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We consider a curve reconstruction problem from unorganized point clouds with noise. In general,
the result of curve reconstruction depends on how to select and order the representative points
to resemble the shape of the clouds. We exploit a natural distance based on a property of one-
dimensional Brownian motion to order sample points, which simultaneously reflect smoothness
and nearness of points, so that our algorithm is able to reconstruct not only simple curves but also
nonsimple curves. Numerous examples show that this algorithm is effective. The natural distance
proposed in this paper is able to play an important role in a variety of fields of measuring the
distance of points with considering direction.

1. Introduction

In many engineering fields such as the reverse engineering of geometric models and
image processing of medical images, great attention has been shown to the problems of
reconstructing a shape from sample points. The curve reconstruction problem we want to
discuss in this article plays an especially important role in shape reconstruction problems
(see, e.g., [1–4] and references therein) and has also been instrumental in the recent
realizations of many algorithms.

Curve reconstruction problems can be regarded as the problem of fitting a curve or a
family F of curves to an irregularly spaced set P of unorganized data points. Most existing
techniques for solving the problem can be divided into two categories depending on whether
the sample points of P are distributed exactly on the family F of curves without noise or are
distributed around F with some noise (possibly a point cloud around F). The techniques in
the first category can also be classified depending on situations where the curves are either
closed or open, either smooth or nonsmooth, and the sample points are distributed either
uniformly or non-uniformly and so on. In any case, the techniques in the first category are
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well developed by many researchers (e.g., see [5–10] and the references therein) and most
of these techniques give mathematical guarantees. There are a few algorithms working for
uniformly sampled curves such as alpha shape [9], r-regular shape [6], and EMST [11]. There
are other algorithms that work for nonuniformly sampled curves such as Crust [5], Nearest
Neighbor [8], Conservative Crust [12], Traveling Salesman Path [13], and Gathan [14, 15].
The algorithms provide a sampling condition with respect to geometric properties, which
may result in a sample set not natural to human vision.

Recently, there are two algorithms which use two important properties of human
vision: proximity and smoothness [16, 17]. Although the sample points are non-uniformly
distributed, they can well reconstruct open simple and nonsmooth curves because they use
several local features such as the mean of the distances and the mean of the angles of already-
obtained edges. The creative vision function of VICUR [16] is a mathematical representation
with experimental foundation. They considered only proximity and smoothness of the
sample points on the Delaunay triangulation. That is, the candidates for the next point are
limited to only points adjacent to the last point although the other points may produce
smoother reconstructions. Thus, this is not able to reconstruct nonsimple curves and solve
the curve reconstruction problem with noise.

Even though the second category, handling data points with noise, is closer to practical
situations, relatively little research has been carried out on the second category (e.g., see
[10, 18–20] and the references therein). Fang and Gossard [10] used a method based on
spring energy minimization to approximate an unorganized point set with a curve, which
requires a good initial guess to find the solution. Taubin and Ronfard [20] reconstructed a
planar curve from unorganized points using an implicit simplicial curve, which is defined
by a planar triangular mesh and the values at the vertices of the mesh. Lee [19] proposed an
algorithm based on a modified least-squares method and Euclidean minimum spanning tree.
This method is not appropriate for curves with self-intersections. Most curve reconstruction
algorithms mentioned above are based on the Euclidean distance to compute the proximity
and the adjacency without consideration for smoothness, so they do not solve nonsimple
curve reconstruction.

Assume that the set P of data points we want to handle fits into the second category.
More precisely, let P = {qk = (xk, yk) ∈ R

2 : k = 1, 2, . . . , n}. As indicated by Dedieu and
Favardin in [7], one of the main steps for solving the curve reconstruction problem is to
give an order on a subset of P to fit a curve interpolating the points in the subset. If we
denote the ordered points as p1, p2, p3, and so on, and we assume that p1, . . . , pi are already
ordered, then the central problem is to find a way of reasonably selecting a next successive
point pi+1 from a subset Ci ⊂ P \ {p1, . . . , pi}, where we assume that the known facts are
only the coordinates of points. For the case of the set P in the first category, it is sufficient to
estimate the angle between the lines for three consequence points, or estimate the Euclidean
distance between nested points [7]. However, a separate usage of these two factors (angle
and Euclidean distance) is not sufficient in the presence of noise.

