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Firstly, we studied the solution of the equation ⊗k♦k
Bu(x) = f(x) where u(x) is an unknown

unknown function for x = (x1, x2, . . . , xn) ∈ R
n, f(x) is the generalized function, k is a

positive integer. Finally, we have studied the solution of the nonlinear equation ⊗k♦k
Bu(x) =

f(x,�k−1LkΔk
B�k

Bu(x)). It was found that the existence of the solution u(x) of such an equation
depends on the condition of f and �k−1LkΔk

B�k
Bu(x). Moreover such solution u(x) is related to the

inhomogeneous wave equation depending on the conditions of p, q, and k.

1. Introduction

The operator ♦k has been first introduced by Kananthai (see [1]), is named as the Diamond
operator iterated k−times, and is defined by

♦k =

⎛
⎜⎝
(

p∑
i=1

∂2

∂x2
i

)2

−
⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

2
⎞
⎟⎠

k

, p + q = n. (1.1)

n is the dimension of the space R
n, for x = (x1, x2, . . . , xn) ∈ R

n and k is a nonnegative integer.
The operator ♦k can be expressed in the form ♦k = Δk�k = �kΔk, where Δk is the Laplacian
operator itrerated k−times defined by

Δk =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
n

)k

, (1.2)



2 Mathematical Problems in Engineering

and �k is the ultrahyperbolic operator iterated k−times defined by

�k =

⎛
⎝ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
p

− ∂2

∂x2
p+1

− ∂2

∂x2
p+2

− · · · − ∂2

∂x2
p+q

⎞
⎠

k

. (1.3)

Kananthai (see [1, Theorem 3.1, page 33]) has shown that the convolution
(−1)kRe

2k(x) ∗ RH
2k(x) is an elementary solution of the operator ♦k, that is,

♦k
(
(−1)kRe

2k(x) ∗ RH
2k(x)

)
= δ(x). (1.4)

Next, Kananthai (see [2]) has studied the linear equation

♦ku(x) = f(x). (1.5)

This equation is the generalization of the ultrahyperbolic equation and it can be applied to
the wave equation. We obtain u(x) = (−1)kM2k,2k(x) ∗ f(x) as a solution of such an equation
(1.5) where

M2k,2k = RH
2k(x) ∗ Re

2k(x). (1.6)

The function RH
2k(x) is called the ultrahyperbolic kernel defined by (2.2) and Re

2k(x) is called
the elliptic kernel defined by (2.8), with α = 2k.

Furthermore, Yıldırım et al. (see [3]) first introduced the ♦k
B operator that is named as

Diamond Bessel operator, where ♦k
B is defined by

♦k
B =

⎡
⎢⎣
(

p∑
i=1

Bxi

)2

−
⎛
⎝

p+q∑
j=p+1

Bxj

⎞
⎠

2
⎤
⎥⎦

k

, (1.7)

and Bxi = ∂2/∂x2
i + (2υi/xi)(∂/∂xi), 2υi = 2αi + 1, αi > −1/2, xi > 0. The operator ♦k

B can be
expressed by ♦k

B = Δk
B�k

B = �k
BΔ

k
B, where

Δk
B =

(
n∑
i=1

Bxi

)k

. (1.8)

�k
B =

⎛
⎝

p∑
i=1

Bxi −
p+q∑
j=p+1

Bxj

⎞
⎠

k

. (1.9)
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Next, W. Satsanit has first introduced ⊗k operator and ⊗k is defined by

⊗k =

⎡
⎢⎣
(

p∑
i=1

∂2

∂x2
i

)3

−
⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

3
⎤
⎥⎦

k

=

⎛
⎝

p∑
i=1

∂2

∂x2
i

−
p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

k
⎡
⎢⎣
(

p∑
i=1

∂2

∂x2
i

)2

+

(
p∑
i=1

∂2

∂x2
i

)
·
⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠ +

⎛
⎝

p+q∑
j=p+1

∂2

∂x2
j

⎞
⎠

2
⎤
⎥⎦

k

= �k

(
Δ2 − 1

4
(Δ + �)(Δ − �)

)k

=
(
3
4
♦Δ +

1
4
�3
)k

,

(1.10)

where ♦,Δ, and � are defined by (1.1), (1.2), and (1.3)with k = 1, respectively.
Now, firstly, the purpose of this work is to study the equation

⊗k♦k
Bu(x) = f(x), (1.11)

where the operator ⊗k is defined by (1.10) and ♦k
B defined by (1.7), f(x) is a generalized

function and u(x) is an unknown function. Finally we study the equation

⊗k♦k
Bu(x) = f

(
x,�k−1LkΔk

B�k
Bu(x)

)
(1.12)

with f having a continuous first derivative for all x ∈ Ω ∪ ∂Ω, where Ω is an open subset of
Rn, and ∂Ω denotes the boundary of Ω, f is bounded on Ω, that is, |f | ≤ N,N is constant, as
well as �k−1, Lk,Δk

B, and �k
B are defined by (1.3), (2.46), (1.8) and (1.9), respectively.

