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This paper is concerned with the problem of robust reliable stabilization of switched nonlinear
systems with time-varying delays and delayed switching is investigated. The parameter
uncertainties are allowed to be norm-bounded. The switching instants of the controller experience
delays with respect to those of the system. The purpose of this problem is to design a reliable
state feedback controller such that, for all admissible parameter uncertainties and actuator failure,
the system state of the closed-loop system is exponentially stable. We show that the addressed
problem can be solved by means of algebraic matrix inequalities. The explicit expression of the
desired robust controllers is derived in terms of linear matrix inequalities (LMIs).

1. Introduction

A switched system is composed of a family of continuous-time or discrete-time subsystems
and a rule specifying the switching among them. Switched systems have received increasing
attentions in the past few years, since many real-word systems such as mechanical systems,
automotive industry, aircraft, and air traffic control systems, chemical processes can be
modelled as switched systems (see [1–3]). A large number of results have been reported
for such systems (see [4–8]).

On the other hand, time delay systems have continuously been receiveing considerable
attention over the past decades. The main reason is that many kinds of engineering systems,
for instance, long-distance transportation systems, hydraulic pressure systems, network
control systems, and so on, include time delay phenomena in their dynamics. Many valuable
results have been obtained for switched systems with time delay (see [9–15]). On the other
hand, the actuators may be subjected to failures in real practice, therefore, it is of practical
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importance to design a control system which can tolerate faults of actuators. Several design
approaches to the reliable controller have been proposed for linear and nonlinear systems
(see [16–19]), and these results have been extended to switched systems (see [20–22]).

Recently, the asynchronous switching control problem of switched systems has stirred
renewed research interests, and a varity of switched systems have been investigated by
different approaches [23–26]. However, to the best of the authors’ knowledge, the issue
of reliable stabilization of switched nonlinear systems with time-varying delay under
asynchronous switching has not been fully investigated, which motivated the present
study.

In this paper, we are interested in designing the robust reliable controller for uncertain
switched nonlinear system with time-varying delays and delayed switching. The remainder
of the paper is organized as follows. In Section 2, problem formulation is presented and the
failure model of actuator in switched system is introduced briefly. In addition, some necessary
lemmas are given. In Section 3, based on the average dwell-time approach, controller design
for switched nonlinear system with time-varying delays and delayed switching is developed,
and sufficient conditions for the existence of the controller are formulated in terms of a set of
matrix inequalities. Concluding remarks are given in Section 4.

Notation. Throughout this paper, the superscript “T” denotes the transpose, ‖ · ‖ denotes the
Euclidean norm. λmax(P) and λmin(P) denote the maximum and minimum eigenvalues of
matrix P , respectively, I is an identity matrix with appropriate dimension. diag{ai} denotes
diagonal matrix with the diagonal elements ai, i = 1, 2, . . . , n. The asterisk ∗ in a matrix is
used to denote term that is induced by symmetry. The set of positive integers is represented
by Z+.

2. Problem Formulation and Preliminaries

Consider the following uncertain nonlinear switched system with actuator fault

ẋ(t) = ̂Aσ(t)x(t) + ̂Adσ(t)x
(

t − dσ(t)(t)
)

+ Bσ(t)uf(t) + fσ(t)(x(t), t),

x(t) = ϕ(t), t ∈ [t0 − d, t0],
(2.1)

where x(t) ∈ Rn is the state vector, uf(t) ∈ Rl is the control input of actuator fault, ϕ(t)
is a continuous vector-valued function. The function σ(t) : [t0,∞) → N = {1, 2, . . . ,N} is
the switching signal which is deterministic, piecewise constant and right continuous, that is,
σ : {(t0, σ(t0)), (t1, σ(t1)), . . .}, k ∈ Z+, where t0 ≥ 0 is the initial time, and tk denotes the
kth switching instant. dσ(t)(t) denotes the time-varying state delay satisfying 0 < dσ(t)(t) ≤
d, ḋσ(t)(t) ≤ τ for constants d and τ . Moreover, σ(t) = i means that the ith subsystem is
activated. N denotes the number of subsystems. fi(x(t), t) (i ∈ N) are nonlinear functions
satisfying

∥

∥fi(x(t), t)
∥

∥ ≤ ‖Uix(t)‖, (2.2)

where Ui are known real constant matrices.
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̂Ai, ̂Adi for i ∈N are uncertain real-valued matrices with appropriate dimensions, and
have the following form:

[

̂Ai
̂Adi

]

=
[

Ai Adi

]

+HiFi(t)
[

E1i E2i
]

, (2.3)

where Ai, Adi, Bi,H1i, E1i, E2i are known real constant matrices with proper dimensions, and
H1i, E1i, E2i denote the structure of the uncertainties, Fi(t) are unknown time-varying matrices
which satisfy

FTi (t)Fi(t) ≤ I. (2.4)

The control input of actuator fault uf(t) can be described as

uf(t) =Mσ(t)u(t), (2.5)

where u(t) = Kσ(t)x(t) is the switching controller which will be designed, Mi (i ∈ N) are the
actuator fault matrices with the following form:

Mi = diag{mi1, mi2, . . . , mil}, 0 ≤ mik ≤ mik ≤ mik, mik ≥ 1, k = 1, 2, . . . , l. (2.6)

For simplicity, we introduce the following notation

Mi0 = diag{m̃i1, m̃i2, . . . , m̃il}, Ji = diag
{

ji1, ji2, . . . , jil
}

, Li = diag{li1, li2, . . . , lil},
(2.7)

where m̃ik = 1/2(mik +mik), jik = (mik −mik)/(mik +mik), lik = (mik − m̃ik)/m̃ik.
From (2.6)-(2.7), we have

Mi =Mi0(I + Li), |Li| ≤ Ji ≤ I, (2.8)

where |Li| = diag{|li1|, |li2|, . . . , |lil|}.

