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The variational iteration algorithm combined with the exp-function method is suggested to solve
the generalized Benjamin-Bona-Mahony equation (BBM) with variable coefficients. Periodic and
soliton solutions are formally derived in a general form. Some particular cases are considered.

1. Introduction

The BBM equation

ut + uux + ux − μuxxt = 0, (1.1)

which describes approximately the unidirectional propagation of long waves in certain
nonlinear dispersive systems, has been proposed by Benjamin et al. in 1972 [1] as a more
satisfactory model than the KdV equation [2]

ut + uux + uxxx = 0. (1.2)

It is easy to see that (1.1) can be derived from the equal width EW-equation [3]:

ut + uux − μuxxt = 0, (1.3)

by means of the change of variable u = u + 1, that is, by replacing u with u + 1. This last
equation is considered as an equally valid and accurate model for the same wave phenomena
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simulated by (1.1) and (1.2). On the other hand, some researches analyzed the generalized
KdV equation with variable coefficients

ut + σ(t)upux + μ(t)uxxx = 0, (1.4)

because this model has important applications in several fields of science [4–7].
Motivated by these facts, we will consider here the generalized EW-equation with

variable coefficients

ut + σ(t)upux − μ(t)uxxt = 0. (1.5)

Using the solutions of (1.5) we obtain exact solutions to the generalized BBM equation

ut + σ(t)(u + 1)pux − μ(t)uxxt = 0, (1.6)

of order p > 0.

2. Exact Solutions to Generalized BBM Equation

2.1. The Variational Iteration Method

Consider the following nonlinear equation:

Lu(x, t) +Nu(x, t) = g(x, t), (2.1)

where L and N are linear and nonlinear operators, respectively, and g(x, t) is an
inhomogeneous term. According to the variational iteration method (VIM) [8–14], a
functional correction to (2.1) is given by

un+1(x, t) = un(x, t) +
∫ t

0
θ(τ)

(
Lun(x, τ) +Nũn(x, τ) − g(x, τ)

)
dτ, (2.2)

where θ(τ) is a general Lagrange’s multiplier, which can be identified via the variational
theory; the subscript n ≥ 0 denotes the nth order approximation and ũ is a restricted variation
which means δũ = 0. In this method, we first determine the Lagrange multiplier θ(τ) that
will be identified optimally via integration by parts. The successive approximation un+1 of
the solution uwill be readily obtained upon using the determined Lagrangian multiplier and
any selective function u0. One of the advantages of the VIM, is the free choice of the initial
solution u0(x, t). If we consider a special form to u0 with arbitrary parameters, using the
relations

un(x, t) = un+1(x, t),
∂k

∂tk
un(x, t) =

∂k

∂tk
un+1(x, t), (2.3)
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we can obtain a set of algebraic equations in the unknowns given by the parameters that
appear in u0. Solving this system, we have exact solutions to (2.1). To solve (1.5), we construct
the following functional equation

un+1(x, t) = un(x, t) +
∫ t

0
θ(τ)(Lun(x, τ) +Nũn(x, τ))dτ, (2.4)

where

Lun(x, τ) = (un)τ(x, τ),

Nũn(x, τ) = σ(τ)(ũ + 1)pũx(x, τ) − μ(τ)ũxxτ(x, τ).
(2.5)

Taking in (2.4) variation with respect to the independent variable un, and noticing that
δNũn = 0 we have

δun+1(x, t) = δun(x, t) + δ

∫ t

0
θ(τ)(Lun(x, τ) +Nũn(x, τ))dτ

= δun(x, t) + θ(t)δun(x, t) −
∫ t

0
θ′(τ)δun(x, τ)dτ = 0.

(2.6)

This yields the stationary conditions

1 + θ(t) = 0,

θ′(t) = 0.
(2.7)

Therefore,

θ(t) = −1. (2.8)

Substituting this value into (2.4) we obtain the formula

un+1(x, t) = un(x, t) −
∫ t

0
(Lun(x, τ) +Nũn(x, τ))dτ. (2.9)

Using the wave transformation

ξ = x + λt + ξ0, (2.10)



4 Mathematical Problems in Engineering

setting

∂

∂t
u1(ξ) =

∂

∂t
u0(ξ), (2.11)

and performing one integration, (2.9) reduces to

λu0(ξ) +
σ(t)
p + 1

u
p+1
0 (ξ) − λμ(t)u′′

0(ξ) = 0, (2.12)

where for sake of simplicity we set the constant of integration equal to zero. With the change
of variable

u0(ξ) = v2/p(ξ), (2.13)

equation (2.12) converts to

λv2(ξ) − 2μ(t)
(
2 − p

)
p2

λ
(
v′)2 − 2μ(t)

p
λv(ξ)v′′(ξ) +

σ(t)
p + 1

v(ξ)4 = 0. (2.14)

Observe that if v(ξ) is a solution to (2.14), then −v(ξ) is also a solution to this equation.