We can find the solution u(x) of (1.12) that is unique under the boundary condition
�k−1LkΔk

B�k
Bu(x) = 0 for x ∈ ∂Ω. By [4, page 369] there exists a unique solution W(x) of the

equation �W(x) = f(x,W(x)) for all x ∈ Ω with the boundary condition W(x) = 0 for all
x ∈ ∂Ω where W(x) = �k−1LkΔk

B�k
Bu(x).

Moreover, if we put p = k = 1 in �k�k
BM(x) = W(x), then we found that M(x) =

IH2 (x) ∗ I2(x) ∗W(x) is a solution of the inhomogeneous equation where IH2 (x) and I2(x) are
defined by (2.6) and (2.20)with α = 2, γ = 2, respectively.

Before going into details, the following definitions and some important concepts are
needed.

2. Preliminaries

Definition 2.1. Let x = (x1, x2, . . . , xn) be a point of the n-dimensional Euclidean space R
n,

denoted by

υ = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q. (2.1)
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The nondegenerated quadratic form p + q = n is the dimension of the space R
n. Let Γ+ = {x ∈

R
n : x1 > 0 and u > 0} be the interior of forward cone and let Γ+ denote its closure. For any

complex number α, define the function

RH
α (υ) =

⎧⎪⎨
⎪⎩

υ(α−n)/2

Kn(α)
, for x ∈ Γ+,

0, for x /∈ Γ+,
(2.2)

where the constant Kn(α) is given by the formula

Kn(α) =
π(n−1)/2Γ((2 + α − n)/2)Γ((1 − α)/2)Γ(α)

Γ
((
2 + α − p

)
/2
)
Γ
((
p − α

)
/2
) . (2.3)

The function RH
α (υ) is called the ultrahyperbolic kernel of Marcel Riesz and was introduced

by Nozaki (see [5]).

It is well known that RH
α (υ) is an ordinary function if Re(α) ≥ n and is a distribution of

α if Re(α) < n. Let supp RH
α (υ) denote the support of RH

α (υ) and suppose that supp RH
α (υ) ⊂

Γ+, that is, supp RH
α (υ) is compact.

From Trione (see [6, page 11]), RH
2k(υ) is an elementary solution of the operator �k,

that is,

�kRH
2k(υ) = δ(x). (2.4)

By putting p = 1 in RH
2k(υ) and taking into account Legendre’s duplication formula for

Γ(z), that is

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.5)

we obtain

IHα (υ) =
υ(α−n)/2

Hn(α)
, (2.6)

and υ = x2
1 − x2

2 − x2
3 · · · − x2

n where

Hn(α) = π(n−2)/22α−1Γ
(
α + 2 − n

2

)
Γ
(α
2

)
. (2.7)

IHα (υ) is the hyperbolic kernel of Marcel Riesz.

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point of R
n and ω = x2

1 + x2
2 + · · · + x2

n, then the
function Re

α(ω) denoted the elliptic kernel of Marcel Riesz and is defined by

Re
α(ω) =

ω(α−n)/2

Wn(α)
, (2.8)
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where

ω = x2
1 + x2

2 + · · · + x2
n, (2.9)

Wn(α) =
πn/22αΓ(α/2)
Γ((n − α)/2)

(2.10)

where α is a complex parameter and n is the dimension of R
n.

It can be shown that Re
−2k(x) = (−1)kΔkδ(x) where Δk is defined by (1.2). It follows

that Re
0(x) = δ(x), (see [7, page 118]).
Moreover, we obtain (−1)kRe

2k(x) is an elementary solution of the operator Δk (see [8,
Lemma 2.4, page 31]). That is

Δk
(
(−1)kRe

2k(x)
)
= δ(x). (2.11)

By (2.2) and (2.3) with q = 0, then υ(α−n)/2 reduces to ω
(α−p)/2
p where ωp = x2

1 + x2
2 + · · · + x2

p

and Kn(α) reduces to Kp(α) = (π(p−1)/2Γ((1 − α)/2)Γ(α))/Γ((p − α)/2). By using the formula

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
,

Γ
(
1
2
+ z

)
Γ
(
1
2
− z

)
= πsec(πz),

(2.12)

we obtain

Kp(α) =
1
2
sec
(πα

2

)
Wp(α), (2.13)

where Wp(α) is defined by (2.10) with n = p. Thus, for q = 0,

RH
α (υ) =

υ(α−p)/2

Kp(α)
= 2 cos

(πα
2

)υ(α−p)/2

Wp(α)
= 2 cos

(πα
2

)
Re

α

(
ωp

)
, (2.14)

where ωp = x2
1 + x2

2 + · · · + x2
p. Thus, if α = 2k, then

RH
2k

(
ωp

)
= 2(−1)kRe

2k

(
ωp

)
(2.15)

for q = 0 and ωp = x2
1 + x2

2 + · · · + x2
p.