What we try to do in this paper is to expound a new persuasive measure (called a
natural distance) giving a smoothness and closeness between points, and applicable to order
the points in the second category by combining naturally two facts: angle and Euclidean
distance. The natural distance to pick up the next consecutive point pi+1 from Ci is defined by

fi
(
q
)
= ti
(
q
)
+K

si
(
q
)

√
ti
(
q
) , q ∈ Ci, (1.1)
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where
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(
q
)
=
∣
∣−−→piq
∣
∣ cos θ, si

(
q
)
=
∣
∣−−→piq
∣
∣ sin θ, θ = θ

(
q
)
= cos−1

( −−−−−→pi−1pi · −−→piq∣
∣−−−−−→pi−1pi

∣
∣
∣
∣−−→piq
∣
∣

)

. (1.2)

Hereafter, we call ti(q) a time distance, si(q)/
√
ti(q) a standardized probability distance, and

K a subjective weight. By taking into account simple properties of Brownian motion, we
will interpret a naturalness about the distance fi(q) ordering the points in a subset of P.
In particular, we will show that, the time distance ti(q) is a diffusing time measuring the
closeness between points, while the standardized probabilistic distance si(q)/

√
ti(q) is a

function of measuring the smoothness between points. Finally, we will show that, under an
appropriate lower bound of the subjective weight K, the natural distance fi(q) provides a
plausible answer in ordering the points ofP. Also we will provide remarkable results through
several figures of numerical experiments.

2. Natural Distance

In this section, we will discuss a naturalness for the distance fi(q) defined in (1.1). In order to
do this, we must first define a naturalness for a measure between points applicable to order
the points. For chosen consecutive points pi−1 and pi which are already ordered, let Ci be a
subset of P such that for any q ∈ Ci the angle between −−−−−→pi−1pi and −−→piq is acute. If a measure
μ prefers to pick up the next point pi+1 ∈ Ci satisfying the following conditions, then we say
that the measure has a naturalness and call it a natural distance.

(C.1) Suppose that pi and q1, q2, . . . , qm ∈ Ci are on the same straight line. Then the
measure prefers the closest one to the previous point pi among qj , j = 1, 2, . . . , m.

(C.2) Suppose that q1, q2, . . . , qm ∈ Ci are on the same circle with center pi and the angle
between −−−−−→pi−1pi and −−−→piqk, 1 ≤ k ≤ m, is the smallest angle among those between −−−−−→pi−1pi
and −−−→piqj for all j = 1, 2, . . . , m,. Then the measure prefers qk among qj , j = 1, . . . , m
as the next point of pi.

Two conditions (C.1) and (C.2) are similar to the first and second criterions of [7],
respectively. To show a naturalness of fi(q), we will use a simple property of one-dimensional
Brownian motion introduced in the following subsection.

An easier way to understand Brownian motion is to think of it as a continuous
version of the random walk process. As documented in an enormous amount of literature on
stochastic processes such as [21, 22], Brownian motion has several properties which explain
the irregular motion observed in nature; for example, in two-dimensional space the motion
of pollen grains suspended in liquid which does not flow. Among those, we use only the
following property throughout this paper.

(P.B) For given time T , B(T, ·) starting at 0 is a random variable normally distributed with
mean 0 and variance T , where B(T, ·), T ≥ 0 is the Brownian motion process.

Roughly speaking, (P.B) means that the set of original points on the real line at time
0, which move randomly, becomes the set which is normally distributed with mean 0 and
variance T after T time.
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Figure 1: New coordinates for a scattered point q with θ > 0 when i = 2.

2.1. A Motivation of the Distance fi(q)

Before proving the naturalness for fi(q), we first explain a motivation of the derivation of
fi(q). To do this, we begin with the following interpretation for the set Ci. For two ordered
points pi−1 and pi, (i ≥ 2), which were previously chosen, let R(pi−1, pi) be the ray with
initial point pi and directional vector −−−−−→pi−1pi and let L(q, pi−1, pi) be the perpendicular line to
R(pi−1, pi) passing through the point q ∈ Ci+1 satisfying (C.1). Also define the signed angle
θ (−π/2 < θ < π/2) between −−−−−→pi−1pi and −−→piq by

cos θ =

〈−−−−−→pi−1pi,
−−→piq
〉

∣∣−−−−−→pi−1pi
∣∣∣∣−−→piq

∣∣ , (2.1)

where the sign of θ is positive if q is located on the left-hand side of R(pi−1, pi) and is negative
on the right-hand side. Here, 〈·, ·〉 denotes the inner product in R2. Define two functions
ti : Ci+1 → R+ and si : Ci+1 → R by

ti
(
q
)
=
∣∣−−→piq
∣∣ cos θ, si

(
q
)
=
∣∣−−→piq
∣∣ sin θ. (2.2)