Remark 2.1. mik = 1 means normal operation of the kth actuator signal of the ith subsystem.
When mik = 0, it covers the case of the complete failure of the kth actuator signal of the ith
subsystem. When mik > 0 and mik /= 1, it corresponds to the case of partial failure of the kth
actuator signal of the ith subsystem.

The delayed switching of the controller can be shown in Figure 1.
We can see from Figure 1 that the controller Ki operates the ith subsystem in [tk−1 +

Δk−1, tk), and operates the jth subsystem in [tk, tk + Δk).
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The switching of the system

The switching of the controller

Subsystem i Subsystem j

Controller Ki Controller Ki Controller Kj

tk−1 + Δk−1 tk tk + Δk tk+1

Figure 1: Diagram of the delayed switching.

Let σ ′(t) denote the switching signal of the controller, the switching instants of the
controller can be described as

t1 + Δ1, t2 + Δ2, . . . , tk + Δk, . . . , k ∈ Z+, (2.9)

where Δk < infk∈Z+(tk+1−tk), Δk represents the delayed period, and it is said to be mismatched
period.

Remark 2.2. Mismatched period Δk < infk∈Z+(tk+1 − tk) guarantees that there always exists a
period that the controller and the system operate synchronously, and this period is said to be
matched period in the later section.

Due to the delayed switching, the real input of actuator fault can be written as

uf(t) =Mσ ′(t)Kσ ′(t)x(t). (2.10)

Under switching controller (2.10), the resulting closed-loop system is given by

ẋ(t) =
(

Aσ(t) + Bσ(t)Mσ ′(t)Kσ ′(t)
)

x(t) +Adσ(t)x
(

t − dσ(t)(t)
)

+ fσ(t)(x(t), t),

x(t) = ϕ(t), t ∈ [t0 − d, t0].
(2.11)

System (2.1) without uncertainties and actuator fault can be written as

ẋ(t) = Aσ(t)x(t) +Adσ(t)x
(

t − dσ(t)(t)
)

+ Bσ(t)u(t) + fσ(t)(x(t), t),

x(t) = ϕ(t), t ∈ [t0 − d, t0].
(2.12)

Definition 2.3 (see [13]). If there exists switching signal σ(t), such that the trajectory of system
(2.1) satisfies ‖x(t)‖ ≤ α‖x(t0)‖he−β(t−t0), then system (2.1) is said to be exponentially stable
with convergent rate β, where α ≥ 1, β > 0, t ≥ t0, ‖x(t)‖h = sup−d≤θ≤0{‖x(t + θ)‖, ‖ẋ(t + θ)‖}.
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Definition 2.4 (see [27]). For any T2 > T1 ≥ 0, let Nσ(T1, T2) denote the switching number of
σ(t) on an interval (T1, T2). If

Nσ(T1, T2) ≤N0 +
T2 − T1

τa
(2.13)

hold for given N0 ≥ 0, τa > 0, then the constant τa is called the average dwell time and N0 is
the chatter bound.

The following lemmas play an important role in the later development.

Lemma 2.5 (see [28]). For given vectors a, b and the positive matrix X > 0, there exists the matrix
M with appropriate dimension, such that

−2aTb ≤ inf
X>0,M

{

[

a
b

]T[
X XM

MTX
(

MTX + I
)

X−1(XM + I)

][

a
b

]

}

. (2.14)

Lemma 2.6 (see [29]). For matrices X,Y of appropriate dimension and Q > 0, we have

XTY + YTX ≤ XTQX + YTQ−1Y. (2.15)

Lemma 2.7 (see [30]). Let U,V,W , and X be real matrices of appropriate dimensions with X
satisfying X = XT , then for all V TV ≤ I,

X +UVW +WTV TUT < 0 (2.16)

if and only if there exists a scalar ε > 0 such that

X + εUUT + ε−1WTW < 0. (2.17)

Lemma 2.8 (see [31]). For matrices R1, R2 with appropriate dimension, there exists a positive scalar
β > 0, such that

R1Σ(t)R2 + RT
2Σ

T (t)RT
1 ≤ βR1UR

T
1 + β−1RT

2UR2 (2.18)

hold, where Σ(t) is time-varying diagonal matrix,U is known real-value matrix satisfying |Σ(t)| ≤ U.

The objective of this paper is to design a reliable controller for system (2.1) with
delayed switching such that the resulting closed-loop system is robust exponentially stable.
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3. Main Results

To obtain the main results of this paper, we first consider the stability of the following
nonlinear delay system

ẋ(t) = Ax(t) +Adx(t − d(t)) + f(x(t), t), (3.1)

x(t) = ϕ(t), t ∈ [t0 − d, t0], (3.2)

where x(t) ∈ Rn is the state vector, ϕ(t) is a continuous vector-valued initial function, A,Ad

are real-valued matrices with appropriate dimensions, f(·, ·) : Rn × R → Rn is unknown
nonlinear functions satisfying

∥

∥f(x(t), t)
∥

∥ ≤
∥

∥

∥Ux(t)
∥

∥

∥, (3.3)

where U is known real constant matrix.

