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Although there have been a variety of studies about vehicular maneuvers on land or sea,
maneuvers within a small area that require direction changes have rarely been discussed. The
arrival or departure of ships to or from ports requires safe and effective turning maneuvers within
a narrow area. In this study, we decompose the maneuver procedure into several operations, then
establish an operational model, simplifying the behaviors of rudders and thrusters that operate the
turning maneuver, ignoring the environmental factors. This proposed model is a unified model
that can be applied to all types of ships, regardless of individual characteristics. Each operation is
defined as an isolated procedure that has its own effect on the maneuver behavior and the whole
maneuver procedure can be treated as a combination of these operations. A case study using this
model to construct the optimal turning maneuver within a limited sea area is also provided.

1. Introduction

Unlike land-based transportation, there are various environmental factors and vessel
characteristics that should be considered in the maneuver of ships offshore. It is difficult
to establish a unified numerical model for ship maneuvers because the affecting factors
described above are normally nonlinear [1, 2].

There are various designs for ships depending on their uses, meaning differences in
length, weight, properties, and power of rudders and thrusters, all of which would affect the
characteristics of the maneuvers a lot. Given these conditions, even if a numerical model
is established, it would be difficult to apply to all kinds of ships. Some previous studies
have discussed issues about ship positioning [3, 4], but it was necessary to define the basic
conditions of an objective ship type. Most models could not be applied to all types of ships.



2 Mathematical Problems in Engineering

Direction B
Direction A

6o

Figure 1: Ship turning maneuver.

In our study, we first observe the maneuver behavior of the Japanese training ship
“Fukaemaru”, a vessel belonging to the Faculty of Maritime Science, Kobe University,
analyzing its behaviors during departure or approach within a limited sea area. Considering
the existence of obstacles within such limited space, the turning maneuver normally has to
be separated into two stages, moving forward and backward. There are certain conditions
related to the available operational distances surrounding the ship that have to be considered
in each stage.

The specific ship characteristics are not discussed here. The maneuver behavior is
decomposed into several fundamental operations. The objective of the turning maneuver is
achieved by their combination. We also discuss possible situations for the available maneuver
operations surrounding the vessel. The objective is to establish a unified operational model as
a foundation for research, which is not affected by individual ship characteristics. The actual
implementation of this model could be established after experimental data is obtained for
each operation for different types of ships.

2. Basic Control Method

By observing the behaviors of the “Fukaemaru” which has one propeller and bow and
stern thrusters, we can find out some common maneuver characteristics. While turning,
the forward maneuver is controlled by the rudder and the backward maneuver is mostly
controlled by the thrusters.

The ship in Figure 1 moves backward dead slow. In the initial position Ty, it is facing
direction A, but needs to turn to direction B on an azimuth 6y located near point O. In order
to change the direction within a limited area, one feasible method is to stop the ship at point
T, then only use the thrusters to operate the turning maneuver. On the other hand, if there
is a wide sea area available, another maneuver, using the rudder to move ahead, could be
carried out. There is also a general maneuver method in which backward thruster control
and forward rudder control are used. We place appropriate upper limits on sailing speed and
turning speed and specific turning angles needed to achieve the change in direction within
the shortest period of time by passing the middle position 7.

The ship should move backward at a fixed speed from its initial position Ty and start
to rotate at position T;. In order to achieve the turning angle 8 at the objective position T3
with direction OB, the ship should turn at position T, with an appropriate azimuth 6; and
move forward with a reverse turning direction. If we define F; and F, as astern and ahead
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Figure 2: Control principle for turning maneuvers.

propulsive force, respectively, then the general control principle for turning maneuvers can
be illustrated as in Figure 2. The backward maneuver is controlled only by thrusters and the
forward maneuver is controlled only by the rudder.