2.2. The Exp-Function Method

Recently, He and Wu [15] have introduced the Exp-function method to solve nonlinear
differential equations. In particular, the Exp-function method is an effective method for
solving nonlinear equations with high nonlinearity. The method has been used in a
satisfactory way by other authors to solve a great variety of nonlinear wave equations [15–
21]. The Exp-function method is very simple and straightforward, and can be briefly revised
as follows: Given the nonlinear partial differential equation

F(u, ux, ut, uxx, uxt, utt, . . .) = 0, (2.15)

it is transformed to ordinary differential equation

F
(
u, u′, u′′, u′′′, uxt, . . .

)
= 0, (2.16)

by mean of wave transformation ξ = x + λt + ξ0. Solutions to (2.16) can then be found using
the expression

u(ξ) =
∑d

n=−c an exp(nξ)∑q
n=−p bn exp (nξ)

, (2.17)
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where c, d, p, and q are positive integers which are unknown to be determined later, an and
bn are unknown constants.

After balancing, we substitute (2.17) into (2.16) to obtain an algebraic systems in the
variable ζ = exp(nξ). Solving the algebraic system we can obtain exact solutions to (2.16) and
reversing, solutions to (2.15) in the original variables.

3. Solutions to (2.14) by the Exp-Function Method

Using the Exp-function method, we suppose that solutions to (2.14) can be expressed in the
form

v(ξ) =
∑1

n=−1 an exp(nrξ)∑1
m=−1 bm exp(mrξ)

=
a−1 exp(−rξ) + a0 + a1 exp(rξ)
b−1 exp(−rξ) + b0 + b1 exp(rξ)

. (3.1)

We obtain following solutions to (2.14):

v1 = ± 2λk
(
p + 1

)(
p + 2

)
2
(
p + 1

)(
p + 2

)
λ exp

((
p/2
√
μ(t)
)
ξ
)
− k2σ(t) exp

(
−
(
p/2
√
μ(t)
)
ξ
) , λ = λ(t),

v2 = ± 2λk
(
p + 1

)(
p + 2

)
σ(t)k2 exp

((
p/2
√
μ(t)
)
ξ
)
− 2λ

(
p + 1

)(
p + 2

)
exp
(
−
(
p/2
√
μ(t)
)
ξ
) , λ = λ(t).

(3.2)

Some special solutions are obtained if

λ = λ(t) = ± k2

2
(
p2 + 3p + 2

)σ(t). (3.3)

This choice gives solutions

v3 = ±k
2
csch

(
p

2
√
μ(t)

ξ

)
, λ =

k2

2
(
p2 + 3p + 2

)σ(t), (3.4)

v4 =
k

2
sech

(
p

2
√
μ(t)

ξ

)
, λ = − k2

2
(
p2 + 3p + 2

)σ(t), (3.5)

v5 = ±k
2
csc

(
p

2
√
μ(t)

ξ

)
, λ = − k2

2
(
p2 + 3p + 2

)σ(t). (3.6)
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Solution (3.6) follows from (3.4) with the identifications μ(t) → −μ(t) and k → −k√−1.

v6 = −k
2
sec

(
p

2
√
μ(t)

ξ

)
, λ = − k2

2
(
p2 + 3p + 2

)σ(t). (3.7)

Solution (3.7) follows from (3.4) with the identifications μ(t) → −μ(t) and k → −k.

4. Particular Cases

4.1. Case 1: Solutions to (2.14) When p = 2

Equation (2.14) takes the form

λv2(ξ) − λμ(t)v(ξ)v′′(ξ) +
1
3
σ(t)v(ξ)4 = 0. (4.1)

From (3.2)with p = 2:

v7 = ± 24λk

24λ exp
((

1/
√
μ(t)
)
ξ
)
− k2σ(t) exp

(
−
(
1/
√
μ(t)
)
ξ
) ,

v8 = ± 24λk

k2σ(t) exp
((

1/
√
μ(t)
)
ξ
)
− 24λ exp

(
−
(
1/
√
μ(t)
)
ξ
) .

(4.2)

From (3.3)–(3.7) with p = 2:

v9 = ±k
2
csch

(
1√
μ(t)

ξ

)
, λ =

k2

24
σ(t),

v10 = ±k
2
sech

(
1√
μ(t)

ξ

)
, λ = −k

2

24
σ(t),

v11 = ±k
2
csc

(
1√−μ(t)

ξ

)
, λ = −k

2

24
σ(t),

v12 = ±k
2
sec

(
1√
μ(t)

ξ

)
, λ = −k

2

24
σ(t).