3.1. Stability Analysis

Lemma 3.1. Consider system (3.1)-(3.2), for given positive constant α, ρ1, ρ2, ε1, η1, if there exist
positive definite symmetric matrices P, S,Q,R, and any matrices G,W with appropriate dimensions,
such that

Q ≤ ρ1I, P ≤ ρ2I, (3.4)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Σ GT WTAd ATQ 0 d
(

WT + P
)

ATQ 0 U
T

∗ −(1−τ)e−αdR−G−GT −G AT
d
Q 0 0 0 AT

d
Q 0

∗ ∗ −d−1e−αdQ 0 AT
d
S 0 0 0 0

∗ ∗ ∗ −d−1Q 0 0 0 0 0

∗ ∗ ∗ ∗ −d2S 0 0 0 0

∗ ∗ ∗ ∗ ∗ −S 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1ε1Q 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1η1Q 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

<0,

(3.5)

holds, then for Lyapunov functional candidate

V (x(t))=xT (t)Px(t)+
∫ t

t−d(t)
ẋT (s)e−α(t−s)Rẋ(s)ds+

∫0

−d

∫ t

t+θ
ẋT (r)e−α(t−r)Qẋ(r)dr dθ, (3.6)
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along the trajectory of system (3.1), there holds the following inequality:

V (x(t)) < e−α(t−t0)V (x(t0)), (3.7)

where Σ = (A +Ad)
TP + P(A +Ad) + (α + 1)P + R, Φ = −[τρ1(1 + ε1 + η1) + ρ2]

−1I.

Proof. Let V1(x(t)) = xT (t)Px(t), V 2(x(t)) =
∫ t

t−d(t) ẋ
T (s)e−α(t−s)Rẋ(s)ds, V3(x(t)) =

∫0
−d

∫ t

t+θ ẋ
T (r)e−α(t−r)Qẋ(r)dr dθ.

Notice that x(t) − x(t − d(t)) =
∫ t

t−d(t) ẋ(r)dr, (3.1) can be written as

ẋ(t) = (A +Ad)x(t) + f(x(t), t) −Ad

∫ t

t−d(t)
ẋ(r)dr. (3.8)

Along the trajectory of system (3.1), the time derivative of V1(x(t)) is given by

V̇1(x(t)) = 2xT (t)P
{

(A +Ad)x(t) + f(x(t), t)
}

−
∫ t

t−d(t)
2xT (t)PAdẋ(r)dr. (3.9)

Let a = Adẋ(r), b = Px(t), from Lemma 2.5, we can obtain

−2xT (t)PAdẋ(r) ≤ ẋT (r)AT
dXAdẋ(r) + 2ẋT (r)AT

dXMPx(t)

+ xT (t)P
(

MTX + I
)

X−1(XM + I)Px(t).
(3.10)

Substituting (3.10) into (3.9) leads to

V̇1(x(t)) ≤ xT (t)
{

(A +Ad)TP + P(A +Ad) + d(t)P
(

MTX + I
)

X−1(MX + I)P
}

x(t)

+ xT (t)Pf(x(t), t) + fT (x(t), t)Px(t) + 2xT (t)PMTXAd

∫ t

t−d(t)
ẋ(r)dr

+
∫ t

t−d(t)
ẋT (r)AT

dXAdẋ(r)dr

≤ xT (t)
{

(A +Ad)TP + P(A +Ad) + τP
(

MTX + I
)

X−1(XM + I)P
}

x(t)

+ 2xT (t)Pf(x(t), t) + 2xT (t)PMTXAd

∫ t

t−d(t)
ẋ(r)dr +

∫ t

t−d(t)
ẋT (r)AT

dXAdẋ(r)dr.

(3.11)
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Differentiating V2(x(t)) and V3(x(t)) along the trajectory of system (3.1), we have

V̇2(x(t)) ≤ −α
∫ t

t−d(t)
e−α(t−s)ẋT (s)Rẋ(s)ds + xT (t)Rx(t)

− (1 − τ)e−αdxT (t − d(t))Rx(t − d(t)),

V̇3(x(t)) = dẋT (t)Qẋ(t) −
∫ t

t−d
ẋT (r)e−α(t−r)Qẋ(r)dr − α

∫0

−d

∫ t

t+θ
ẋT (r)e−α(t−r)Qẋ(r)dr dθ

≤ dẋT (t)Qẋ(t) − e−αd
∫ t

t−d(t)
ẋT (r)Qẋ(r)dr − α

∫0

−d

∫ t

t+θ
ẋT (r)e−α(t−r)Qẋ(r)dr dθ

= dxT (t)ATQAx(t) + 2dxT (t − d(t))AT
dQAx(t) + dx

T (t − d(t))AT
dQAdx(t − d(t))

− e−αd
∫ t

t−d(t)
ẋT (r)Qẋ(r)dr − α

∫0

−d

∫ t

t+θ
ẋT (r)e−α(t−r)Qẋ(r)dr dθ

+ d
[

2xT (t)ATQf(x(t), t) + 2xT (t − d(t))AT
dQf(x(t), t) + f

T (x(t), t)Qf(x(t), t)
]

.