Normally the forward maneuver is much easier to do than the backward for turning
because of the difference in the location of pivoting point. Take “Fukaemaru” as an example.
The positions of pivoting points are one-third ship length away from its bow and stern,
respectively. Thus the turning moment of the forward maneuver is much bigger than that of
the backward maneuver because the arm of torque is longer. The backward turning motion
is mostly depending on the thrusters rather than the rudder; the rudder does not work
during a low-speed backward maneuver. Compared with the rudder, the turning power
of the thrusters is relatively small. Because of the above reasons, if we want to achieve the
shortest time objective for the optimal turning maneuver, we should utilize the forward
turning motion as much as possible, leaving the remaining part to be taken care of by the
backward turning motion.

3. Operational Model

The control method is shown in Figure 2. Detailed forces and environmental factors are
ignored in order to simplify the control motion equation used to analyze the basic control
characteristics in comparison with the actual maneuver.

The objective of our study is to establish an effective maneuver procedure model
for a large angle turning maneuver within a limited sea area. We also discuss the shortest
operational time issue.

Unlike the turning maneuvers made by automobiles on land, there is some time lag
between the actual initial activation of the rudders and thrusters and the start of the turning
motion. This means that a relatively large turning diameter (typically at least two times
the length of the ship for both forward and backward maneuvers) is needed. The turning
maneuver is not such a serious issue when the ship is sailing on the open sea without
any obstacles nearby, but it is important when the surrounding terrain factors have to be
considered. This kind of situation often happens in limited areas such as when departing
from or arriving at the port.

In order to discuss the behaviors within a limited sea area, we first define D i, and
Dp-min as the minimum necessary turning diameters for a single forward and backward turn,
respectively.
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Figure 3: Minimum turning diameters.

Figure 3 illustrates the minimum turning diameters at forward and backward
directions. The red cross symbols show that there could be conflicts if there are no enough
space for turning maneuver operation. If obstacles exist and the distances of side clearance
are less than the minimum single turning diameters, then the turning maneuver has to be
separated into at least two stages.

Here, we focus on a considerable angle turning maneuver. The desired turning angle
6p might be defined as between 90 and 270 degrees. It is assumed that obstacles exist so other
options except direct forward or backward turns have to be considered.

In order to establish a unified operational model, we separate the turning maneuver
into several fundamental operations and describe their behavior. The proposed operations
are listed below.

(i) Forward turning [F]: move forward with a fixed speed and a turning motion.

)
(ii) Backward turning [B]: move backward with a fixed speed and a turning motion.
(iii) Rotation turning [R]: rotate at an almost fixed location.

)

(iv) Halting operation [H]: slow down the speed almost to zero but still keep the
turning motion.

(v) Accelerating operation [A]: speed up from the stopping state and also keep the
turning motion.

In order to simplify the description, we use symbols [F], [B], [R], [H], and [A] to
represent the operations below. We also use O; to represent each operation where i denotes
the order of appearance starting from 1.

Now we can use the operation definitions to express the normal maneuver behaviors.
Control sequence (C.S.) (3.1) defines the sequence of the fundamental control operations:

CS. =[01][02] -+ [On]. (3.1)

An example of a generic backward departure from the pier appears in the format
below: C.S. = [B], [H], [R], [A], [F]. In this example, O;, O, O3, O4, and Os denote [B],
[H], [R], [A], and [F], respectively.
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Every operation would generate a corresponding turning angle after being adopted.
We define the resultant turning angle caused by operation O; as 6(0;).

If the ship has to switch back, the maneuver can be divided into two stages, and a
specific operation O,, is used to denote the relay operation between them. In formula (3.1),
[H] is the relay operation O, and m = 2. The first stage is composed of O; to O,,, the second
stage is composed of operation Oy, to O,,.

Along with the sailing trajectory of each operation, we have to make sure that there
is space enough to avoid obstacles. We define X(O;) as the occupied space, including an
appropriate margin for each operation, S as the available sea area.

After all definitions are given, we use the total desired turning angle 6y and occupied
space for each operation as the boundary conditions to evaluate the turning maneuver
behaviors.

(i) For the turning angle restriction, (3.2) is given below:

i 0(0;) = 6. (3.2)
i=1

(ii) For the occupied space restriction, (3.3) is given below:

0 X(0;) C 8. (3.3)

i=1

After the boundary conditions with multiobstacles exist are given, we can search
the control sequences for the shortest turning time from the operation sets that satisfy the
restrictions.