The function ti(q) is the Euclidean distance between pi and the intersection of
R(pi−1, pi) and L(q, pi−1, pi), and the function |si(q)| is the Euclidean distance between q and
the intersection of R(pi−1, pi) and L(q, pi−1, pi). Then we can consider the pair (ti(q), si(q)) as
the new coordinates representation of q (see Figure 1).

With the property (P.B) of Brownian motion, we further think of the ti-axis as the time
axis with the original point pi, and si-axis as the axis representing the value of Brownian
motion. Therefore, if ti(q) = t > 0, si(q) is considered as a sample point of the random variable
which has the normal distribution with mean 0 and variance t as shown in Figure 2, then we
consider the point q as one of the normally distributed points after t time, which is randomly
diffused from original point.

With this setting, we want to find a function F providing the distances between pi and
candidate points of pi+1, which prefer to choose a point q ∈ Ci+1 satisfying the conditions
(C.1) and (C.2) where F has the minimum value. Then what is suitable for variables of F? We
suggest two factors as variables of F.

We adopt the function ti, called ith time distance, as its first variable. The condition (C.1)
in the previous section requires that F should be strictly increasing for ti. This implies that we
prefer to choose the point taking the smaller diffusion time to pi+1.
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Figure 2: The distribution of Brownian motion after time t = t2(q).
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Figure 3: The probabilities of the ε-neighborhoods of two points q, q′ for i = 2.

Similarly thinking, one may take the function |si| as the second variable of F. As shown
in Figure 3, the probability density p satisfies that, for arbitrary ε > 0 and two points q, q′ ∈
Ci+1 such that ti(q) = ti(q′) = t and |si(q)| > |si(q′)|,

∫

N(si(q),ε)
p(t, 0, s)ds <

∫

N(si(q′),ε)
p(t, 0, s)ds. (2.3)

However, the function si is not enough as the second variable of F because it is
not independent of the first variable ti. Assume that q, q′ ∈ Ci+1 are the points having
different reaching times, that is, ti(q)/= ti(q′). Since si(q)(si(q′)) is interpreted as a sample
point of the random variable with a normal distribution with variance ti(q)(ti(q′), resp.), we
cannot compare the probability in the same way as above. For this reason, it is necessary
to standardize random variables with normal distributions with the variance ti to be the
standardized random variable with normal distribution with the same mean and the variance
1. So we adopt the function |si|/

√
ti as the second variable of F. We call this function

ith standardized probability distance. Easily speaking, if we ignore the effect of the ith time
distance, we think that the original point pi is more naturally attainable to q′ than q whenever
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Figure 4: Standardizations of si(q) and si(q′) when i = 2.

|si(q′)|/
√
ti(q′) > |si(q)|/

√
ti(q) (see Figure 4). The condition (C.2) in the previous section

requires that F should be strictly increasing for this second variable, though this is not a
sufficient condition for (C.2).

Consequently, our problem is rewritten as the following, if F is assumed to be C1.

Choose q ∈ Ci+1 satisfying the conditions (C.1) and (C.2) where the suitable (still
undetermined) C1-function

F

⎛

⎜
⎝ti
(
q
)
,

∣∣si
(
q
)∣∣

√
ti
(
q
)

⎞

⎟
⎠ (2.4)

has the minimum value. Here the function F(x, y) : R+ × R+ ∪ {0} → R+ strictly
increases for both variables, that is, Fx > 0 and Fy > 0.

There are plenty of such increasing function F with two variables. Among all, the simplest
one will be the linear function of the form

F
(
x, y
)
= x +Ky, (2.5)

for a positive constant K. This is mostly caused by the convenience of calculation, but the
function has several good features as the solution for the point ordering problem. The reader
can check these, exploring some examples in the next section.