(3.12)

By Lemma 2.6, we have

2xT (t)Pf(x(t)) ≤ xT (t)Px(t) + fT (x(t))Pf(x(t)),

2xT (t)ATQf(x(t), t) ≤ ε−1
1 xT (t)ATQAx(t) + ε1f

T (x(t), t)Qf(x(t), t),

2xT (t − d(t))AT
dQf(x(t), t) ≤ η

−1
1 xT (t − d(t))AT

dQAdx(t − d(t)) + η1f
T (x(t), t)Qf(x(t), t).

(3.13)

Therefore

V̇ (x(t)) + αV (x(t))

= V̇1(x(t)) + V̇2(x(t)) + αV (x(t))

≤ xT (t)
{

(A +Ad)TP + P(A +Ad) + dP
(

MTX + I
)

X−1(XM + I)P

+(α + 1)P + d
(

1 + ε−1
1

)

ATQA
}

x(t)

+ 2dxT (t − d(t))AT
dQAx(t) + d

(

1 + η−1
1

)

xT (t − d(t))AT
dQAdx(t − d(t))

+ 2xT (t)PMTXAd

∫ t

t−d(t)
ẋ(r)dr

+
∫ t

t−d(t)
ẋT (r)

(

AT
dXAd − e−αdQ

)

ẋ(r)dr + d
(

1 + ε1 + η1
)

fT (x(t), t)

×Qf(x(t), t) + fT(x(t))Pf(x(t))
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≤ xT (t)
{

(A +Ad)TP + P(A +Ad) + dP
(

MTX + I
)

X−1(XM + I)P

+(α + 1)P + d
(

1 + ε−1
1

)

ATQA + d
(

1 + ε1 + η1
)

U
T
QU +U

T
PU

}

x(t)

+ 2dxT (t − d(t))AT
dQAx(t) + d

(

1 + η−1
1

)

xT (t − d(t))AT
dQAdx(t − d(t))

+ 2xT (t)PMTXAd

∫ t

t−d(t)
ẋ(r)dr +

∫ t

t−d(t)
ẋT (r)

(

AT
dXAd − e−αdQ

)

ẋ(r)dr.

(3.14)

Notice that 2xT (t − d(t))G[x(t) − x(t − d(t)) −
∫ t

t−d(t) ẋ(r)dr] = 0, where G is any matrix with
appropriate dimension, we have

V̇ (x(t)) + αV (x(t)) ≤ 1
d(t)

∫ t

t−d(t)
ξT (t, r)Zξ(t, r)dr, (3.15)

where ξT (t, r) = [ xT (t) xT (t−d) ẋT (r) ],

Z =

⎡

⎢

⎢

⎢

⎣

Ψ −U
T
Φ−1

1 U τATQAd +GT d(t)WTAd

τAT
dQA +G τAT

dQAd − (1 − τ)e−αdR −G −GT −d(t)G

d(t)AT
d
W −d(t)GT d(t)

(

τ−1AT
d
SAd − e−ατQ

)

⎤

⎥

⎥

⎥

⎦

, (3.16)

where Ψ = (A +Ad)
TP+P(A+Ad)+dP(MTX+I)X−1(XM+I)P+(α+1)P+R+d(1+ε−1

1 )ATQA.
Let W = XMP,S = τX, by Schur complement lemma, (3.5) is equivalent to the

following inequality:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ψ dATQAd +GT WTAd U
T

dAT
d
QA +G dAT

d
QAd − (1 − τ)e−αd −G −GT −G 0

AT
dW −GT d−2AT

dSAd − d−1e−ατQ 0

U 0 0 Φ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0. (3.17)

Using diag{I, I, d(t)I, I} to pre- and post- multiply the left term of (3.17), respectively, we can
obtain Z < 0. Therefore, V̇ (x(t)) + αV (x(t)) < 0.

The proof is completed.
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Lemma 3.2. Consider system (3.1)-(3.2), for given positive constant β, ρ1, ρ2, ε1, η1, if there exist
positive definite symmetric matrices P, S,Q, and any matrices G,W with appropriate dimensions,
such that

Q ≤ ρ1I, P ≤ ρ2I, (3.18)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Σ GT WTAd ATQ 0 d
(

WT + P
)

ATQ 0 U
T

∗ −G −GT −G AT
dQ 0 0 0 AT

dQ 0

∗ ∗ −d−1e−αdQ 0 AT
d
S 0 0 0 0

∗ ∗ ∗ −d−1Q 0 0 0 0 0

∗ ∗ ∗ ∗ −d2S 0 0 0 0

∗ ∗ ∗ ∗ ∗ −S 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1ε1Q 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1η1Q 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (3.19)

holds, then for Lyapunov functional candidate

V (x(t)) = xT (t)Px(t) +
∫0

−d

∫ t

t+θ
ẋT (r)e−α(t−r)Qẋ(r)dr dθ, (3.20)

along the trajectory of system (3.1), there holds the following inequality

V (x(t)) < eβ(t−t0)V (x(t0)), (3.21)

where Σ = (A +Ad)
TP + P(A +Ad) − (β − 1)P .

Proof. Similarly to the proof line of Lemma 3.1, we can obtain Lemma 3.2.

