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Pulsatile flow of a two-fluid model for blood flow through stenosed narrow arteries is studied
through a mathematical analysis. Blood is treated as two-phase fluid model with the suspension
of all the erythrocytes in the as Herschel-Bulkley fluid and the plasma in the peripheral layer as a
Newtonian fluid. Perturbation method is used to solve the system of nonlinear partial differential
equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance
to flow are obtained. The variations of these flow quantities with stenosis size, yield stress, axial
distance, pulsatility and amplitude are analyzed. It is found that pressure drop, plug core radius,
wall shear stress and resistance to flow increase as the yield stress or stenosis size increases while
all other parameters held constant. It is observed that the percentage of increase in the magnitudes
of the wall shear stress and resistance to flow over the uniform diameter tube is considerably very
low for the present two-fluid model compared with that of the single-fluid model of the Herschel-
Bulkley fluid. Thus, the presence of the peripheral layer helps in the functioning of the diseased
arterial system.

1. Introduction

The analysis of blood flow through stenosed arteries is very important because of the fact
that the cause and development of many arterial diseases leading to the malfunction of
the cardiovascular system are, to a great extent, related to the flow characteristics of blood
together with the geometry of the blood vessels. Among the various arterial diseases, the
development of arteriosclerosis in blood vessels is quite common which may be attributed to
the accumulation of lipids in the arterial wall or pathological changes in the tissue structure
[1]. Arteries are narrowed by the development of atherosclerotic plaques that protrude into
the lumen, resulting in stenosed arteries. When an obstruction is developed in an artery, one
of the most serious consequences is the increased resistance and the associated reduction of
the blood flow to the particular vascular bed supplied by the artery. Also, the continual flow
of blood may lead to shearing of the superficial layer of the plaques, parts of which may be
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deposited in some other blood vessel forming thrombus. Thus, the presence of a stenosis can
lead to the serious circulatory disorder.

Several theoretical and experimental attempts have been made to study the blood flow
characteristics due to the presence of a stenosis in the arterial lumen of a blood vessel [2–10].
It has been reported that the hydrodynamic factors play an important role in the formation
of stenosis [11, 12] and hence, the study of the blood flow through a stenosed tube is very
important. Many authors have dealt with this problem treating blood as a Newtonian fluid
and assuming the flow to be steady [13–16]. Since the blood flow through narrow arteries is
highly pulsatile, more attempts have been made to study the pulsatile flow of blood treating
blood as a Newtonian fluid [3, 6–8, 17–19]. The Newtonian behavior may be true in larger
arteries, but, blood, being a suspension of cells in plasma, exhibits nonNewtonian behavior
at low-shear rates (γ̇ < 10/scc) in small diameter arteries (0.02 mm–0.1 mm); particularly, in
diseased state, the actual flow is distinctly pulsatile [2, 20–25]. Several attempts have been
made to study the nonNewtonian behavior and pulsatile flow of blood through stenosed
tubes [2, 4, 9, 10, 26–28].

Bugliarello and Sevilla [29] and Cokelet [30] have shown experimentally that for blood
flowing through narrow blood vessels, there is an outer phase (peripheral layer) of plasma
(Newtonian fluid) and an inner phase (core region) of suspension of all the erythrocytes as a
nonNewtonian fluid. Their experimentally measured velocity profiles in the tubes confirm
the impossibility of representing the velocity distribution by a single-phase fluid model
which ignores the presence of the peripheral layer (outer layer) that plays a crucial role
in determining the flow patterns of the system. Thus, for a realistic description of blood
flow, perhaps, it is more appropriate to treat blood as a two-phase fluid model consisting
of a core region (inner phase) containing all the erythrocytes as a nonNewtonian fluid and
a peripheral layer (outer phase) of plasma as a Newtonian fluid. Several researchers have
studied the two-phase fluid models for blood flow through stenosed arteries treating the fluid
in the inner phase as a nonNewtonian fluid and the fluid in the outer phase as a Newtonian
fluid [25, 26, 31–33]. Srivastava and Saxena [25] have analyzed a two-phase fluid model for
blood flow through stenosed arteries treating the suspension of all the erythrocytes in the core
region (inner phase) as a Casson fluid and the plasma in the peripheral layer (outer phase) is
represented by a Newtonian fluid. In the present model, we study a two-phase fluid model
for pulsatile flow of blood through stenosed narrow arteries assuming the fluid in the core
region as a Herschel-Bulkley fluid while the fluid in the peripheral region is represented by a
Newtonian fluid.

Chaturani and Ponnalagar Samy [28] and Sankar and Hemalatha [2] have mentioned
that for tube diameter 0.095 mm blood behaves like Herschel-Bulkley fluid rather than power
law and Bingham fluids. Iida [34] reports “The velocity profile in the arterioles having
diameter less than 0.1 mm are generally explained fairly by the Casson and Herschel-Bulkley
fluid models. However, the velocity profile in the arterioles whose diameters less than
0.0650 mm does not conform to the Casson fluid model, but, can still be explained by the
Herschel-Bulkley model”. Furthermore, the Herschel-Bulkley fluid model can be reduced to
the Newtonian fluid model, power law fluid model and Bingham fluid model for appropriate
values of the power law index (n) and yield index (τy). Since the Herschel-Bulkley fluid
model’s constitutive equation has one more parameter than the Casson fluid model; one can
get more detailed information about the flow characteristics by using the Herschel-Bulkley
fluid model. Moreover, the Herschel-Bulkley fluid model could also be used to study the
blood flow through larger arteries, since the Newtonian fluid model can be obtained as a
particular case of this model. Hence, we felt that it is appropriate to represent the fluid in
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Figure 1: Flow geometry of an arterial stenosis with peripheral layer.

the core region of the two-phase fluid model by the Herschel-Bulkley fluid model rather than
the Casson fluid model. Thus, in this paper, we study a two-phase fluid model for blood
flow through mild stenosed narrow arteries (of diameter 0.02 mm–0.1 mm) at low-shear rates
(γ̇ < 10/sec) treating the fluid in the core region (inner phase) as a Herschel-Bulkley fluid
and the plasma in the peripheral region (outer phase) as a Newtonian fluid.