Definition 2.3. Let x = (x1, x2, . . . , xn), ν = (ν1, ν2, . . . , νn) ∈ R
+
n. For any complex number α, we

define the function Sα(x) by

Sα(x) =
2n+2|ν|−2αΓ((n + 2|ν| − α)/2)|x|α−n−2|ν|∏n

i=12νi−1/2Γ(νi + 1/2)
. (2.16)
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Definition 2.4. Let x = (x1, x2, . . . , xn), ν = (ν1, ν2, . . . , νn) ∈ R
+
n, and V = x2

1 + x2
2 + · · · + x2

p −
x2
p+1 − x2

p+2 − · · · − x2
p+q the nondegenerated quadratic form. Denote the interior of the forward

cone by Γ+ = {x ∈ R
+
n : x1 > 0, x2 > 0, . . . , xn > 0, V > 0}. The function Rγ(x) is defined by

Rγ(x) =
V (γ−n−2|ν|)/2

Kn

(
γ
) , (2.17)

where

Kn

(
γ
)
=

π(n+2|ν|−1)/2Γ
((
2 + γ − n − 2|ν|)/2)Γ((1 − γ

)
/2
)
Γ
(
γ
)

Γ
((
2 + γ − p − 2|ν|)/2)Γ((p − 2|ν| − γ

)
/2
) , (2.18)

and γ is a complex number. By putting p = 1 in Rγ(x) and taking into account Legendre’s
duplication formula for Γ(z), that is,

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
(2.19)

we obtain

Iγ(x) =
V (γ−n−2|ν|)/2

Nn

(
γ
) , (2.20)

and V = x2
1 − x2

2 − x2
3 · · · − x2

n where

Nn

(
γ
)
= π(n+2|ν|−1)/222k−1Γ

(
2 + γ − n − 2|ν|

2

)
Γ
(γ
2

)
. (2.21)

Lemma 2.5. Given the equation Δk
Bu(x) = δ(x) for x ∈ R

+
n, where Δ

k
B is defined by (1.8), then

u(x) = (−1)kS2k(x), (2.22)

where S2k(x) is defined by (2.16), with α = 2k.

Proof. (See [3, page 379] and [9]).

Lemma 2.6. Given the equation �k
Bu(x) = δ(x) for x ∈ R

+
n, where �k

B is defined by (1.9), then

u(x) = R2k(x), (2.23)

where R2k(x) is defined by (2.17), with γ = 2k.

Proof. (See [3, page 379] and [9]).



Mathematical Problems in Engineering 7

Lemma 2.7. Given that P is a hyperfunction, then

Pδk(p) + kδ(k−1)(p) = 0, (2.24)

where δ(k) is the Dirac-delta distribution with k-derivatives.

Proof. (See [8, page 233]).

Lemma 2.8. Given the equation

�ku(x) = 0, (2.25)

where �k is defined by (1.3) and x = (x1, x2, . . . , xn) ∈ R
n, then u(x) = (RH

2(k−1)(υ))
(m) is a solution

of (2.25) withm = (n − 4)/2, n ≥ 4 and n is even dimension. The function (RH
2(k−1)(υ))

(m) is defined
by (2.2) withm-derivatives, α = 2(k − 1), and υ being defined by (2.1).

Proof. We first show the generalized function δ(m)(r2 − s2) where r2 = x2
1 + x2

2 + · · · + x2
p and

s2 = x2
p+1 + x2

p+2 + · · · + x2
p+q, p + q = n, is a solution of the equation

�u(x) = 0, (2.26)

where � is defined by (1.3) with k = 1 and x = (x1, x2, . . . , xn) ∈ R
n,

∂

∂xi
δ(m)
(
r2 − s2

)
= 2xiδ

(m+1)
(
r2 − s2

)
,

∂2

∂x2
i

δ(m)
(
r2 − s2

)
= 2δ(m+1)

(
r2 − s2

)
+ 4x2

i δ
(m+2)

(
r2 − s2

)
,

�δ(m)
(
r2 − s2

)
=

p∑
i=1

∂2

∂x2
i

δ(m)
(
r2 − s2

)

= 2pδ(m+1)
(
r2 − s2

)
+ 4r2δ(m+2)

(
r2 − s2

)

= 2pδ(m+1)
(
r2 − s2

)
+ 4
(
r2 − s2

)
δ(m+2)

(
r2 − s2

)
+ 4s2δ(m+2)

(
r2 − s2

)

= 2pδ(m+1)
(
r2 − s2

)
− 4(m + 2)δ(m+1)

(
r2 − s2

)
+ 4s2δ(m+2)

(
r2 − s2

)

=
(
2p − 4(m + 2)

)
δ(m+1)

(
r2 − s2

)
+ 4s2δ(m+2)

(
r2 − s2

)
.