3.2. Stabilizing Controller Design

In this subsection, we will design a stabilizing controller for system (2.12) with delayed
switching.

In our design approach we only require the subsystems to be stable during matched
period, and the subsystems are allowed to be unstable during mismatched period. Under
delayed switching controller u(t) = Kσ ′(t)x(t), the corresponding closed-loop system is given
by

ẋ(t) =
(

Aσ(t) + Bσ(t)Kσ ′(t)
)

x(t) +Adσ(t)x
(

t − dσ(t)(t)
)

+ fσ(t)(x(t), t), (3.22)

x(t) = ϕ(t), t ∈ [t0 − d, t0]. (3.23)
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Let T+(t0, t) denote the total mismatched period during [t0, t), T−(t0, t) denote the total
matched period during [t0, t), then we have the following result.

Theorem 3.3. Consider system (2.12), for given positive constants α, β, ε1, η1, ε2, η2, ρ1, ρ2, ρ3, ρ4,
if there exist positive definite symmetric matrices Xi,Zi, Si, Pij , Qij , Sij , and any matrices Yi, Gij ,Wij

with appropriate dimensions, such that, for i, j ∈N, i /= j,

Zi ≥ ρ−1
1 I, Xi ≥ ρ−1

2 I, Qij ≤ ρ3I, Pij ≤ ρ4I, (3.24)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Πi Xi AdiZi Ξi 0 2dSi Ξi 0 XiU
T
i

∗ −2Zi −Zi ZiA
T
di

0 0 0 ZiA
T
di

0

∗ ∗ −d−1e−αdZi 0 ZiA
T
di

0 0 0 0

∗ ∗ ∗ −d−1Zi 0 0 0 0 0

∗ ∗ ∗ ∗ −d2Si 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Si 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1ε1Zi 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1η1Zi 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (3.25)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Λij GT
ij WT

ijAdj Ξij 0 d
(

WT
ij +Pij

)

Ξij 0 UT
j

Gij −Gij−GT
ij −Gij AT

dj
Qij 0 0 0 AT

djQij 0

AT
djWij −GT

ij −d−1Qij 0 AT
dj
Sij 0 0 0 0

ΞTij QijAdj 0 −d−1Qij 0 0 0 0 0

0 0 SijAdj 0 −d2Sij 0 0 0 0

τ
(

Wij+Pij
)

0 0 0 0 −Sij 0 0 0

ΞTij 0 0 0 0 0 −d−1ε2Qij 0 0

0 QijAdj 0 0 0 0 0 −d−1η2Qij 0

Uj 0 0 0 0 0 0 0 Φ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

<0

(3.26)

holds, then under the switching controller u(t) = Kσ ′(t)x(t), Ki = YiX
−1
i , and the following average

dwell-time scheme:

inf
t>t0

T−(t0, t)
T+(t0, t)

≥
β + λ∗

α − λ∗ , τa > τ
∗
a =

ln
(

μ1μ2
)

λ∗
, (3.27)

the corresponding closed-loop system is exponentially stable, where 0 < λ∗ < α, μ1, μ2 ≥ 1 satisfying
X−1
i < μ1Pij , Pij < μ2X

−1
i , Z

−1
i < μ1Qij , Qij < μ2Z

−1
i , Φ1 = −[dρ1(1 + ε1 + η1) + ρ2]

−1I, Ξi =
XiA

T
i + YT

i B
T
i , Πi = (Ai + Adi)Xi + Xi(Ai +Adi)

T + (α + 1)Xi + BiYi + YT
i B

T
i + Ri, Φ2 =

−[dρ3(1 + ε2 + η2) + ρ4]
−1I, Ξij = (Aj + BjYiX−1

i )
T
Qij , Λij = (Aj +Adj)

TPij + Pij(Aj + Adj) −
(β − 1)Pij + PijBjYiX−1

i +X−1
i Y

T
i B

T
j Pij .
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Proof. Suppose that the ith subsystem is activated at the switching instant tk−1, the jth
subsystem is activated at the switching instant tk, then the corresponding switchings of the
controller occur at the switching instant tk−1 + Δk−1 and tk + Δk, respectively.

When t ∈ [tk−1 + Δk−1, tk), system (3.22) can be written as

ẋ(t) = AKix(t) +Adix(t − di(t)) + fi(x(t), t), (3.28)

where AKi = Ai + BiKi.
Consider Lyapunov functional candidate as follows:

Vi(x(t)) = xT (t)Pix(t) +
∫ t

t−d(t)
ẋT (s)e−α(t−s)Riẋ(s)ds +

∫0

−d

∫ t

t+θ
ẋT (r)e−α(t−r)Qiẋ(r)dr dθ.