In this study, the effects of the pulsatility, stenosis, peripheral layer and the nonNew-
tonian behavior of blood are analyzed using an analytical solution. Section 2 formulates
the problem mathematically and then nondimensionalises the governing equations and
boundary conditions. In Section 3, the resulting nonlinear coupled implicit system of
differential equations is solved using the perturbation method. The expressions for the
velocity, flow rate, wall shear stress, plug core radius, and resistance to flow have been
obtained. Section 4 analyses the variations of these flow quantities with stenosis height, yield
stress, amplitude, power law index and pulsatile Reynolds number through graphs. The
estimates of wall shear stress increase factor and the increase in resistance to flow factor are
calculated for the two-phase Herschel-bulkley fluid model and single-phase fluid model.

2. Mathematical Formulation

Consider an axially symmetric, laminar, pulsatile and fully developed flow of blood
(assumed to be incompressible) in the z direction through a circular artery with an axially
symmetric mild stenosis. It is assumed that the walls of the artery are rigid and the blood is
represented by a two-phase fluid model with an inner phase (core region) of suspension of
all erythrocytes as a Herschel-Bulkley fluid and an outer phase (peripheral layer) of plasma
as a Newtonian fluid. The geometry of the stenosis is shown in Figure 1. We have used the
cylindrical polar coordinates (r, φ, z) whose origin is located on the vessel (stenosed artery)
axis. It can be shown that the radial velocity is negligibly small and can be neglected for a
low Reynolds number flow in a tube with mild stenosis. In this case, the basic momentum
equations governing the flow are

ρH
∂uH

∂t
= −∂p

∂z
− 1
r

∂

∂r
(r τH) in 0 ≤ r ≤ R1(z), (2.1)
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ρN
∂uN

∂t
= −∂p

∂z
− 1
r

∂

∂r
(r τN) in R1(z) ≤ r ≤ R(z), (2.2)

0 = −∂p
∂r
, (2.3)

where the shear stress τ = |τr z| = −τr z (since τ = τH or τ = τN). Herschel-Bulkley
fluid is a nonNewtonian fluid which is widely used in many areas of fluid dynamics, for
example, dam break flows, flow of polymers, blood, and semisolids. Herschel-Bulkley fluid
is a nonNewtonian fluid with nonzero yield stress which is generally used in the studies
of blood flow through narrow arteries at low-shear rate. Herschel-Bulkley equation is an
empirical relation which connects shear stress and shear rate through the viscosity which
is given in (2.4) and (2.5). The relations between the shear stress and the strain rate of the
fluids in motion in the core region (for Herschel-Bulkley fluid) and in the peripheral region
(for Newtonian fluid) are given by

τH =
n

√
μH

(
∂uH
∂r

)
+ τy if τH ≥ τy, Rp ≤ r ≤ R1(z), (2.4)

∂uH
∂r

= 0 if τH ≤ τy, 0 ≤ r ≤ Rp, (2.5)

τN = μN

(
−∂uN
∂r

)
if R1(z) ≤ r ≤ R(z), (2.6)

where uH , uN are the axial component of the fluid’s velocity in the core region and peripheral
region; τH , τN are the shear stress of the Herschel-Bulkley fluid and Newtonian fluid;
μH, μN are the viscosities of the Herschel-Bulkley fluid and Newtonian fluid with respective
dimensions [ML−1T−2]nT and ML−1 T−1; ρH, ρN are the densities of the Herschel-Bulkley
fluid and Newtonian fluid; p is the pressure, t; is the time; τy is the yield stress. From (2.5),
it is clear that the velocity gradient vanishes in the region where the shear stress is less than
the yield stress which implies a plug flow whenever τH ≤ τy. However, the fluid behavior is
indicated whenever τH ≥ τy. The geometry of the stenosis in the peripheral region as shown
in Figure 1 is given by

R(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
R0 in the normal artery region,

R0 −
δp

2

[
1 + cos

2π

L0

(
z − d − L0

2

)]
in d ≤ z ≤ d + L0,

(2.7)

where R(z) is the radius of the stenosed artery with peripheral layer, R0 is the radius of the
normal artery, L0 is the length of the stenosis, d indicates its location, and δp is the maximum
depth of the stenosis in the peripheral layer such that [δP/R0] � 1. The geometry of the
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stenosis in the core region as seen in Figure 1 is given by

R1(z) =

⎧⎪⎨
⎪⎩
βR0 in the normal artery region,

βR0 − δC
2

[
1 + cos

2π

L0

(
z − d − L0

2

)]
in d ≤ z ≤ d + L0,

(2.8)

where R1(z) is the radius of the stenosed core region of the artery, β is the ratio of the central
core radius to the normal artery radius, βR0 is the radius of the core region of the normal
artery, and δC is the maximum depth of the stenosis in the core region such that [δC/R0] � 1.
The boundary conditions are

(i) τH is finite and
∂uH
∂r

= 0 at r = 0,

(ii) τH = τN at r = R1(z),

(iii) uH = uN at r = R1(z),

(iv) uN = 0 at r = R(z).