4. Case Study

The options for turning within some areas with geographical restrictions are limited.
Selection of the most effective maneuver operations is important.

We would like to look at a switchback maneuver as the ship departs from the pier as
an example.

The initial conditions are set up as follows.

(a) The ship is initially stopped with the pier in the right side.
(b) The ship faces north.

(c) There is only one single obstacle to the east obviously, but there could also be more
within this area as uncertain conditions.

(d) The turning motion must be made counterclockwise.

In order to simplify the boundary conditions for explaining our operational model, we
assume that there is an obvious obstacle only in horizontal direction but not vertical direction
in our test case. The horizontal available sailing distances (distances of side clearance) should
be the controlling factor.
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Figure 4: Backward turning maneuver.

If a ship needs to switchback in short time or there is no enough space for straight
turning maneuver, the available maneuver operations could be illustrated as in Figure 4. The
maneuver operations are separated into two stages as backward and forward stage. The back-
ward stage denotes the ship moving process from point A to point B, and the forward stage
denotes the ship moving process from point B to point C. The distances for side clearance
restrictions are defined as Dy and Dg, for the left and right sides according to the ship’s initial
position A. Subsequently, D} and D} are defined according to the ship’s final position, C
because its position and distances from surrounding obstacles have already changed.

Then we define L(O;) and R(O;) to represent the resultant horizontal moving distances
affected by each operation for the left and right side, respectively, in the simplified occupied
space conditions X (O;).

(i) The distances of side clearance restrictions, based on the ship’s initial position and
direction are calculated with (4.1) given below:

i L(0Oi) < D,
ol (4.1)
> R(O;) < Dr.

i=1

(ii) The distances of side clearance restrictions based on the ship’s target course and
direction, are calculated with (4.2) given below:

> L) <Dy,
i=m+1 (42)

n

> R(O;) < D

i=m+1
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After all definitions are given, the possible courses and sequences of control operations
can be listed to express the relationship between Dy, Dg, D}, Dy, D f.min, and Dy min.
(i) Restriction (1): Dp > Df.min
Case (1):
Operation: [A] [F]
(ii) Restriction (2): Dg > Dp-min
Case (2.1):
Operation: [B]
Case (2.2):
Operation: [B] [H] [A] [F]
(iii) Restriction (3): 0 < D < Dp-min
Case (3.1):
Operation: [B] [F]
Available distances:

L(Ol) < DR,
L(Oy) + L(O,) < D, (4.3)
R(O4) + R(O,) < Dy.
Case (3.2):

Operation: [B] [H] [A] [F]
Available distances:

L(Oy) + L(O2) < Dg,
L(O3) + L(Oy) < Dy, (4.4)
R(O3) + R(O4) < D;?

Case (3.3):

Operation: [B] [H] [R] [A] [F]
Available distances:

L(O4) + L(O2) < Dg,
L(Oy4) + L(O5) < Dy, (4.5)
R(O4) + R(Os) < Dy.

Case (3.4):

Operation: [R] [A] [F]
Available distances:

L(Ol) < Dg,
L(Oy) + L(O3) < D, (4.6)
R(O2) + R(O3) < D,
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Figure 5: Possible maneuver cases.

We summarize the above cases and illustrate the possible courses in Figure 5. The
obstacles in Figure 5 coule be plural. The pier is definitely one of the obstacles, but there
could be more obstacles everywhere which would restrict available distances at particular
direction. Obstacles are assumed to be standing still and in scattered places for representing
geography conditions. The cases represent the feasible maneuver pattems under possible
restricted situations. Cases (1) and (2.1) are available when no effect obstacles. The others
cases are the results where the existence of obstacles is considered.

The focus of this paper is maneuvering within a limited sea area, so we would like to
apply our operational model for the situations under restriction (3).