(3.29)

For given positive constants α, ρ1, ρ2, ε1, η1, if there exist positive definite symmetric
matrices Pi, ˜Si,Qi, ˜Ri, and any matrices Gi,Wi with appropriate dimensions such that the
follows matrix inequalities (3.30)-(3.31) hold, then from Lemma 3.1 we have V̇i(x(t)) +
αVi(x(t)) < 0:

Qi ≤ ρ1I, Pi ≤ ρ2I, (3.30)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Θi GT
i WT

i Adi AT
KiQi 0 d

(

WT
i +Pi

)

AT
KiQi 0 UT

i

∗ −(1−τ)e−αd ˜Ri−Gi−GT
i −Gi AT

diQi 0 0 0 AT
diQi 0

∗ ∗ −d−1e−αdQi 0 AT
di
˜Si 0 0 0 0

∗ ∗ ∗ −d−1Qi 0 0 0 0 0

∗ ∗ ∗ ∗ −d2
˜Si 0 0 0 0

∗ ∗ ∗ ∗ ∗ − ˜Si 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1ε1Qi 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1η1Qi 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,
(3.31)

where

Θi = (AKi +Adi)TPi + Pi(AKi +Adi) + (α + 1)Pi + ˜Ri

Φ1 = −
[

dρ1
(

1 + ε1 + η1
)

+ ρ2
]−1

I.
(3.32)

Using diag{P−1
i , Q−1

i , Q
−1
i , Q

−1
i , S

−1
i , S

−1
i , Q

−1
i , Q

−1
i , I} to pre- and postmultiply the left term of

(3.31), and denoting P−1
i = Xi, KiP

−1
i = Yi, Q

−1
i = Zi, ˜S−1

i = Si, Wi = Pi, Gi = Qi, ˜Ri = 0, we
have that (3.31) is equivalent to (3.25).
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Therefore, we have

Vi(x(t)) < e−α(t−t
i
0)Vi

(

x
(

ti0

))

, (3.33)

where ti0 represents the initial value of the ith subsystem.
When t ∈ [tk, tk + Δk), system (3.22) can be written as

ẋ(t) = AKijx(t) +Adjx
(

t − dj(t)
)

+ fj(x(t), t), (3.34)

where AKij = Aj + BjKi.
Consider Lyapunov functional candidate for system (3.34) as follows:

Vij(x(t)) = xT (t)Pijx(t) +
∫0

−τ

∫ t

t+θ
ẋT (r)eβ(t−r)Qij ẋ(r)dr dθ. (3.35)

For given positive constants β, ρ3, ρ4, ε2, η2, if there exist positive definite symmetric matrices
Pij , Sij , Qij , and any matrices Gij ,Wij with appropriate dimensions such that the follows
matrix inequalities (3.36)-(3.37) hold, then from Lemma 3.2 we have V̇ij(x(t))−βVij(x(t)) < 0:

Qij ≤ ρ3I, Pij ≤ ρ4I, (3.36)
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Θij GT
ij WT

ijAdj A
T
KijQij 0 τ

(

WT
ij +Pij

)

AT
KijQij 0 UT

j

Gij −Gij−GT
ij −Gij AT

dj
Qij 0 0 0 AT

dj
Qij 0

AT
dj
Wij −GT

i −τ−1Qij 0 AT
dj
Sij 0 0 0 0

QijAKij QijAdj 0 −τ−1Qij 0 0 0 0 0

0 0 SijAdj 0 −τ2Sij 0 0 0 0

τ
(

Wij+Pij
)

0 0 0 0 −Sij 0 0 0

QijAKij 0 0 0 0 0 −τ−1ε2Qij 0 0

0 QijAdj 0 0 0 0 0 −τ−1η2Qij 0

Uj 0 0 0 0 0 0 0 Φ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

(3.37)

where Θij = (AKij +Adj)
TPij + Pij(AKij +Adj) − (β − 1)Pij ,Φ2 = −[dρ3(1 + ε2 + η2) + ρ4]

−1I.
Denoting Ki = YiX−1

i , we know that (3.37) is equivalent to (3.26). Thus, we have

Vij(x(t)) < eβ(t−t
ij

0 )Vij
(

x
(

t
ij

0

))

, (3.38)

where tij0 represents the initial value of the jth subsystem.
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Let t0, t1, . . . , tk denote the switching instants in [t0, t), from (3.33) and (3.38), for t ≥
tk + Δk, we have

V (t) < e−α(t−tk−Δk)V (tk + Δk)

<
(

μ1μ2
)k
e−α[(t−tk−Δk)+(tk−tk−1−Δk−1)+···+(t2−t1−Δ1)+(t1−t0−Δ0)]+β(Δk+Δk−1+···+Δ1+Δ0)V (t0)

=
(

μ1μ2
)k
e−αT

−(t0,t)+βT+(t0,t)V (t0).

(3.39)

By Definition 2.4, we have

k ≤N0 +
t − t0
τa

. (3.40)

From (3.27), it follows that

−T−(t0, t)λ− + T+(t0, t)λ+ ≤ −λ∗(t − t0). (3.41)

Substituting (3.40) and (3.41) into (3.39), we have

V (t) <
(

μ1μ2
)N0+(t−t0)/τae−λ

∗(t−t0)V (t0)

=
(

μ1μ2
)N0e[ln(μ1μ2)/τa−λ∗](t−t0)V (t0).

(3.42)

Thus

‖x(t)‖ <

√

b

a
·
(

μ1μ2
)N0/2

e[ln(μ1μ2)/τa−λ∗](t−t0)/2‖x(t0)‖h, (3.43)

where a = mini,j∈N,i /= j{λmin(X−1
i ), λmin(Pij)}, b = maxi,j∈N,i /= j{λmax(X−1

i ) + (τ2/2)λmax(Z−1
i ),

λmax(Pij) + (τ2/2)λmax(Qij)}.
The proof is completed.

Remark 3.4. When μ1 = μ2 = 1, we have τ∗a = 0, which implies that switching signals can be arbitrary.