(2.27)

By Lemma 2.5 with P = r2 − s2, similarly,

p+q∑
j=p+1

∂2

∂x2
j

δ(m)
(
r2 − s2

)
=
(−2q + 4(m + 2)

)
δ(m+1)

(
r2 − s2

)
+ 4r2δ(m+2)

(
r2 − s2

)
. (2.28)



8 Mathematical Problems in Engineering

Thus

�δ(m)
(
r2 − s2

)
=

p∑
i=1

∂2

∂x2
i

δ(m)
(
r2 − s2

)
−

p+q∑
j=p+1

∂2

∂x2
i

δ(m)
(
r2 − s2

)

=
(
2
(
p + q

) − 8(m + 2)
)
δ(m+1)

(
r2 − s2

)
− 4
(
r2 − s2

)
δ(m+2)

(
r2 − s2

)

= (2n − 8(m + 2))δ(m+1)
(
r2 − s2

)
+ 4(m + 2)δ(m+1)

(
r2 − s2

)

= (2n − 4(m + 2))δ(m+1)
(
r2 − s2

)
.

(2.29)

If 2n − 4(m + 2) = 0, then we have �δ(m)(r2 − s2) = 0. That is, u(x) = δ(m)(r2 − s2) is a solution
of (2.26) withm = (n − 4)/2, n ≥ 4 and n is even dimension. We write

ku(x) = �
(
k−1u(x)

)
= 0, (2.30)

and from the above proof we have �k−1u(x) = δ(m)(r2 − s2)withm = (n − 4)/2, n ≥ 4 and n is
even dimension. Convolving the above equation by RH

2(k−1)(υ), we obtain

RH
2(k−1)(υ) ∗ �k−1u(x) = RH

2(k−1)(υ) ∗ δ(m)
(
r2 − s2

)

�k−1
(
RH

2(k−1)(υ)
)
∗ u(x) = (RH

2(k−1)(υ))
(m)

, where υ =
(
r2 − s2

)

δ ∗ u(x) = u(x) = (RH
2(k−1)(υ))

(m)

(2.31)

by (2.2), and υ = r2 − s2 is defined by Definition (2.1).
Thus u(x) = (RH

2(k−1)(υ))
(m) is a solution of (2.25) with m = (n − 4)/2, n ≥ 4 and n is

even dimension.

Lemma 2.9. Given the equation

⊗kG(x) = δ(x), (2.32)

then

G(x) =
(
RH

6k(x) ∗ (−1)2kRe
4k(x)

)
∗
(
O∗k(x)

)∗−1
(2.33)

is an elementary solution for the ⊗k operator iterated k−times where ⊗k is defined by (1.10), and

O(x) =
3
4
RH

4 (x) +
1
4
(−1)2Re

4(x) (2.34)

where O∗k(x) denotes the convolution of O(x) itself k−times and (O∗k(x))∗−1 denotes the inverse of
O∗k(x) in the convolution algebra. Moreover G(x) is a tempered distribution.
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Proof. From (3.1), we have

⊗kG(x) =

(
3
4
♦Δ +

1
4

3
)k

G(x) = δ(x), (2.35)

or we can write

(
3
4
♦Δ +

1
4
�3
)(

3
4
♦Δ +

1
4
�3
)k−1

G(x) = δ(x). (2.36)

Convolving both sides of the above equation by RH
6 (x) ∗ (−1)2Re

4(x),

(
3
4
♦Δ +

1
4
�3
)
∗
(
RH

6 (x) ∗ (−1)2Re
4(x)
)(3

4
♦Δ +

1
4

3
)k−1

G(x) = δ(x) ∗ RH
6 (x) ∗ (−1)2Re

4(x),

(2.37)

or

(
3
4
�
(
RH

2 (x)
)
∗Δ2(−1)2Re

4(x) ∗ RH
4 (x) +

1
4
�3RH

6 (x) ∗ (−1)2Re
4(x)
)

∗
(
3
4
♦Δ +

1
4
�3
)k−1

G(x) = δ(x) ∗ RH
6 (x) ∗ (−1)2Re

4(x).

(2.38)

By (2.4) and (2.8), we obtain

(
3
4
δ ∗ δ ∗ RH

4 (x) +
1
4
δ ∗ (−1)2Re

4(x)
)
∗
(
3
4
♦Δ +

1
4
�3
)k−1

G(x) = δ(x) ∗ RH
6 (x) ∗ (−1)2Re

4(x).

(2.39)

Thus

(
3
4
RH

4 (x) +
1
4
(−1)2Re

4(x)
)
∗
(

3
4
♦Δ +

1
4

3
)k−1

G(x) = RH
6 (x) ∗ (−1)2Re

4(x). (2.40)

Keeping on convolving both sides of the above equation by RH
6 (x) ∗ (−1)2Re

4(x) up to k − 1
times, we obtain

O∗k(x) ∗G(x) =
(
RH

6 (x) ∗ (−1)2Re
4(x)
)∗k

(2.41)

where the symbol ∗k denotes the convolution of itself k−times. By properties of Rα(x), we
have

(
RH

6 (x) ∗ (−1)2Re
4(x)
)∗k

= RH
6k(x) ∗ (−1)2kRe

4k(x). (2.42)



10 Mathematical Problems in Engineering

Thus,

O∗k(x) ∗G(x) = RH
6k(x) ∗ (−1)2kRe

4k(x). (2.43)

Now, consider the functionO∗k(x), sinceRH
6 (x)∗(−1)2Re

4(x) is a tempered distribution.
Thus O(x) defined by (2.34) is a tempered distribution, and we obtain that O∗k(x) is a
tempered distribution and RH

6k(x) ∗ (−1)2kRe
4k(x) ∈ S′ is the space of tempered distribution.