Case (3.1) is the simplest case and also the most common maneuver. It is very easy
to apply because there are only two operations to take, but it may not be the most efficient
course. With our model, the result is easy to get because if either one of these two operations
is decided, the other one can be calculated automatically. Basically, cases (3.2), (3.3), and (3.4)
are subdivisions of case (3.1).
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Figure 6: Diagram of backward maneuver.

In cases (3.2), (3.3) and (3.4), although there are multiple operations, but compared
with [B], [F], and [R], operations [H] and [A] have relatively smaller effectsto turning angle
change. So we can focus on the proportions between [B] and [F] in case (3.2), [B] and [R] in
case (3.3), and [R] and [F] in case (3.4) to generate the approximate solutions. Each operation
has different motion characteristics and their work time should be decided based on the
available geographical conditions.

Figures 6 and 7 show details of the forward and backward maneuvers, respectively.
We would like to use these to explain the optimal control for case (3.2).

In Figure 6, a ship moves backward from point O to point B; with time t;; the change
in angle is 01. Then, the [H] is executed to slow down and move to point B, by time t,; the
change in angle is 0,.

In Figure 7, a ship executes [A] to accelerate and change its position from point O’ to
point F; with time t3; the change in angle is 63. Then, [F] is executed to move forward to point
F, by time t4; the change in angle is 0.

We assume that the turning angle 0, is the variable that needs to be calculated here.
Normally, we can treat t, and t3 as almost fixed values, because the operation time is relatively
short. So the shortest maneuver time is to minimize t; + t4 based on formula (3.2), 61 + 64 =
6y — 0, — 05. If we already know the operational characteristics of [F] and [B] in advance, then
we can calculate 0, by giving an appropriate t; to decide 6;. Finally, we can calculate t, given
the characteristics of [B]. Also, in the opposing case, we can first give an appropriate #; to
decide t;.

Normally, we can say that the yawing ability of [F] is larger than [B], so the more
effective maneuver is to use [F] as much as possible. The maximum t, can be obtained
by using the maximum horizontal distance within Dg; then [B] can be used to achieve the
remaining necessary turning angle. By calculating #; for [B], the position of point B, can be
decided. If the position of B, is within the available sea area, then the procedures for case
(3.2) are applicable. This procedure is the shortest time maneuver.



10 Mathematical Problems in Engineering

Figure 7: Diagram of forward maneuver.

On the other hand, if the position of point B; is not allowed, case (3.3) or case (3.4) has
to be considered. With those cases, [B] or [F] is replaced by [R]. We assume that the effect of
horizontal motion by [R] is small enough that it can be ignored, and we spend time interval t5
to get a rotating angle 6s5. Normally, compared with [F] and [B], operation [R] would require
more time, because the movement is less, so use the maximum [F] or [B] and the remainder
by [R] for the shortest time maneuver.

The course decision-making flowchart summarizing the above maneuver procedures
is illustrated in Figure 8.

In this section, we discuss only one example, the counterclockwise backward
departing maneuver case. The clockwise or arriving maneuvers could also be easily applied,
so the details are not given here.

The operational model is to build a foundation for an automatic maneuver selection
procedure. We would like to define a ship turning maneuver model that is not related to
vessel type. This is done by subdividing the maneuver operation and defining the available
sea area.

Since the objective of our model is to design a unified operational model, the details of
the ship maneuver are not given in this paper. For the actual applications, our model should
be applied after experiments for each operation are executed.

5. Conclusion

A basic operational model for ship turning maneuvers within a limited sea area is described
in this paper. We also use a test case to explain how to generate the approximate optimal
solution, simply ignoring some relatively small effects but focusing on the effectiveness of
the operations. This model can be used not only for the automation of turning maneuvers
and to facilitate tugboat control, but also to come up with a standard for evaluating turning
maneuvers.
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Figure 8: Maneuver operation decision-making flowchart.

Our future research objectives will focus on issues of automatic and dynamic control
for vessels departing from or arriving at piers. Also, environmental factors such as wide
and tide, which we ignore in this paper, but important in actual maneuver operations will
be incorporated. The establishment of a numerical simulation method is another possible
research direction.
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