (Scheme 5) (dt = 0.05, sigma = 0.2).

Here we note that we can directly examine the symplectic condition (3.5) which holds for
Schemes 5 and 6 mentioned above.

In these schemes, ΔWn are numerically realized in terms of the independent N(0, 1)
random numbers γn as [12]

ΔWn = γn
√
Δt. (4.6)

Moreover, we set σ, Δt, and N as σ = 0.2, Δt = 0.05, and N = 1000, respectively, and we
choose the initial values of p0 and q0 as 1 and 0, respectively.

Figure 1 denotes the numerical time series of “p” by these schemes, and Figures 2(a)–
2(c) display sample paths of numerical solutions from Euler scheme andSchemes 6 and 5,
respectively. Here, as mentioned, it should be remembered that the exact solution to the
original stochastic system should run on the circle H0(q(t), p(t)) = (1/2)(q(0)2 + p(0)2) = 1,
that is, a unit circle on the p-q plane. Figures 1 and 2(a), however, indicate that a series of
the numerical solutions by the Euler scheme gradually goes far from the circle. In contrast,
Figures 1, 2(b), and 2(c) show that the numerical solutions by our symplecticSchemes
5 and 6 move around the circle stably, and especially, a series of the solution byScheme
5 runs completely on the circle. Thus, as in the deterministic case, the new stochastic
symplectic schemes also numerically preserve the Hamiltonian dynamical structure; this is
the superiority of the new stochastic schemes over the ordinary stochastic schemes.

Finally, we give some concluding remarks on our method.

(1) In this paper, we have treated the stochastic Hamiltonian dynamical systems with
a one-dimensional Wiener process. However, it often happens that the error order
of a numerical method collapses, if there is more than one Wiener process. Hence,
it would be important to investigate the error orders of our schemes in the case
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Figure 2: (a) A numerical sample path of SHOS in phase space via Euler scheme. (b) A numerical sample
path of SHOS in phase space via Composition 1 (Scheme 6). (c) A numerical sample path of SHOS in phase
space via Composition 2 (Scheme 5).

of stochastic Hamiltonian dynamical systems with a “multidimensional Wiener
process”. Therefore, we should be able to improve our composition methods and
offer new schemes with high order for SDEs with a multi-dimensional Wiener
process.

(2) Moreover, we have referred only to a single composition method to SDEs so far. It
seems that one would readily be able to extend the method to a multi-composition
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one, since such compositions are obtained by iterations of single compositions.
Using the multicompositions, we may easily produce a symplectic scheme for the
more complicated stochastic Hamiltonian systems.

In future papers, the topics mentioned above will be reported.
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