Choose S′ ⊂ D′
R where D′

R is the right-side distribution which is a subspace of D′ of
distribution.

Thus RH
6k(x) ∗ (−1)2kRe

4k(x) ∈ D′
R. It follows that RH

6k(x) ∗ (−1)2kRe
4k(x) is an element

of convolution algebra, since D′
R is a convolution algebra. Hence by the method of Zemanian

(see [10]), (2.33) has a unique solution

G(x) =
(
RH

6k(x) ∗ (−1)2kRe
4k(x)

)
∗
(
O∗k(x)

)∗−1
, (2.44)

where (O∗k(x))∗−1 is an inverse of O∗k(x) in the convolution algebra and G(x) is called the
Green function of the ⊗k operator.

Lemma 2.10. Given the equation

LkK(x) = δ(x), (2.45)

where Lk is the operator defined by

Lk =
(
3
4
Δ2 +

1
4
�2
)k

(2.46)

and Δ and � are defined by (1.2) and (1.3) with k = 1, respectively, one obtains that K(x) is an
elementary solution of the Lk operator where

K(x) =
(
RH

4k(x) ∗ (−1)2kRe
4k(x)

)
∗
(
O∗k(x)

)∗−1
,

O(x) =
3
4
RH

4 (x) +
1
4
(−1)2Re

4(x),
(2.47)

where O∗k(x) denotes the convolution of O(x) itself k−times and (O∗k(x))∗−1 denotes the inverse of
O∗k(x) in the convolution algebra. Moreover K(x) is a tempered distribution.

Proof. The proof of Lemma 2.10 is similar to the proof of Lemma 2.9.

Lemma 2.11. Given the equation

�u(x) = f(x, u(x)), (2.48)

where f is defined and has continuous first derivatives for all x ∈ Ω ∪ ∂Ω, where Ω is an open subset
of Rn and ∂Ω is the boundary ofΩ, assume that f is bounded, that is, |f(x, u(x))| ≤ N for all x ∈ Ω.
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Then one obtains a continuous function u(x) as unique solution of (2.48)with the boundary condition
u(x) = 0 for x ∈ ∂Ω.

Proof. We can prove the existence of the solution u(x) of (2.48) by the method of iterations
and Schuder’s estimates. The details of the proof are given by Courant and Hilbert; (see [4,
pages 369–372]).

Lemma 2.12. The function RH
−2k(x) and S−2k(x) are the inverse of the convolution algebra of RH

2k and
S2k, respectively, that is,

RH
−2k(x) ∗ RH

2k(x) = RH
−2k+2k(x) = RH

0 (x) = δ,

S−2k(x) ∗ S2k(x) = S−2k+2k(x) = S0(x) = δ.
(2.49)

Proof. (See [7, page 158] and [11]).

3. Main Results

Theorem 3.1. Given the equation

⊗k♦k
Bu(x) = 0, (3.1)

where ⊗k is the Otimes operator iterated k−times and ♦k
B is Diamond Bessel operator iterated k− times

defined by (1.10) and (1.7), respectively, and u(x) is an unknown function, one obtains that u(x) is a
solution of (3.1) where

u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (−1)k−1(RH
2(k−1)(υ))

(m) (3.2)

where K(x) is defined by (2.47), as well as S2k(x), R2k(x), and (RH
2(k−1)(υ))

m are defined by
(2.16),(2.17), and (2.2) with α = 2k, γ = 2k and α = 2(k − 1), respectively.

Proof. Since

⊗k =
(
3
4
♦Δ +

1
4
�3
)k

, ♦k
B = Δk

B�k
B. (3.3)

Consider the homogeneous equation

⊗k♦k
Bu(x) = 0. (3.4)

The above equation can be written as

(
3
4
♦Δ +

1
4
�3
)k

Δk
B�k

Bu(x) = 0, (3.5)

or

�k

(
3
4
Δ2 +

1
4
�2
)k

Δk
B�k

Bu(x) = 0. (3.6)
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That is,

�kLkΔk
B�k

Bu(x) = 0, (3.7)

where �k, Lk,Δk
B, and �k

B are defined by (1.3), (2.46), (1.8), and (1.9), respectively. By
Lemma 2.8, we obtain

LkΔk
B�k

Bu(x) = (RH
2(k−1)(υ))

(m)
. (3.8)

Since (−1)kS2k(x), R2k(x) are the elementary solution of the operators Δk
B and �k

B,
respectively, and by Lemma 2.10, we have that K(x) is an elementary of the operator Lk

defined by (2.46), that is,

Δk
B(−1)kS2k(x) = δ(x), �k

BR2k(x) = δ(x),

LkK(x) = δ(x).
(3.9)

Convolving both sides of (3.8) by K(x) ∗ (−1)kS2k(x) ∗ R2k(x), we obtain

K(x)∗(−1)kS2k(x) ∗ R2k(x) ∗ ŁkΔk
B�k

Bu(x) = K(x) ∗ (−1)kS2k(x)∗R2k(x)∗(RH
2(k−1)(υ))

(m)
.