In this spirit, we define the ith natural distance fi (i ≥ 2) by, for q ∈ Ci+1 and a positive
constant K,

fi
(
q
)
= ti
(
q
)
+K

∣∣si
(
q
)∣∣

√
ti
(
q
) . (2.6)

We call K the subjective weight, since it represents how much weight is given to the second
factor.
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Figure 5: The level curve passing through a point q for i = 2.

2.2. Naturalness of fi(q)

To prove the naturalness of fi(q), we need to make some technical assumptions. Choosing
points on the same level curve is problematic, where the points have the same natural
distance from pi. If points lie on the same level curve with a different Euclidean distance
from pi, we choose the closest point from pi to the Euclidean distance. Also, if two points lie
on the same level curve with the same Euclidean distance from pi, we choose the point lying
on the right-hand side of the direction −−−−−→pi−1pi.

The ith natural distance fi has the following properties, which can be easily checked.

(P.1) If q1 lies in the interior of the level curve ti +K(|si|/
√
ti) = fi(q), then fi(q) > fi(q1),

(P.2) If fi(q) < ti(q2), then fi(q) < fi(q2),

(P.3) If 2
√

3fi(q)
3/2/9K < |si(q3)|, then fi(q) < fi(q3),

(P.4) If q4 lies on the level curve ti +K(|si|/
√
ti) = fi(q), then fi(q) = fi(q4).

Some of these can be used to simplify numerical algorithms ordering the points. Here q, qj ∈
Ci+1 for j = 1, 2, 3, 4 (see Figure 5). (P.1) implies that the level curves do not intersect each
other in (ti, si)-plane, so the natural distance fi(q) satisfies (C.1). (P.3) is derived by the fact
that the maximum value of the level curve ti + K(|si|/

√
ti) = fi(q) is 2

√
3fi(q)

3/2/9K. In the
following theorem, we will show that the natural distance fi(q) locally satisfies (C.2).

Theorem 2.1. Assume that

K >

(
27

83 + 48
√

3

)1/4√
r0 (2.7)

for some fixed positive r0. Then the natural distance fi(q) satisfies the condition (C.2).

Proof. To show (C.2), it is enough to show that, for any fixed c > 0 and 0 < r < r0, the system
of equations

x2 + y2 = r2,

x +K
y
√
x
= c

(2.8)

has at most one root in the first quadrant x > 0, y > 0.
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The second equation of (2.8) gives the equation y2 = x(x2 − 2cx + c2)/K2. Hence from
the first equation of (2.8), we have

g(x) = K2r2, where g(x) = x
(
x2 +

(
K2 − 2c

)
x + c2

)
. (2.9)

Thus, it suffices to prove that two curves y = g(x) and y = K2r2 meet at most one point in
the first quadrant x > 0, y > 0. Note that, if the cubic function g(x) has three zeros, all of them
must be less than zero because x2 + (K2 − 2c)x + c2 = (x − c)2 +K2x > 0, and hence g(x) > 0
provided x > 0. In this case, the intersection of two curves y = g(x) and y = K2r2 on the first
quadrant x > 0, y > 0 is at most one.

First, assume that g(x) = 0 has only one zero at x = 0. If the quadratic equation g ′(x) =
0 does not have solution or has negative solutions, then g(x) is a strictly increasing function
for x > 0, and hence the system has at most one root. Therefore the only case that has to be
considered is the case

K2 <
(

2 −
√

3
)
c, or equivalently c >

(
2 +
√

3
)
K2. (2.10)

Note that, in this case, the quadratic equation g ′(x) = 0 has two distinct positive solutions

x1 =
2c −K2 −X

3
, x2 =

2c −K2 +X
3

, (2.11)

where X =
√
c2 − 4cK2 +K4, and the minimal extreme value of g(x) is obtained at x2. Using

the relation g ′(x2) = 0, we can derive

g(x2) = −
2
9
x2

(
K4 − 4cK2 + c2

)
− 1

9
c2
(
K2 − 2c

)

= −2
9
x2X

2 − 1
9
c2
(
K2 − 2c

)

=
1

27

(
−2X3 + 2c3 +K2

(
15c2 − 12K2c + 2K4

))
.