(2.9)

Since the pressure gradient is a function of z and t, we take

−∂p
∂z

= q(z)f
(
t
)
, (2.10)

where q(z) = −(∂p/∂z)(z, 0), f(t) = 1 +A sinωt, A is the amplitude of the flow and ω is the
angular frequency of the blood flow. Since any periodic function can be expanded in a series
of sines of multiple angles using Fourier series, it is reasonable to choose f(t) = 1 + A sinωt
as a good approximation. We introduce the following nondimensional variables

z =
z

R0

, R(z) =
R(z)

R0

, R1(z) =
R1(z)

R0

, r =
r

R0

, t = ωt, d =
d

R0

, L0 =
L0

R0

,

q(z) =
q(z)
q0

, uH =
uH

q0R
2
0/4μ0

, uN =
uN

q0R
2
0/4μN

, τH =
τH

q0R0/2
, τN =

τN

q0R0/2
,

θ =
τy

q0R0/2
, α2

H =
R

2
0ωρH
μ0

, α2
N =

R
2
0 ωρN
μN

, Rp =
Rp

R0

, δp =
δp

R0

, δC =
δC

R0

,

(2.11)

where μ0 = μH(2/q0R0)
n−1

, having the dimension as that of the Newtonian fluid’s
viscosity, q0 is the negative of the pressure gradient in the normal artery, αH is the pulsatile
Reynolds number or generalized Wormersly frequency parameter and when n = 1, we get
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the Wormersly frequency parameter αN of the Newtonian fluid. Using the nondimensional
variables, (2.1), (2.2), (2.4), (2.5), and (2.6) reduce, respectively, to

α2
H

∂uH
∂t

= 4q(z)f(t) − 2
r

∂

∂r
(rτH) if 0 ≤ r ≤ R1(z), (2.12)

α2
N

∂uN
∂t

= 4q(z)f(t) − 2
r

∂

∂r
(rτN) if R1(z) ≤ r ≤ R(z), (2.13)

τH =
n

√
−1

2
∂uH
∂r

+ θ if τH ≥ θ, Rp ≤ r ≤ R1(z), (2.14)

∂uH
∂r

= 0 if τH ≤ θ, 0 ≤ r ≤ Rp, (2.15)

τN = −1
2
∂uN
∂r

if R1(z) ≤ r ≤ R(z), (2.16)

where f(t) = 1 +A sin t. The boundary conditions (in dimensionless form) are

(i) τH is finite at r = 0,

(ii)
∂uH
∂r

= 0 at r = 0,

(iii) τH = τN at r = R1(z),

(iv) uH = uN at r = R1(z),

(v) uN = 0 at r = R(z).

(2.17)

The geometry of the stenosis in the peripheral region (in dimensionless form) is given by

R(z) =

⎧⎪⎨
⎪⎩

1 in the normal artery region,

1 − δp

2

[
1 + cos

2π
L0

(
z − d − L0

2

)]
in d ≤ z ≤ d + L0.

(2.18)

The geometry of the stenosis in the core region (in dimensionless form) is given by

R1(z) =

⎧⎨
⎩
β in the normal artery region,

β − δC
2

[
1 + cos

2π
L0

(
z − d − L0

2

)]
in d ≤ z ≤ d + L0.

(2.19)

The nondimensional volume flow rate Q is given by

Q = 4
∫R(z)

0
u(r, z, t)r dr, (2.20)

where Q = Q/[πR
4
0q0/8μ0], Q is the volume flow rate.
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3. Method of Solution

When we nondimensionalize the constitutive equations (2.1) and (2.2), α2
H and α2

N occur
naturally and these pulsatile Reynolds numbers are time dependent and hence, it is more
appropriate to expand (2.12)–(2.16) about α2

H and α2
N . The plug core velocity up, the velocity

in the core region uH , the velocity in the peripheral region uN , the plug core shear stress τp,
the shear stress in the core region τH , the shear stress in the peripheral region τN , and the
plug core radius Rp are expanded as follows in terms of α2

H and α2
N (where α2

H � 1 and
α2
N � 1):

uP (z, t) = u0P (z, t) + α2
Hu1P (z, t) + · · · , (3.1)

uH(r, z, t) = u0H(r, z, t) + α2
Hu1H(r, z, t) + · · · , (3.2)

uN(r, z, t) = u0N(r, z, t) + α2
Nu1N(r, z, t) + · · · , (3.3)

τP (z, t) = τ0P (z, t) + α2
Hτ1P (z, t) + · · · , (3.4)

τH(r, z, t) = τ0H(r, z, t) + α2
Hτ1H(r, z, t) + · · · , (3.5)

τN(r, z, t) = τ0N(r, z, t) + α2
Nτ1N(r, z, t) + · · · , (3.6)

RP (z, t) = R0P (z, t) + α2
HR1P (z, t) + · · · . (3.7)

Substituting (3.2), (3.5) in (2.12) and then equating the constant terms and α2
H terms, we

obtain

∂

∂r
(rτ0H) = 2q(z)f(t)r, (3.8)

∂u0H

∂t
= −2

r

∂

∂r
(rτ1H). (3.9)

Applying (3.2), (3.5) in (2.14) and then equating the constant terms and α2
H terms, one can

get

−∂u0H

∂r
= 2τn−1

0H [τ0H − nθ], (3.10)

−∂u1H

∂r
= 2nτn−2

0H τ1H[τ0H − (n − 1)θ]. (3.11)

Using (3.3) and (3.6) in (2.13) and then equating the constant terms and α2
N terms, we get

∂

∂r
(rτ0N) = 2q(z)f(t)r, (3.12)