(4.3)
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Other exact solutions are:

v13 = ±

(
3a2 exp

(
2
√−2/μ(t)ξ

)
+ 2

√
55a exp

(√−2/μ(t)ξ
)
− 22

)
k

3a2 exp
(
2
√−2/μ(t)ξ

)
+ 22a exp

(√−2/μ(t)ξ
)
+ 22

, λ = −1
3
k2σ(t),

v14 = ±

(
3a2 ± 2

√
55a exp

(√−2/μ(t)ξ
)
− 22 exp

(
2
√−2/μ(t)ξ

))
k

3a2 + 22a exp
(√−2/μ(t)ξ

)
+ 22 exp

(
2
√−2/μ(t)ξ

) , λ = −1
3
k2σ(t),

v15 = ±k

⎛
⎜⎝1 −

44
(
8 +

√
55
)

3a
(
11 +

√
55
)
exp
(√−2/μ(t)ξ

)
+ 22

(
8 +

√
55
)
⎞
⎟⎠, λ = −1

3
k2σ(t),

v16 = ±
k
(
a ± sinh

(√−2/μ(t)ξ
))

√
a2 + 1 ± cosh

(√−2/μ(t)ξ
) , λ = −1

3
k2σ(t),

v17 = ±
k
(
a ± cosh

(√−2/μ(t)ξ
))

√
a2 + 1 ± sinh

(√−2/μ(t)ξ
) , λ = −1

3
k2σ(t),

v18 = ±
k cos

(√
2/μ(t)ξ

)

1 ± sin
(√

2/μ(t)ξ
) , λ =

k2

3
σ(t).

(4.4)

4.2. Case 2: Solutions to (2.14) When p = 4

Equation (2.14) takes the form

λv2(ξ) + μ(t)λ
(
v′)2 − λ

2
μ(t)v(ξ)v′′(ξ) +

1
5
σ(t)v(ξ)4 = 0. (4.5)

From (3.2)with p = 4:

v19 = ± 60λk

60λ exp
((

2/
√
μ(t)
)
ξ
)
− k2σ(t) exp

(
−
(
2/
√
μ(t)
)
ξ
) , λ = λ(t),

v20 = ± 60λk

σ(t)k2 exp
((

2/
√
μ(t)
)
ξ
)
− 60λ exp

(
−
(
2/
√
μ(t)
)
ξ
) , λ = λ(t).

(4.6)
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From (3.3)–(3.7) with p = 4:

v21 = ±k
2
csch

(
2√
μ(t)

ξ

)
, λ =

k2

60
σ(t),

v22 = ±k
2
sech

(
2√
μ(t)

ξ

)
, λ = −k

2

60
σ(t),

v23 = ±k
2
csc

(
2√−μ(t)

ξ

)
, λ = −k

2

60
σ(t),

v24 = ±k
2
sec

(
2√−μ(t)

ξ

)
, λ = −k

2

60
σ(t).

(4.7)

Other exact solutions are:

v25 = ±
k
(
a exp

((
2/
√−μ(t)

)
ξ
)
− 4
)2

a2 exp
((

4/
√−μ(t)

)
ξ
)
+ 16a exp

((
2/
√−μ(t)

)
ξ
)
+ 16

, λ = −1
5
k2σ(t),

v26 = ±
k
(
4 exp

(
2/
√−μ(t)ξ

)
− a
)2

a2 + 16a exp
((

2/
√−μ(t)

)
ξ
)
+ 16 exp

((
4/
√−μ(t)

)
ξ
) , λ = −1

5
k2σ(t),

v27 = ±2k

⎛
⎜⎝1 − 3

2 ± cos
((

2/
√
μ(t)
)
ξ
)
⎞
⎟⎠, λ = −4

5
k2σ(t),

v28 = ±2k

⎛
⎜⎝1 − 3

2 ± sin
((

2/
√
μ(t)
)
ξ
)
⎞
⎟⎠, λ = −4

5
k2σ(t).

(4.8)

It is clear that using (2.13) we obtain solutions to (1.5). Finally, observe that if u0(x, t) is a
solution of (1.5), then the solutions u(x, t) to the generalized BBM equation (1.6) are obtained
as follows:

u(x, t) = u0(x, t) − 1. (4.9)

5. Conclusions

We have considered the generalized EW-equation with variable coefficients and the
generalized BBM-equation with variable coefficients. We obtained analytic solutions by using
the variational iteration method combined with the exp-function method. With the aid of
Mathematica we have derived a lot of different types of solutions for these two models.
Combined formal soliton-like solutions as well as kink solutions have been formally derived.
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The results obtained show that the technique used here can be considered as a powerful
method to analyze other types of nonlinear wave equations.

According to [22], there are alternative iteration alorithms, which might be useful
for future work. Furthermore, various modifications of the exp-function method have been
appeared in open literature, for example, the double exp-function method [23, 24].

Other methods for solving nonlinear differential equations may be found in [25–35].
We think that the results presented in this paper are new in the literature.
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[26] A. H. Salas and C. A. Gómez, “Computing exact solutions for some fifth KdV equations with forcing
term,” Applied Mathematics and Computation, vol. 204, no. 1, pp. 257–260, 2008.
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[35] C. A. Gómez S and A. H. Salas, “The Cole-Hopf transformation and improved tanh-coth method
applied to new integrable system (KdV6),” Applied Mathematics and Computation, vol. 204, no. 2, pp.
957–962, 2008.