(2.12)

From (2.10) it can be easily verified that X has the maximum value c. So g(x2) is bounded
such as

g(x2) ≥
K2

27

(
15c2 − 12K2c + 2K4

)
≥ 83 + 48

√
3

27
K6. (2.13)

The last inequality is derived from c > (2 +
√

3)K2. Hence if the inequality

r2K2 ≤ 83 + 48
√

3
27

K6, or equivalently K >

(
27

83 + 48
√

3

)1/4√
r, (2.14)

holds, then the proof is complete.
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Figure 6: Level curves for various subjective weights K.

From Theorem 2.1, we know that points lying on the same level curve with the same
Euclidean distance to the points should be located symmetrically with respect to the ti-axis.
Thus if there exist such points, then there are only two in N(pi, r0).

Now, we need to make a practical remark concerned with Theorem 2.1. As seen in its
proof, the lower bound for K is not obtained optimally, so we conjecture that this bound can
be smaller in most cases. For practical usage of our method, we think that it is not inevitably
necessary to give a consideration for the bound, since the purpose of our point ordering is
to construct (or reconstruct) meaningful shapes (or the original shape) after connecting all
ordered points. For this reason, in the following experiments, we are not concerned with the
lower bound for K on using the natural point ordering method.

Before closing this section, we remark on the effect of the subjective weights K on the
point orderings. It is obvious that, if K is very big, the ith natural distance fi is more sensitive
to magnitudes of the changes of the ith standardized probability distance |si|/

√
ti than those

of the ith time distance ti. This fact can be checked in Figure 6, which presents the level curves
of (2.6) for several values of the subjective weight K. As K increases, the width between the
line si = 0 and level curve becomes narrower.

3. Practical Algorithm

In this section, we will describe a practical algorithm for ordering points in an unorganized
point cloud as well as a sample point set.

Let P be a set of arbitrarily scattered n points in R2. The point ordering problem aims to
choose a family S = {P̃j} of subsets ofP, where each subset P̃j is a well-ordered set satisfying
the natural conditions (C.1) and (C.2). Assume that pj1, p

j

2, . . . , p
j
m are already ordered so that

we may denote that P̃j = [pj1, p
j

2, . . . , p
j
m] with the last point pjm and the direction

−−−−−−−→
p
j

m−1p
j
m. We
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p
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p
j
m

p
j

m+1

r
j
m

Cm

Cm+1

p
j

m+2

Figure 7: The candidate points of pjm+1 are in the right half-disc Cm with center pjm and radius rjm.

define the connectivity t
j
m of an ordered subset as the mean of the lengths of edges of the

ordered subset: tjm = (1/(m − 1))
∑m−1

l=1 d
j

l , where djl is the distance between pjl and p
j

l+1.
We explain a process for computing the set of candidates for the next point and

choosing the next point among the candidates, called NextPointFinder. Let N(pjm, r
j
m) be a

neighborhood with center pjm and radius rjm = atjm satisfying the following condition:

N
(
p
j
m, r

j
m

)
=
{
q ∈ R : d

(
p
j
m, q
)
≤ rjm

}
, (3.1)

where R is the remaining point set such that R = P \
⋃j

l=1 P̃l and a is a parameter. We define
the candidate set Cm by

Cm =
{
q ∈N

(
p
j
m, r

j
m

)
:
−−−−−−−→
p
j

m−1p
j
m ·
−−−→
p
j
mq > 0

}
(3.2)

as shown in Figure 7. We find out the point pjm+1 among the elements of Cm such that
fm(pm+1) = minq∈Cm{fm(q)}.

There is a main difference between our method and VICUR [16] in the process. Our
method permits all of points q ∈ Cm as a candidate for pm+1 whether [pm, q] is a Delaunay
edge or not, whereas VICUR considers only the points q, where [pm, q] is a Delaunay edge.
We think that it plays a role of a key to solve a nonsimple curve reconstruction problem.

In order to deal with the first category problem, we assume that there is no noise in
the point set P.

NADIAS (NAtural DIstance based Algorithm for Sample points)

Step 1. Compute Delaunay triangulation DT(P).