(3.10)

By properties of convolution

ŁkK(x)∗Δk
B(−1)kS2k(x)∗�k

BR2k(x) ∗ u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (RH
2(k−1)(υ))

(m)
.

(3.11)

By Lemmas 2.10, 2.5, and 2.6, we obtain

δ(x) ∗ δ(x) ∗ δ(x) ∗ u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (RH
2(k−1)(υ))

(m)
. (3.12)

Thus

u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (RH
2(k−1)(υ))

(m) (3.13)

is the solution of (3.1).

Theorem 3.2. Given the equation

⊗k♦k
Bu(x) = f(x), (3.14)
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where ⊗k is the Otimes operator iterated k−times defined by (1.10), and ♦k
B is the Diamond Bessel

operator iterated k−times defined by (1.7), f(x) is the generalized function, u(x) is an unknown
function, x = (x1, x2, . . . , xn) ∈ R

n and n is even,
One obtains that

u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗
(
RH

2(k−1)(υ)
)(m)

+G(x) ∗(−1)kS2k(x) ∗ R2k(x) ∗ f(x)
(3.15)

is a general solution of (3.14) and G(x) is defined by (2.33), K(x) is defined by (2.47), as well as
S2k(x) and R2k(x) are defined by (2.16) and (2.17) with α = 2k and γ = 2k, respectively.

Proof. Consider the equation

⊗k♦k
Bu(x) = f(x) (3.16)

or

⊗kΔk
B�k

Bu(x) = f(x). (3.17)

Convolving both sides of (3.14) by G(x) ∗ (−1)kS2k(x) ∗ R2k(x), we obtain

G(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ ⊗kΔk
B�k

Bu(x) = G(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x). (3.18)

By properties of convolution,

⊗kG(x) ∗Δk
B(−1)kS2k(x) ∗ �k

BR2k(x) ∗ u(x) = G(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x). (3.19)

By Lemmas 2.9, 2.5, and 2.6, we obtain

δ(x) ∗ δ(x) ∗ δ(x) ∗ u(x) = G(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x). (3.20)

Thus

u(x) = G(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ f(x). (3.21)

Consider the homogeneous equation

⊗k♦k
Bu(x) = 0. (3.22)

By Theorem 3.1, we have a homogeneous solution

u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (RH
2(k−1)(υ))

(m)
. (3.23)



14 Mathematical Problems in Engineering

Thus, the general solution of (3.14) is

u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗
(
RH

2(k−1)(υ)
)(m)

+G(x) ∗ (−1)kS2k(x)∗R2k(x)∗f(x),
(3.24)

as required.

Theorem 3.3. Consider the nonlinear equation

⊗k♦k
Bu(x) = f

(
x,�k−1LkΔk

B�k
Bu(x)

)
(3.25)

where ⊗k,♦k
B,�k−1, Lk,Δk

B, and �k
B are defined by (1.10), (1.7),(1.3),(2.44), and (1.9), respectively.

Let f be defined, and having continuous first derivative for all x ∈ Ω ∪ ∂Ω,Ω is an open subset of Rn

and ∂Ω denotes the boundary function, that is,

∣∣∣f
(
x,�k−1LkΔk

B�k
Bu(x)

)∣∣∣ ≤ N (3.26)

for all x ∈ Ω and the boundary condition

�k−1LkΔk
B�k

Bu(x) = 0 (3.27)

for all x ∈ ∂Ω. Then one obtains

u(x) = RH
2(k−1)(x) ∗G(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗W(x) (3.28)

as a solution of (3.25) with the boundary condition

u(x) = (RH
2(k−2)(υ))

(m) ∗G(x) ∗ (−1)kS2k(x) ∗ R2k(x) (3.29)

for all x ∈ ∂Ω, m = (n − 4)/2, and W(x) is a continuous function for x ∈ Ω ∪
∂Ω,while RH

2(k−2)(υ), S2k(x), and R2k(x) are given by (2.2), (2.16), and (2.17) with α = 2(k−2), α =
2k, and γ = 2k, respectively. Moreover, for k = 1 one obtains

M(x) =
(
RH

−4(x) ∗ (−1)2Re
−4(x)

)
∗
(
O∗1(x)

)
∗ (−1)kS−2(x) ∗ u(x) (3.30)

as a solution of the inhomogeneous equation

��BM(x) = W(x), (3.31)
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where � and �B are defined by (1.3) and (1.9) with k = 1, respectively, and u(x) is obtained from
(3.28). Furthermore, If one puts p = k = 1, then the operators �k and �k

B reduce to

∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

, Bx1 − Bx2 − Bx3 − · · · − Bxn , (3.32)

respectively, and the solution M(x) = IH2 (x) ∗ I2(x) ∗W(x) is the inhomogeneous wave equation

(
∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

)
· (Bx1 − Bx2 − Bx3 − · · · − Bxn)M(x) = W(x), (3.33)

where IH2 (x) is defined by (2.6) with α = 2 and I2(x) is defined by (2.20) with γ = 2.