∂u0N

∂t
= −2

r

∂

∂r
(rτ1N). (3.13)
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On substituting (3.3) and (3.6) in (2.16) and then equating the constant terms and α2
N terms,

one can obtain

−∂u0N

∂r
= 2τ0N, (3.14)

−∂u1N

∂r
= 2τ1N. (3.15)

Using (3.1)–(3.6) in (2.17) and then equating the constant terms and α2
H and α2

N terms, the
boundary conditions are simplified, respectively, to

τ0P , τ1P are finite at r = 0, (3.16)

∂u0P

∂r
= 0,

∂u1P

∂r
= 0 at r = 0, (3.17)

τ0H = τ0N at r = R1(z), (3.18)

τ1H = τ1N at r = R1(z), (3.19)

u0H = u0N at r = R1(z), (3.20)

u1H = u1N at r = R1(z), (3.21)

u0N = 0 at r = R(z), (3.22)

u1N = 0 at r = R(z). (3.23)

Equations (3.8)–(3.11) and (3.12)–(3.15) are the system of differential equations which can be
solved for the unknowns u0H, u1H, τ0H, τ1H and u0N, u1N, τ0N, τ1N , respectively, with the help
of boundary conditions (3.16)–(3.23). Integrating (3.8) between 0 and R0P and applying the
boundary condition (3.16), we get

τ0P = q(z)f(t)R0P . (3.24)

Integrating (3.8) between R0P and r and then making use of (3.24), we get

τ0H = q(z)f(t)r. (3.25)

Integrating (3.12) between R1 and r and then using (3.18), one can get

τ0N = q(z)f(t)r. (3.26)

Integrating (3.14) between r and R and then making use of (3.22), we obtain

u0N = q(z)f(t)R2
[

1 −
( r
R

)2
]
. (3.27)
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Integrating (3.10) between r and R1 and using the boundary condition (3.20), we get

u0H =
[
q(z)f(t)R

]
R

{
1 −
(
R1

R

)2
}

+ 2
[
q(z)f(t)R1

]n
R1

[
1

(n + 1)

{
1 −
(
r

R1

)n+1
}
− k2

R1

{
1 −
(
r

R1

)n}]
,

(3.28)

where k2 = θ/[q(z)f(t)]. The plug core velocity u0P can be obtained from (3.28) by replacing
r by R0P as

u0P =
[
q(z)f(t)R

]
R

{
1 −
(
R1

R

)2
}

+ 2
[
q(z)f(t)R1

]n
R1

[
1

(n + 1)

{
1 −
(
R0p

R1

)n+1}
− k2

R1

{
1 −
(
R0p

R1

)n}]
.

(3.29)

Neglecting the terms with α2
H and higher powers of αH in (3.7) and using (3.24), the

expression for R0P is obtained as

r|τ0P=θ = R0P =
(

θ

q(z)f(t)

)
= k2. (3.30)

Similarly, solving (3.9), (3.11), (3.13), and (3.15) with the help of (3.24)–(3.29), and using
(3.19), (3.21) and (3.23), the expressions for τ1P , τ1H, τ1N, u1H , and u1P can be obtained as

τ1P = −1
4
[
q(z)f(t)R

]
BR2

(
k2

R

){
1 −
(
R1

R

)2
}

− [q(z)f(t)R1
]n
BR2

1

⎡
⎣ n

2(n + 1)

(
k2

R1

)
− (n − 1)

2

(
k2

R1

)2

− n

2(n + 1)

(
k2

R1

)n+2
⎤
⎦,

(3.31)
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τ1H = −1
4
[
q(z)f(t)R

]
BR2
( r
R

){
1 −
(
R1

R

)2
}
− [q(z)f(t)R1

]n
BR2

1

×
[

n

(n + 1)(n + 3)

{(
n + 3

2

)(
r

R1

)
−
(
r

R1

)n+2
}

− (n − 1)
(n + 2)

(
k2

R1

){(
n + 2

2

)(
r

R1

)
−
(
r

R1

)n+1
}

− 3
(
n2 + 2n − 2

)
2(n + 2)(n + 3)

(
k2

R1

)n+3(
R1

r

)⎤⎦,

(3.32)

τ1N = −[q(z)f(t)R]BRR1

[
1
4

(
r

R1

)
− 1

8

(
R1

R

)2 (R1

r

)
− 1

8

(
R1

R

)2( r

R1

)3
]

− [q(z)f(t)R1
]n
BR2

1

[
n

2(n + 3)

(
R1

r

)
− n(n − 1)

2(n + 2)

(
k2

R1

)(
R1

r

)

− 3
(
n2 + 2n − 2

)
2(n + 2)(n + 3)

(
k2

R1

)n+3(
R1

r

)⎤⎦,

(3.33)

u1N = −2
[
q(z)f(t)R

]
BR2R1

[
1
8

(
R

R1

){
1 −
( r
R

)2
}

−1
8

(
R1

R

)3

log
(
R

r

)
− 1

32

(
R

R1

){
1 −
( r
R

)4
}]

− 2
[
q(z)f(t)R1

]n
BR3

1 log
(
R

r

)[
n

2(n + 3)
− n(n − 1)

2(n + 2)

(
k2

R1

)

− 3
(
n2 + 2n − 2

)
2(n + 2)(n + 3)

(
k2

R1

)n+3
⎤
⎦,

(3.34)

u1H = −2
[
q(z)f(t)R

]
BR2R1

[
3

32

(
R

R1

)
− 1

8

(
R1

R

)
+

1
32

(
R1

R

)3

+
1
8

(
R1

R

)3

log
(
R1

R

)]

+ 2
[
q(z)f(t)R1

]n
BR3

1 log
(
R1

R

)