3.3. Robust Reliable Controller Design

Now, we are in a position to present sufficient conditions for the existence of robust reliable
controller for system (2.1) with delayed switching.
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Theorem 3.5. Consider system (2.1), for given positive constants α, β, ε1, η1, ρ1, δ1, ε2, η2, ρ2, δ2,
ρ3, δ3, ρ4, δ4, if there exist positive definite symmetric matrices Xi, Zi, Ri, Pij , Qij , Sij , and any
matrices Yi, Gij , Wij with appropriate dimensions, such that, for i, j ∈N,i /= j,

Zi ≥ ρ−1
1 I, Xi ≥ ρ−1

2 I, Qij ≤ ρ3I, Pij ≤ ρ4I (3.44)
⎡

⎢

⎢

⎣

Ωi ϑi Φi

∗ Ψi 0

∗ ∗ Γi

⎤

⎥

⎥

⎦

< 0, (3.45)

⎡

⎢

⎢

⎣

Ωij ϑij Φij

∗ Ψij Δij

∗ ∗ Γij

⎤

⎥

⎥

⎦

< 0 (3.46)

hold, then under the reliable switching controller u(t) = Kσ′(t)x(t), Ki = YiX
−1
i , and the following

average dwell-time scheme:

inf
t>t0

T−(t0, t)
T+(t0, t)

≥
β + λ∗

α − λ∗ , τa > τ
∗
a =

ln
(

μ1μ2
)

λ∗
, (3.47)

the corresponding closed-loop system is exponentially stable,where 0 < λ∗ < α,μ1, μ2 ≥ 1 satisfying
X−1
i < μ1Pij , Pij < μ2X

−1
i , Z−1

i < μ1Qij ,

Qij < μ2Z
−1
i , Ωi =

⎡

⎢

⎢

⎣

Ωi11 Xi AdiZi

∗ −2Zi −Zi

∗ ∗ −d−1e−αdZi

⎤

⎥

⎥

⎦

,

Ωi11 = (Ai +Adi)Xi +Xi(Ai +Adi)T + (α + 1)Xi + BiYi + YT
i B

T
i + δ1HiH

T
i + δ2BiJiB

T
i ,

ϑi =

⎡

⎢

⎢

⎢

⎣

XiA
T
i + Y

T
i B

T
i 0 2dRi XiA

T
i + Y

T
i B

T
i 0 XiU

T
i

ZiA
T
di

0 0 0 ZiA
T
di

0

0 ZiA
T
di 0 0 0 0

⎤

⎥

⎥

⎥

⎦

,

Φi =

⎡

⎢

⎢

⎢

⎣

Xi(E1i + E2i)T 0 XiE
T
1i + Y

T
i E

T
2i XiE

T
1i + Y

T
i E

T
2i 0 YT

i Mi0J
1/2
i

0 ZiET2i ZiE
T
2i 0 0 0

ZiE
T
2i 0 0 0 ZiE

T
2i 0

⎤

⎥

⎥

⎥

⎦

,
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Ψi = diag
{

−d−1Zi + δ1HiH
T
i + δ2BiJiB

T
i ,−d

2Ri + δ1HiH
T
i ,−Ri,

−d−1ε1Zi + δ1HiH
T
i + δ2BiJiB

T
i ,−d

−1η1Zi + δ1HiH
T
i ,−

[

dρ1
(

1 + ε1 + η1
)

+ ρ2
]−1

I
}

,

Γi = diag{−δ1I,−δ1I,−δ1I,−δ1I,−δ1I,−δ2I},

Ωij =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ωij1 GT
ij WT

ijAdj

∗ −Gij −GT
ij + 2δ2E

T
2jE2j −Gij

∗ ∗ −τ−1Qij + δ3E
T
2jE2j

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

Ωij1 =
(

Aj +Adj

)T
Pij + Pij

(

Aj +Adj

)

−
(

β − 1
)

Pij + PijBjYiX−1
i +X−1

i Y
T
i B

T
j Pij

+ 3δ3E
T
1jE1j + δ4PijBjJiB

T
j Pij ,

ϑij =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

Aj + BjYiX−1
i

)T
Qij 0 τ

(

WT
ij + Pij

)

(

Aj + BjYiX−1
i

)T
Qij 0 UT

j

AT
djQij 0 0 0 AT

djQij 0

0 AT
djSij 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

Φij =

⎡

⎢

⎢

⎢

⎢

⎣

PijHj 0 0 0 WT
ijHj

0 0 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, Δij =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 QijHj 0 0

0 0 0 0 SijHj

0 0 0 0 0

0 0 0 QijHj 0

0 QijHj 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Ψij = diag
{

−d−1Qij + δ4QijBjJiB
T
j Pij ,−d

2Sij ,−Sij ,−d−1ε2Qij + δ4QijBjJiB
T
j Qij ,−d−1η2Qij ,

−
[

dρ3
(

1 + ε2 + η2
)

+ ρ4
]−1

I
}

,

Γij = diag{−δ3I,−δ3I,−δ3I,−δ3I,−δ3I,−δ4I}.
(3.48)
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Proof. Consider the following inequalities (3.49) and (3.50):