Proof. Since

⊗k♦k
Bu(x) = ��k−1LkΔk

B�k
Bu(x) = f

(
x,�k−1LkΔk

B�k
Bu(x)

)
, (3.34)

u(x) has continuous derivative up to order 6k for k = 1, 2, 3, . . ., and �k−1LkΔk
B�k

Bu(x) exists
as the generalized function. Thus we can assume that

�k−1LkΔk
B�k

Bu(x) = W(x), ∀x ∈ Ω. (3.35)

Then (3.34) can be written in the form

⊗k♦k
Bu(x) = �W(x) = f(x,W(x)). (3.36)

By(3.26)

∣∣f(x,W(x))
∣∣ ≤ N, x ∈ Ω, (3.37)

and by(3.27) W(x) = 0, x ∈ ∂Ω, or

�k−1LkΔk
B�k

Bu(x) = 0, ∀x ∈ ∂Ω. (3.38)

We obtain a unique solution of (3.28)which satisfies (3.27) by Lemma 2.8.
Since RH

2(k−1)(x), (−1)kS2k(x), and R2k(x) are the elementary solution of the operators
�k−1,Δk

B, and �k
B, respectively, and by Lemma 2.10, we have thatK(x) is an elementary of the

operator Lk where Lk = ((3/4)Δ2 + (1/4)�2)k, that is,

�k−1RH
2(k−1)(x) = δ, Δk

B(−1)kS2k(x) = δ,

k
BR2k(x) = δ, LkK(x) = δ.

(3.39)
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From (3.35), we have

�k−1LkΔk
B�k

Bu(x) = W(x). (3.40)

Convolving the above equation by

RH
2(k−1)(x) ∗K(x) ∗ (−1)kS2k(x) ∗ R2k(x), (3.41)

we obtain

(
RH

2(k−1)(x) ∗K(x) ∗ (−1)kS2k(x) ∗ R2k(x)
)
∗
(
�k−1LkΔk

B�k
Bu(x)

)

=
(
RH

2(k−1)(x) ∗K(x) ∗ (−1)kS2k(x) ∗ R2k(x)
)
∗W(x).

(3.42)

By properties of convolution, we obtain

(
�k−1RH

2(k−1)(x)
)
∗
(
ŁkK(x)

)
∗
(
Δk

B ∗ (−1)kS2k

)
∗
(
�k

BR2k

)
∗ u(x)

=
(
RH

2(k−1)(x) ∗K(x) ∗ (−1)kS2k(x) ∗ R2k(x)
)
∗W(x).

(3.43)

By (3.39) we obtain

δ ∗ δ ∗ δ ∗ δ ∗ u(x) =
(
RH

2(k−1)(x) ∗K(x) ∗ (−1)kS2k(x) ∗ R2k(x)
)
∗W(x). (3.44)

Thus

u(x) =
(
RH

2(k−1)(x) ∗K(x) ∗ (−1)kS2k(x) ∗ R2k(x)
)
∗W(x), (3.45)

as a solution of (3.25).
Next, consider the boundary condition (3.38). From

�k−1LkΔk
B�k

Bu(x) = 0, (3.46)

by Lemma 2.8, we have

LkΔk
B�k

Bu(x) = (RH
2(k−2)(υ))

(m)
, (3.47)

where m = (n − 4)/2, n ≥ 4 and n is even. Convolving both sides of (3.47) by

K(x) ∗ (−1)kS2k(x) ∗ R2k(x), (3.48)
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we obtain

(
K(x)∗(−1)kS2k(x) ∗R2k(x)

)
∗
(
LkΔk

B�k
B

)
∗ u(x)

= K(x) ∗(−1)kS2k(x) ∗ R2k(x) ∗
(
RH

2(k−2)(υ)
)(m)

.

(3.49)

By the properties of convolution, we obtain

(
LkK(x)

)
∗
(
Δk

B(−1)kS2k

)
∗
(
�k

BR2k

)
∗u(x)

= K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗ (RH
2(k−2)(υ))

(m)
.