Step 2. Let P̃j be the jth local solution generated by NextPointFinder. Let ej = [pj1, p
j

2] be
the shortest Delaunay edge in R. Apply NextPointFinder with the last point pj2 and the
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direction
−−−→
p
j

1p
j

2 until the candidate set is empty. Let P̃j+ be the solution of this process. Apply

NextPointFinder with the last point pj1 and the direction
−−−→
p
j

2p
j

1 until the candidate set is empty.
Let P̃j− be the solution of this process. Merge the two subsets P̃j+ and P̃j− into P̃j , that is,
P̃j = P̃j+ ∪ P̃j− . Update S = S ∪ {P̃j}. Update R = P \

⋃j

l=1 P̃l.

Step 3. If |R| > 1, then repeat Step 2.

Step 4. If |S| > 1, then apply the following bridging process to a pair of P̃i and P̃j of S: for
two ordered subsets P̃i = [pi1, p

i
2, . . . , p

i
l
] and P̃j = [pj1, p

j

2, . . . , p
j
m], if the distance between pi1

(or pi
l
) and p

j

1 (or pjm) is less than the average of the connectivity ti
l
and t

j
m, then our algorithm

connects these two ordered subsets.

Step 2 says that our algorithm follows a type of an incremental greedy approach: at
each step it chooses the next point from among the candidate points that is best under the
natural distance, including “close to the last point” and “in the direction of current travel”.
The bridging process is similar to the curve-curve connectivity of [16] and makes our method
reconstruct curves with sharp corners.

The time complexity of our algorithm is O(n logn), where n is the number of the input
points because the dominant process of our algorithm is to compute Delaunay triangulation
of them and it runs in O(n logn). The main process of our algorithm is NextPointFinder
which is repeatedly to find out a candidate set Ci, and to select one point that has the
minimum natural distance among the candidates. It takes O(kM), where k is the number
of the output points in P̃ and M is a constant.

For the second category problem, we outline our algorithm as follows.

NADIAC (NAtural DIstance based Algorithm for Cloud points)

Step 1. Compute Delaunay triangulation DT(P).

Step 2. Choose a point p1 ∈ P. Compute a neighborhood N(p1, rc), where rc is a constant
radius. Apply Principal Component Analysis to N(p1, rc) in order to obtain the initial
direction

−→
ID which plays a role of the major principal axis in the neighborhood.

Step 3. Apply NextPointFinder with the last point p1 and the direction
−→
ID until the candidate

set is empty. Let P̃+ be a local solution generated by NextPointFinder.

Step 4. Apply NextPointFinder with the last point p1 and the direction
−−−→−ID until the candidate

set is empty. Let P̃− be a local solution generated by NextPointFinder.

Step 5. P̃ = P̃+ ∪ P̃−.

4. Experimental Results

In this section, we tested several reconstruction problems where each problem is focused on
the following facts: (1) nonsimple curve from sample points, (2) sharp corners from sample
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(a)
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(b) (c) (d)

Figure 8: Nonsimple curve reconstruction: (a) Delaunay triangulation, (b) enlarged Delaunay triangula-
tion at the dense area, (c) reconstructed curve generated by [16], and (d) reconstructed curve generated
by our method.

(a) (b)

Figure 9: Nonsimple curve reconstruction: (a) sample points and (b) result by NADIAS.

points, (3) the difference between Natural distance and Euclidean distance, (4) the effect of
the subjective weight K, and (5) the treatment of cloud sets.

Figure 8 shows that our method can reconstruct a nonsimple curve from sample
points. Figure 8(a) is the Delaunay triangulation of the sample points. In order to explain
the difference between VICUR [16] and our method, we zoom in the Delaunay triangulation
as shown in 8(b). The adjacent points to P are A, B, and C, whereas Q is not adjacent to P .
So VICUR does not permit Q as a candidate for the next point of P although the edge PQ
is smoother to the already-ordered edge OP than the other Delaunay edges. On the other
hand, our algorithm deals with all of four points as candidates for the next point of P since
they belong to the neighborhood of P with radius a · t, where t is its connectivity and a = 2.5
is set. Figure 8(d) shows a nonsimple curve reconstructed by our method. The red point in
Figure 8(d) means the initial point of our algorithm.