Ti =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂Πi Xi
̂AdiZi

̂Ξi 0 2dRi
̂Ξi 0 XiU

T
i

∗ −2Zi −Zi Zi
̂AT
di

0 0 0 Zi
̂AT
di

0

∗ ∗ −d−1e−αdZi 0 Zi
̂AT
di

0 0 0 0

∗ ∗ ∗ −d−1Zi 0 0 0 0 0

∗ ∗ ∗ ∗ −d2Ri 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Ri 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1ε1Zi 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1η1Zi 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0,

(3.49)

Tij =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂Λij GT
ij WT

ij
̂Adj

̂Ξij 0 d
(

WT
ij + Pij

)

̂Ξij 0 UT
j

∗ −Gij −GT
ij −Gij

̂AT
dj
Qij 0 0 0 ̂AT

dj
Qij 0

∗ ∗ −d−1Qij 0 ̂AT
dj
Sij 0 0 0 0

∗ ∗ ∗ −d−1Qij 0 0 0 0 0

∗ ∗ ∗ ∗ −d2Sij 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Sij 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1ε2Qij 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1η2Qij 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

<0,

(3.50)

where Φ1 = −[dρ1(1 + ε1 + η1)]
−1I, ̂Ξi = Xi

̂AT
i + Y

T
i MiB

T
i , ̂Πi = ( ̂Ai + ̂Adi)Xi +Xi( ̂Ai + ̂Adi)

T
+

(α + 1)Xi + BiMiYi + YT
i MiB

T
i , Φ2 = −[dρ2(1 + ε2 + η2)]

−1I, ̂Ξij = ( ̂Aj + BjMiYiX
−1
i )

T
Qij , ̂Λij =

( ̂Aj + ̂Adj)
T
Pij + Pij( ̂Aj + ̂Adj) − (β − 1)Pij + PijBjMiYiX

−1
i +X−1

i Y
T
i MiB

T
j Pij .

Substituting (2.3) and (2.10) into (3.49), we can obtain

Ti = T1i + T2i, (3.51)
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where

T1i =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Πi Xi AdiZi Ξi 0 2dRi Ξi 0 XiU
T
i

∗ −2Zi −Zi ZiA
T
di 0 0 0 ZiA

T
di 0

∗ ∗ −d−1e−αdZi 0 ZiA
T
di 0 0 0 0

∗ ∗ ∗ −d−1Zi 0 0 0 0 0

∗ ∗ ∗ ∗ −d2Ri 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Ri 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −d−1ε1Zi 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −d−1η1Zi 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.52)

T2i =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Υi 0 κi φ
T
i 0 0 φTi 0 0

∗ 0 0 κTi 0 0 0 κTi 0

∗ ∗ 0 0 κTi 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3.53)

where Πi = (Ai+Adi)Xi+Xi(Ai +Adi)
T+(α+1)Xi+BiMi0Yi+YT

i Mi0B
T
i , Υi = HiFi(E1i+E2i)Xi+

Xi(E1i + E2i)
TFTi H

T
i + BiMi0LiYi + YT

i LiMi0B
T
i , κi = HiFiE2iZi, φi = HiFiE1iXi + BiMi0LiYi.

By Lemma 2.7, Lemma 2.8, and Schur complement lemma, we know that (3.49) is
equivalent to (3.45). Similarly, substituting (2.3) into (3.50), we can obtain that (3.50) is
equivalent to (3.46).

From Theorem 3.3, we know that Theorem 3.5 holds.
The proof is completed.

Remark 3.6. In actual operation, the condition (3.27) or (3.47) is difficult to check. Let Δmax

be a known positive scalar that represents the maximum delayed period, a simple condition
of the average dwell time is proposed, that is to say, (3.27) or (3.47) can be reduced to the
following condition:

τa > τ
∗
a = max

{

ln
(

μ1μ2
)

λ∗
,

(

β + λ∗

α − λ∗ + 1
)

Δmax

}

, 0 < λ∗ < α. (3.54)
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Proof of (3.54): According to (3.27), we have

T−(t0, t)
T+(t0, t)

≥
β + λ∗

α − λ∗ =⇒
(t − t0) − T+(t0, t)

T+(t0, t)
≥
β + λ∗

α − λ∗

=⇒ t − t0 ≥
β + λ∗

α − λ∗ T
+(t0, t) + T+(t0, t)

=⇒ t − t0 ≥
(

β + λ∗

α − λ∗ + 1
)

T+(t0, t).

(3.55)

On the other hand

(

β + λ∗

α − λ∗ + 1
)

T+(t0, t) ≤
(

β + λ∗

α − λ∗ + 1
)

Nσ(t)(t0, t)Δmax

≤
(

β + λ∗

α − λ∗ + 1
)

t − t0
τ∗a

Δmax.

(3.56)

Obviously, if the following inequality (3.57) is satisfied, then we have that (3.55) holds

t − t0 ≥
(

β + λ∗

α − λ∗ + 1
)

t − t0
τ∗a

Δmax. (3.57)

From (3.57), we have τ∗a ≥ ((β + λ∗)/(α − λ∗) + 1)Δmax.
The proof is completed.

4. Conclusion

In this paper, we have investigated the robust reliable stabilization problem for switched
nonlinear systems with time-varying delays and delayed switching. The average dwell-time
approach is utilized for stability analysis and controller design. Our future work will focus on
extending the proposed design method to H∞ performance analysis for switched nonlinear
time-varying systems with delayed switching.
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