(3.50)

By (3.39), we obtain

δ ∗ δ ∗ δ ∗ u(x) =
(
K(x) ∗ (−1)kS2k(x) ∗ R2k(x)

)
∗ (RH

2(k−2)(υ))
(m)

. (3.51)

Thus, for x ∈ ∂Ω and k = 2, 3, 4, 5, . . . .,

u(x) = K(x) ∗ (−1)kS2k(x) ∗ R2k(x) ∗
(
RH

2(k−2)(υ)
)(m)

, (3.52)

as required.
Now, for k = 1 in (3.28), we have

u(x) = δ(x) ∗G(x) ∗ (−1)S2(x) ∗ R2(x) ∗W(x). (3.53)

By (2.47), we have

G(x) =
(
RH

6 (x) ∗ (−1)2Re
4(x)
)
∗
(
O∗1(x)

)∗−1
. (3.54)

Taking into account (3.53), we obtain

u(x) =
(
RH

6 (x) ∗ (−1)2Re
4(x)
)
∗
(
O∗1(x)

)∗−1 ∗ (−1)1S2(x) ∗ R2(x) ∗W(x) (3.55)

as a solution of (3.25) for k = 1.
Convolving both sides of (3.55) by

(
RH

−4(x) ∗ (−1)2Re
−4(x)

)
∗
(
O∗1(x)

)
∗ (−1)S−2(x), (3.56)

by Lemma 2.12, we obtain

(
RH

−4(x) ∗ (−1)2Re
−4(x)

)
∗
(
O∗1(x)

)
∗ (−1)S−2(x) ∗ u(x) = RH

2 (x) ∗ R2(x) ∗W(x). (3.57)
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By Lemma 2.6, we obtain

M(x) =
(
RH

−4(x) ∗ (−1)2Re
−4(x)

)
∗
(
O∗1(x)

)
∗ (−1)S−2(x) ∗ u(x) (3.58)

as a solution of the inhomogeneous equation

��BM(x) = W(x). (3.59)

Now, consider the boundary condition for k = 1 in (3.27); we have

LΔB�Bu(x) = 0, or �BLΔBu(x) = 0 (3.60)

for x ∈ ∂Ω. Thus by Lemma 2.8, for k = 1, we have

LΔBu(x) = δ(m)(υ) for x ∈ ∂Ω, (3.61)

where δ(m)(x) = RH
0 (x). Convolving the above equation by K(x) ∗ (−1)S2(x) where K(x) is

defined by (2.47)with k = 1 and S2(x) is defined by (2.16)with α = 2, we obtain

K(x) ∗ (−1)S2(x) ∗ (LΔBu(x)) = δ(m)(υ) ∗K(x) ∗ (−1)S2(x). (3.62)

By properties of convolution,

LK(x) ∗ΔB(−1)S2(x) ∗ u(x) = δ(m)(υ) ∗K(x) ∗ (−1)S2(x). (3.63)

By Lemmas 2.10 and 2.5, we obtain

δ(x) ∗ δ(x) ∗ u(x) = δ(m)(υ) ∗K(x) ∗ (−1)S2(x). (3.64)

It follows that

u(x) = δ(m)(υ) ∗K(x) ∗ (−1)S2(x). (3.65)

By (2.47) with k = 1, we have

K(x) =
(
RH

4 (x) ∗ (−1)2Re
4(x)
)
∗
(
O∗1(x)

)∗−1
. (3.66)

Taking into account (3.65), we obtain

u(x) = δ(m)(υ) ∗
(
RH

4 (x) ∗ (−1)2Re
4(x)
)
∗
(
O∗1(x)

)∗−1 ∗ (−1)S2(x) for x ∈ ∂Ω. (3.67)



Mathematical Problems in Engineering 19

Now consider the case k = 1, p = 1, and q = n − 1, that is, from (3.59), RH
2 (x) reduced

to IH2 (x) where IH2 (x) is defined by (2.2) with α = 2 and R2(x) reduced to I2(x) where I2(x)
is defined by (2.17) with γ = 2, and then the operator � defined by (1.3) reduces to the wave
operator

�∗ =
∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

, (3.68)

�B defined by (1.9) reduces to the Bessel wave operator

�∗
B = Bx1 − Bx2 − Bx3 − · · · − Bxn , (3.69)

and then the solution M(x) reduced to

M(x) = IH2 (x) ∗ I2(x) ∗W(x), (3.70)

which is the solution of inhomogeneous wave equation

�∗�∗
BM(x) = W(x), (3.71)

or

(
∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

− · · · − ∂2

∂x2
n

)
· (Bx1 − Bx2 − Bx3 − · · · − Bxn)M(x) = W(x). (3.72)

With the boundary condition for x ∈ ∂Ω,

L∗�∗
BΔBu(x) = 0, (3.73)

where L∗ = (3/4)Δ2 + (1/4)(�∗)2 and �∗ is defined by (3.68), or for x ∈ ∂Ω and by (3.65), we
obtain

u(x) = δ(m)(s) ∗
(
IH4 (x) ∗ (−1)2Re

4(x)
)
∗
(
D∗1(x)

)∗−1 ∗ (−1)S2(x), (3.74)

where I4(x) is defined by (2.20)with γ = 4, s = x2
1 − x2

2 − x2
3 − · · · − x2

n, andD(x) reduced from
O(x)where it is defined by (2.34), that is, D(x) = (3/4)IH4 (x) + (1/2)(−1)2Re

4(x).
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