×
⎡
⎣ n

2(n + 3)
− n(n − 1)

2(n + 2)

(
k2

R1

)
− 3
(
n2 + 2n − 2

)
2(n + 2)(n + 3)

(
k2

R1

)n+3
⎤
⎦

− n[q(z)f(t)R1
]n
BR1R

2

{
1 −
(
R1

R

)2
}
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×
[

1
2(n + 1)

{
1−
(
r

R1

)n+1
}
− (n − 1)

2n

(
k2

R1

){
1−
(
r

R1

)n}]
−2n
[
q(z)f(t)R1

]2n−1
BR3

1

×
[

n

2(n + 1)2

{
1 −
(
r

R1

)n+1
}
− (n − 1)
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(3.35)
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(3.36)

where B = [1/f(t)](df(t)/dt). The expression for velocity uH can be easily obtained from
(3.2), (3.28) and (3.35). Similarly, the expressions for uN, τH , and τN can be obtained. The
expression for wall shear stress τw can be obtained by evaluating τN at r = R and is given
below:

τw =
(
τ0N + α2

Nτ1N

)
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(3.37)

From (2.20) and (3.27), (3.28), (3.29), (3.34), (3.35), and (3.36), the volume flow rate is
calculated and is given by

Q = 4

[∫R0P

0

(
u0P + α2

Hu1P

)
r dr +

∫R1

R0P

(
u0H + α2

Hu1H

)
r dr +

∫R
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(
u0N + α2u1N

)
r dr

]
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The second approximation to plug core radius R1P can be obtained by neglecting the terms
with α4

H and higher powers of αH in (3.7) in the following manner. The shear stress τH =
τ0H + α2

Hτ1H at r = RP is given by

∣∣∣τ0H + α2
Hτ1H

∣∣∣
r=RP

= θ. (3.39)

Equation (3.39) reflects the fact that on the boundary of the plug core region, the shear stress
is the same as the yield stress. Using the Cityplace Taylor’s series of τ0H and τ1H about R0P

and using τ0H |r=R0P
= θ, we get

R1P =
[

1
q(z)f(t)

][−τ1H |r=R0P

]
. (3.40)

With the help of (3.7), (3.30), (3.32), and (3.40), the expression for RP can be obtained as
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(3.41)

The resistance to flow in the artery is given by

Λ =

[
q(z)f(t)

]
Q

. (3.42)

When R1 = R, the present model reduces to the single fluid model (Herschel-Bulkley fluid
model) and in such case, the expressions obtained in the present model for velocity uH , shear
stress τH ,wall shear stress τw, flow rate Q, and plug core radius RP are in good agreement
with those of Sankar and Hemalatha [2].

4. Numerical Simulation of Results and Discussion

The objective of the present model is to understand and bring out the salient features of the
effects of the pulsatility of the flow, nonNewtonian nature of blood, peripheral layer and
stenosis size on various flow quantities. It is generally observed that the typical value of the
power law index n for blood flow models is taken to lie between 0.9 and 1.1 and we have used
the typical value of n to be 0.95 for n < 1 and 1.05 for n > 1 [2]. Since the value of yield stress
is 0.04 dyne/cm2 for blood at a haematocrit of 40 [35], the nonNewtonian effects are more
pronounced as the yield stress value increases, in particular, when it flows through narrow
blood vessels. In diseased state, the value of yield stress is quite high (almost five times) [28].
In this study, we have used the range from 0.1 to 0.3 for the nondimensional yield stress θ.
To compare the present results with the earlier results, we have used the yield stress value as
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0.01 and 0.04. Though the range of the amplitude A varies from 0 to 1, we use the range from
0.1 to 0.5 to pronounce its effect.

The ratio α (= αN/αH) between the pulsatile Reynolds numbers of the Newtonian
fluid and Herschel-Bulkley fluid is called pulsatile Reynolds number ratio. Though the
pulsatile Reynolds number ratio α ranges from 0 to 1; it is appropriate to assume its value
as 0.5 [25]. Although the pulsatile Reynolds number αH of the Herschel-Bulkley fluid also
ranges from 0 to 1 [2], the values 0.5 and 0.25 are used to analyze its effect on the flow
quantities. Given the values of α and αH , the value of αN can be obtained from α = αN/αH .
The value of the ratio β of central core radius βR0 to the normal artery radius R0 in the
unobstructed artery is generally taken as 0.95 and 0.985 [25]. Following Shukla et al. [26],
we have used the relations R1 = βR and δC = βδP to estimate R1 and δC. The maximum
thickness of the stenosis in the peripheral region δP is taken in the range from 0.1 to 0.15 [25].
To compare the present results with the results of Sankar and Hemalatha [2] for single fluid
model, we have used the value 0.2 for δC. To deduce the present model to a single fluid model
(Newtonian fluid model or Herschel-Bulkley fluid model) and to compare the results with
earlier results, we have used the value of β as 1.

It is observed that in (3.38), f(t), R, and θ are known andQ and q(z) are the unknowns
to be determined. A careful analysis of (3.38) reveals the fact that q(z) is the pressure gradient
of the steady flow. Thus, if steady flow is assumed, then (3.38) can be solved for q(z) [2, 10].
For steady flow, (3.38) reduces to

(
R2 − R2

1

)[
4θ2
(
R

R1

)2

+
(
R2 − R2

1

)]
x3 +

[
4

(n + 2)(n + 3)

]

×
⌊
(n + 2)Rn+3

1 xn+3 − n(n + 3)θRn+2
1 xn+2 +

(
n2 + 2n − 2

)
θn+3
⌋
−QSx

3 = 0,

(4.1)

where x = q(z) and QS is the steady state flow rate. Equation (4.1) can be solved for x
numerically for a given value of n, QS and θ. Equation (4.1) has been solved numerically
for x using Newton-Raphson method with variation in the axial direction and yield stress
with β = 0.95 and δP = 0.1. Throughout the analysis, the steady flow rate QS value is taken
as 1.0. Only that root which gives the realistic value for plug core radius has been considered
(there are only two real roots in the range from 0 to 20 and the other root gives values of plug
core radius that exceeds the tube radius R).