Figure 9 shows another example for a nonsimple curve from sample points as shown
in Figure 9(a). In this example, we choose the initial point as that having a minimum edge
length between points. In Figure 9(b), the boundary point between red line and green line is
the chosen initial point. Thus, our algorithm works in two opposite directions. Figures 8 and
9 are smooth nonsimple curves.

Figure 10 shows the process of our algorithm, called NADIAS (NAtural DIstance
based Algorithm for Sample points). Figure 10(a) is an example for sample points on a
piecewise smooth curve. For the sample data, NADIAS finds out the shortest Delaunay edge
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(a) (b) (c)

Figure 10: The process of NADIAS: (a) sample points, (b) NextPointFinder, and (c) bridging.

(a) (b) (c)

Figure 11: Examples with multicomponents.

and then applies NextPointFinder process two times with opposite directions. Figure 10(b)
shows the result which has two components of smooth curves. The boundary of the red line
and the green line is the initial point of the first component, and the boundary of the black line
and the blue line is one of the second component. Figure 10(c) is the result after our bridging
process. This figure contains one component because the minimum distance between the end
points of two components is smaller than the given threshold distance. Figure 11 shows that
NADIAS is able to well extract the several components whether or not each component is
open and whether or not its shape is sharp.

There are two different results of point ordering for the same set of sample points by
using Euclidean distance and Natural distance in Figure 12. The ordered set with Euclidean
distance in (a) does not contain all sample points, contrary to that with natural distance in (b).
It implies that there is an example in which parameters can be chosen for the natural point
ordering that will reconstruct the curve, while parameters chosen for Euclidean distance may
not.

In Figure 13, the complicated examples for three different subjective weights are
presented. For the set of scattered sample points in (a), the case K = 0.5 of (c) produces a
meaningful closed curve of ‘@’ almost completely. One also finds the fact that, as K increases,
our method produces smoother shapes. Figures 13(b) and 13(c) are generated by the first
algorithm which regards the point data as sample points, so there are two curves. On the
other hand, Figure 13(d) shows the result of the second algorithm. K is very large, so the
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(a) Euclidean distance [5] (b) Natural distance

Figure 12: Point orderings based on the different distance measures.

(a) sample data (b) K = 0.3

(c) K = 0.5 (d) K = 3.0

Figure 13: A complicated example using the natural point ordering method.

smoothness is emphasized more than the proximity. Therefore the algorithm meets the stop
condition before most of points are applied to the algorithm.

Figure 14 shows a more meaningful example of the natural point ordering problem.
The sample data are generated by drawing a spiral and then adding three small circles to the
spiral. One may understand that the major configuration of the dataset is a spiral. Our natural
point ordering method can cut out the minor configurations such as three small circles from
the spiral, so the ordered set is only on the spiral.

Figure 15 shows the results of NADIAC for point clouds. The cloud data of a spiral
type are generated by random process and the clouds of the right example are generated
by drawing a nonsimple curve in several times. Although the set of sample points is



Mathematical Problems in Engineering 15

(a) (b)

Figure 14: Extraction of the major configuration: sample points (a) and the result (b) with K = 0.8.

(a) (b)

Figure 15: Natural point orderings for point clouds: a point cloud generated by random process (a), a point
cloud generated by drawing with mouse (b).

unorganized, our natural point ordering algorithm can extract the ordered subset from the
point cloud, which plays a role of representative in their local neighborhood.

5. Conclusion

We have presented a new method for constructing curves from unorganized point clouds
with noise. In general, the result of curve reconstruction depends on how to select and order
the representative points to resemble the shape of the clouds. In this paper, in contradiction
to the previous curve reconstruction algorithms based on Euclidean distance, we exploit a
natural distance to reflect orientation to the ordering of sample points, so that our algorithm
is able to reconstruct not only simple curves but also nonsimple curves. Moreover, for
unorganized point clouds, this method efficiently extracts the skeletons of the clouds by
cutting out the outliers, even though the result by our method is sensitive to the initial point
and the initial direction. The method may be extended in two ways. The first thing is to extend
the method to the surface reconstruction problem in three-dimensional space. We think that
one should use the properties of two-dimensional Brownian motion in order to get a natural
distance similar to that in this paper. Second, it is possible to improve our method which can
control the subjective weight K to obtain the wanted shape. We conjecture that this can be
fulfilled if we weaken the condition (C.1).
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