4.1. Pressure Gradient

The variation of pressure gradient with axial distance for different fluid models in the core
region is shown in Figure 2. It has been observed that the pressure gradient for the Newtonian
fluid (single fluid model) is lower than that of the two fluid models with n = 1.05 and θ =
0.1 from z = 4 to 4.5 and z = 5.5 to 6, and higher than that of the two fluid models from
z = 4.5 to z = 5.5 and these ranges are changed with increase in the value of the yield stress
θ and a decrease in the value of the power law index n. The plot for the Newtonian fluid
model (single phase fluid model) is in good agreement with that in Figure 2 of Sankar and
Hemalatha [2]. Figure 2 depicts the effects of nonNewtonian nature of blood on pressure
gradient.
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4.2. Pressure Drop

The variation of pressure drop (Δp) (across the stenosis, i.e., from z = 4 to z = 6) in a time
cycle for different values of A, θ, and δP with n = β = 0.95 is depicted in Figure 3. It is clear
that the pressure drop increases as time t increases from 0◦ to 90◦ and then decreases from 90◦

to 270◦ and again it increases from 270◦ to 360◦. The pressure drop is maximum at 90◦ and
minimum at 270◦. It is also observed that for a given value of A, the pressure drop increases
with the increase of the stenosis height δP or yield stress θ when the other parameters held
constant. Further, it is noticed that as the amplitude A increases, the pressure drop increases
when t lies between 0◦ and 180◦ and decreases when t lies between 180◦ and 360◦ while
θ and δP are held fixed. Figure 3 shows the simultaneous effects of the stenosis size and
nonNewtonian nature of blood on pressure drop.

4.3. Plug Core Radius

The variation of plug core radius (RP ) with axial distance for different values of the amplitude
A and stenosis thickness δP (in the peripheral layer) with n = β = 0.95, αH = 0.5, θ = 0.1, and
t = 60◦ is shown in Figure 4. It is noted that the plug core radius decreases as the axial variable
z varies from 4 to 5 and it increases as z varies from 5 to 6. It is further observed that for a
given value of δP , the plug core radius decreases with the increase of the amplitudeA and the
same behavior is noted as the peripheral layer stenosis thickness increases for a given value
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of the amplitude A. Figure 4 depicts the effects of stenosis height on the plug core radius of
the blood vessels.

Figure 5 sketches the variation of plug core radius in a time cycle for different values
of the pulsatile Reynolds number αH of the Herschel-Bulkley fluid and yield stress θ with
n = β = 0.95,A = 0.5, z = 5, t = 60◦, and δP = 0.1. It is noted that the plug core radius decreases
as time t increases from 0◦ to 90◦ and then it increases from 90◦ to 270◦ and then again it
decreases from 270◦ to 360◦. The plug core radius is minimum at t = 90◦ and maximum at
t = 270◦. It has been observed that for a given value of the pulsatile Reynolds number αH , the
plug core radius increases as the yield stress θ increases. Also, it is noticed that for a given
value of yield stress θ and with increasing values of the pulsatile Reynolds number αH , the
plug core radius increases when t lies between 0◦ and 90◦ and also between 270◦ and 360◦ and
decreases when t lies between 90◦ and 270◦. Figure 5 depicts the simultaneous effects of the
pulsatility of the flow and the nonNewtonian nature of the blood on the plug core radius of
the two-phase model.

4.4. Wall Shear Stress

Wall shear stress is an important parameter in the studies of the blood flow through arterial
stenosis. Accurate predictions of wall shear stress distributions are particularly useful in the
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understanding of the effects of blood flow on the endothelial cells [36, 37]. The variation
of wall shear stress in the axial direction for different values of yield stress θ and pulsatile
Reynolds number αN of the Newtonian fluid with t = 45◦, n = β = 0.95, A = 0.5, and δP = 0.1
is plotted in Figure 6. It is found that the wall shear stress increases as the axial variable z
increases from 4 to 5 and then it decreases symmetrically as z increases further from 5 to
6. For a given value of the pulsatile Reynolds number αN , the wall shear stress increases
considerably with the increase in the values of the yield stress θ when the other parameters
held constant. Also, it is noticed that for a given value of the yield stress θ and increasing
values of the pulsatile Reynolds number αN , the wall shear stress decreases slightly while the
other parameters are kept as invariables. It is of interest to note that the plot for the single fluid
Herschel-Bulkley model is in good agreement with that in Figure 8 of Sankar and Hemalatha
[2]. Figure 6 shows the effects of pulsatility of the blood flow and nonNewtonian effects of
the blood on the wall shear stress of the two-phase model.

Figure 7 depicts the variation of wall shear stress in a time cycle for different values
of the amplitude A and peripheral stenosis height δP with n = β = 0.95, θ = 0.1, αN = 0.5
and z = 5. It can be easily seen that the wall shear stress increases as time t (in degrees)
increases from 0◦ to 90◦ and then it decreases as t increases from 90◦ to 270◦ and then again it
increases as t increases further from 270◦ to 360◦. The wall shear stress is maximum at 90◦ and
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minimum at 270◦. Also, it may be noted that for a given value of the amplitude A the wall
shear stress increases with increasing values of the stenosis thickness δP . Further, it is noticed
that for a given value of the stenosis size and increasing values of the amplitude A, the wall
shear stress increases when t lies between 0◦ and 180◦ and decreases when t lies between 180◦

and 360◦. This figure sketches the effects of the stenosis size and amplitude on the wall shear
stress of the two-phase blood flow model.

4.5. Velocity Distribution

The velocity profiles are of interest, since they provide a detailed description of the flow
field. The velocity distributions in the radial direction for different values of the amplitude
A, pulsatile Reynolds number ratio α, pulsatile Reynolds number of Herschel-Bulkley fluid
αH , the ratio of the central core radius to the tube radius β with n = 0.95, z = 5, θ = δP = 0.1,
and t = 45◦ are shown in Figure 8. One can easily notice the plug flow around the tube axis
in Figure 8. Also, it is found that the velocity increases as the amplitude A increases for a
given set of values of α, αH and β. Further, it is observed that for a given set of values of
A, α and αH , the velocity decreases considerably near the tube axis as the ratio β increases.
The same behavior is observed for increasing values of the pulsatile Reynolds number ratio α
and pulsatile Reynolds number αH for the given values of A and β, but there is only a slight
decrease in the later case. Figure 8 depicts the effects of amplitude, pulsatility and stenosis
size on velocity distribution of the two-phase model. The velocity distribution in the radial
direction at different times is shown in Figure 9. It is observed that the velocity increases as
time t (in degrees) increases from 0◦ to 90◦ and then it decreases as t increases from 90◦ to 270◦

and again it increases as t increases further from 270◦ to 360◦. This figure shows the transient
effects of blood flow on velocity of the two-phase model.

4.6. Resistance to Flow

The variation of resistance to flow with peripheral layer stenosis size for different values of
the amplitude A and yield stress θ with n = β = 0.95, α = αH = 0.25, and t = 45◦ is plotted
in Figure 10. Since δC = βδP , the stenosis size of the core region δC also increases when the
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Figure 9: Velocity distribution at different times with n = β = 0.95, θ = δP = 0.1, α = αH = 0.5, z = 5 and
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Figure 10: Variation of resistance to flow with stenosis size for different values ofA and θ with n = β = 0.95,
α = αH = 0.25 and t = 45◦.

peripheral layer stenosis height δP increases for a given value of β. It is seen that the resistance
to flow increases gradually with increasing stenosis size while the rest of the parameters are
kept fixed. It is to be noted that for a given value of yield stress θ, the resistance to flow
decreases with increasing values of the amplitude A. It is also found that for a given value of
the amplitude A, the resistance to flow increases with increase in the values of the yield stress
θ when the other parameters held constant. Figure 10 illustrates the effects of the amplitude,
stenosis size and the nonNewtonian nature of blood on resistance to flow of the two-phase
model.

Figure 11 sketches the variation of resistance to flow in a time cycle for different values
of the power law index n and the pulsatile Reynolds number ratio α, pulsatile Reynolds
number of the Herschel-Bulkley fluid αH with θ = δP = 0.1, β = 0.95 and A = 0.2. It is clear
that the resistance to flow decreases as time t (in degrees) increases from 0◦ to 90◦ and then
it increases as t increases from 90◦ to 270◦ and then again it decreases as t increases further
from 270◦ to 360◦. The resistance to flow is minimum at 90◦ and maximum at 270◦. It is found
that for the fixed values of α and αH and the increasing values of the power law index n, the
resistance to flow decreases when time t lies between 0◦ and 180◦ and increases when t lies
between 180◦ and 360◦. Further, it is noted that for a fixed value of the power law index n
and with the increasing values of α and αH , the resistance to flow increases slightly when t
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Table 1: Estimates of the wall shear stress increase factor for the two-phase Herschel-Bulkley fluid model
and single-phase Herschel-Bulkley fluid model for different stenosis sizes with n = 0.95, A = α = αH = 0.5,
β = 0.985, θ = 0.1, and t = 45◦.

Stenosis size (δP ) Two-phase fluid model Single-phase fluid model
0.025 1.074 1.156
0.05 1.157 1.350
0.075 1.249 1.595
0.1 1.352 1.907
0.125 1.467 2.313
0.15 1.597 2.848

lies between 0◦ and 90◦ and also between 270◦ and 360◦ and decreases slightly when t lies
between 90◦ and 270◦. Figure 11 shows the simultaneous effects of pulsatility of the flow and
the nonNewtonian nature of blood on resistance to flow of the two-phase model.

4.7. Quantification of Wall Shear Stress and Resistance to Flow

The wall shear stress (τw) and resistance to flow (Λ) are physiologically important quantities
which play an important role in the formation of platelets [38]. High wall shear stress not
only damages the vessel wall and causes intimal thickening, but also activates platelets, cause
platelet aggregation, and finally results in the formation of thrombus [7].

The wall shear stress increase factor is defined as the ratio of the wall shear stress
of particular fluid model in the stenosed artery for a given set of values of the parameters
to the wall shear stress of the same fluid model in the normal artery for the same set of
values of the parameters. The estimates of the wall shear stress increase factor for two-
phase Herschel-Bulkley fluid model and single-phase fluid model with t = 45◦, n = 0.95,
A = α = αH = 0.5, β = 0.985, and θ = 0.1 are given in Table 1. It is observed that for the
range of the stenosis size 0–0.15, the corresponding ranges of the wall shear stress increase of
the two-phase Herschel-Bulkley fluid model and single-phase Herschel-Bulkley fluid model
are 1.074–1.594 and 1.156–2.848, respectively. It is found that the estimates of the wall shear
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Table 2: Estimates of the resistance to flow increase factor for the two-phase Herschel-Bulkley fluid model
and single-phase Herschel-Bulkley fluid model for different stenosis sizes with n = 0.95, A = α = αH = 0.5,
β = 0.985, θ = 0.1, and t = 45◦.

Stenosis size (δP ) Two-phase fluid model Single-phase fluid model
0.025 1.050 1.104
0.05 1.105 1.232
0.075 1.166 1.391
0.1 1.233 1.592
0.125 1.308 1.850
0.15 1.393 2.189

stress increase factor are marginally lower for the two-phase Herschel-Bulkley fluid model
than those of the single-phase Herschel-Bulkley fluid model.

One can define the resistance to flow increase factor in a similar way as in the case
of wall shear stress increase factor. The estimates of the increase in resistance to flow factor
for two-phase Herschel-Bulkley fluid model and single-phase fluid model with t = 45◦, n =
0.95, A = α = αH = 0.5, β = 0.985, and θ = 0.1 are given in Table 2. It is noted that for the
range of the stenosis size 0–0.15, the corresponding range of the increase in resistance to flow
factor for the two-phase Herschel-Bulkley fluid model and single-phase Herschel-Bulkley
fluid model are 1.050–1.393 and 1.104–2.189, respectively. It is found that the estimates of the
wall shear stress increase factor are significantly lower for the two-phase Herschel-Bulkley
fluid model than those of the single-phase Herschel-Bulkley fluid model. Hence, it is clear
that the existence of the peripheral layer is useful in the functioning of the diseased arterial
system. It is strongly felt that the present model may provide a better insight to the study of
blood flow behavior in the stenosed arteries than the earlier models.

Perturbation method is a very useful analytical tool for solving nonlinear differential
equations. In the present study, it is used to solve the nonlinear coupled implicit system of
partial differential equations to get an asymptotic solution. This method yields a closed form
to the flow quantities which enables us to evaluate them at any particular instant of time
and at any particular point in the flow domain. This facility is unavailable when we use
the computational methods such as finite difference method, finite element method, finite
volume method.

5. Conclusion

The present study analyzes the two-phase Herschel-Bulkley fluid model for blood flow
through stenosed arteries and brings out many interesting fluid mechanical phenomena due
to the presence of the peripheral layer. The results indicate that the pressure drop, plug core
radius, wall shear stress, and resistance to flow increase as the yield stress or stenosis size
increases while all other parameters held constant. It is found that the velocity increases, plug
core radius, and resistance to flow decrease as the amplitude increases. It is also observed that
the difference between the estimates of increase in the wall shear stress factor of the two-phase
fluid model and single-phase fluid model is substantial. A similar behavior is observed for the
increase in resistance to flow factor. Thus, the results demonstrate that this model is capable
of predicting the hemodynamic features most interesting to physiologists. Thus, the present
study could be useful for analyzing the blood flow in the diseased state. From this study, it is
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concluded that the presence of the peripheral layer (outer phase) helps in the functioning of
the diseased arterial system.

Nomenclature

r: radial distance
r: dimensionless radial distance
z: axial distance
z: dimensionless axial distance
n: power law index
p: pressure
p: dimensionless pressure
Q: flow rate
Q: dimensionless flow rate
R0: radius of the normal artery
R(z): radius of the artery in the stenosed peripheral region
R(z): dimensionless radius of the artery in the stenosed peripheral region
R1(z): radius of the artery in the stenosed core region
R1(z): dimensionless radius of the artery in the stenosed core region
RP : plug core radius
RP : dimensionless plug core radius
uH : axial velocity of the Herschel-Bulkley fluid
uH : dimensionless axial velocity of the Herschel-Bulkley fluid
uN : axial velocity of the Newtonian fluid
uN : dimensionless axial velocity of the Newtonian fluid
A: amplitude of the flow
q(z): steady state pressure gradient
q(z): dimensionless steady state pressure gradient
q0: negative of the pressure gradient in the normal artery
L: length of the normal artery
L0: length of the stenosis
L0: dimensionless length of the stenosis
d: location of the stenosis
d: dimensionless location of the stenosis
t: time
t: dimensionless time.

Greek Letters

Δp: dimensionless Pressure drop
Λ: dimensionless resistance to flow
φ: azimuthal angle
γ̇ : shear rate
τy: yield stress
θ: dimensionless yield stress
τH : shear stress for the Herschel-Bulkley fluid
τH : dimensionless shear stress for the Herschel-Bulkley fluid
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τN : shear stress for the Newtonian fluid
τN : dimensionless shear stress for the Newtonian fluid
τw: dimensionless wall shear stress
ρH : density of the Herschel-Bulkley fluid
ρN : density of the Newtonian fluid
μH : viscosity of the Herschel-Bulkley fluid
μN : viscosity of the Newtonian fluid
αH : pulsatile Reynolds number of the Herschel-Bulkley fluid
αN : pulsatile Reynolds number of the Newtonian fluid
α: ratio between the Reynolds numbers αH and αN
β: ratio of the central core radius to the normal artery radius
δC: maximum height of the stenosis in the core region
δC: dimensionless maximum height of the stenosis in the core region
δN : maximum height of the stenosis in the peripheral region
δP : dimensionless maximum height of the stenosis in the peripheral region
ω: angular frequency of the blood flow.

Subscripts

w: wall shear stress (used for τ)
C: core region (used for δ, δ)
P : peripheral region (used for δ, δ)
H: herschel-Bulkley fluid (used for u, u, τ, τ)
N: newtonian fluid (used for u, u, τ, τ).
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