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Apartado Aéreo 52465, Bogota, Colombia

4 Department of Mathematics, Universidad Nacional de Colombia, P.O. Box: Apartado Aéreo 127,
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The Cole-Hopf transform is used to construct exact solutions to a generalization of both the
seventh-order Lax KdV equation (Lax KdV7) and the seventh-order Sawada-Kotera-Ito KdV
equation (Sawada-Kotera-Ito KdV7).

1. Introduction

Many direct and computational methods have been used to handle nonlinear partial
differential equations (NLPDE’s). Some methods used in a satisfactory way to obtain exact
solutions to NLPDE’s are inverse scattering method [1], Hirota bilinear method [2, 3],
Backlund transformations [4], Painlevé analysis [5], Lie groups [6], the tanh method [7], the
generalized tanh method [8, 9], the extended tanh method [10–12], the improved tanh-coth
method [13, 14], the Exp-function method [15–17], the projective Riccati equation method
[18], the generalized projective Riccati equations method [19–24], the extended hyperbolic
functionmethod [25], variational iterationmethod [26, 27], He’s polynomials [28], homotopy
perturbation method [29], and many other methods [30]. However, there is not a unified
method that could be used to handle all NLPDE’s; in this sense, the implementation of new
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methods or variants of the some well-known methods is relevant. The principal objective
of this paper consists in obtaining exact traveling wave solutions which include periodic
and soliton solutions to a particular case of the general seventh-order KdV (KdV7), which
is a generalization of the seventh-order Sawada-Kotera-Ito (SKI-KdV7) equation, by using a
variant of the exp-function method. The general seventh-order KdV (KdV7) equation [31]
reads

ut + au3ux + bu3x + cuuxuxx + du
2uxxx + eu2xu3x + fuxu4x + guu5x + u7x = 0. (1.1)

The (KdV7) was introduced initially by Pomeau et al. [32] for discussing the structural
stability of KdV equation under a singular perturbation. Some particular cases of (1.1) are

(i) seventh-order Lax equation [1, 6] (a = 140, b = 70, c = 280, d = 70, e = 70, f = 42,
g = 14):

ut + 140u3ux + 70u3x + 280uuxuxx + 70u2uxxx + 70u2xu3x + 42uxu4x + 14uu5x + u7x = 0;
(1.2)

(ii) seventh-order Sawada-Kotera-Ito equation [1, 8–10] (a = 252, b = 63, c = 378,
d = 126, e = 63, f = 42, g = 21):

ut + 252u3ux + 63u3x + 378uuxuxx + 126u2uxxx + 63u2xu3x + 42uxu4x + 21uu5x + u7x = 0;
(1.3)

(iii) seventh-order Kaup-Kupershmidt equation [1, 7] (a = 2016, b = 630, c = 2268,
d = 504, e = 252, f = 147, g = 42):

ut + 2016u3ux + 630u3x + 2268uuxuxx + 504u2uxxx + 252u2xu3x + 147uxu4x + 42uu5x + u7x = 0.
(1.4)

2. Generalization of the Lax KdV7 and the Sawada-Kotera-Ito KdV7

Observe that (1.2) and (1.3) satisfy the relation

a =
d

63
(
e + f + g

)
. (2.1)

For this reason we will study equation

ut +
d

63
(
e + f + g

)
u3ux + bu3x + cuuxuxx + du

2uxxx + eu2xu3x + fuxu4x + guu5x + u7x = 0.

(2.2)

We seek solutions to (2.2) in the Cole-Hopf form

u(t, x) = A∂x tanh(ξ), (2.3)
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where A is some constant to be determined later and

ξ = ξ(t, x) = μ(x + λt + δ) , μ, δ, λ = const. (2.4)

Substituting (2.3) into (2.2), we obtain a polynomial equation in the variable ζ = exp(ξ).
Equating the coefficients of the different powers of ζ to zero, we obtain following algebraic
system:

λ + 64μ6 = 0,

64μ5(A
(
e + f + g

) − 247μ
)
+ 5λ = 0,

64μ4
(
A2(b + c + d) − 3Aμ

(
5e + 9f + 19g

)
+ 4293μ2

)
+ 9λ = 0,

64μ3
(
A3d

(
e+f+g

)−63A2μ(3b+5c+11d)+126Aμ2(28e+46f+151g
)−983997μ3

)
+315λ=0.

(2.5)

Eliminating A, λ, and μ from system (2.5) gives

b = d +
1
126

(
e + f + g

)(
e − 5f + 10g

)
,

c =
5
21
g
(
e + f + g

) − 2d.

(2.6)

It is easy to verify that (1.2) and (1.3) are particular cases of general KdV7 equation (1.1)
subject to (2.1) and (2.6). This motivates us to define the generalized Lax-Sawada-Kotera-Ito
seventh-order equation (LSKI KdV7) as follows:

ut +
1
63
d
(
e + f + g

)
u3ux +

(
d +

1
126

(
e + f + g

)(
e − 5f + 10g

)
)
u3x

+
(

5
21
g
(
e + f + g

) − 2d
)
uuxuxx + du2uxxx + eu2xu3x + fuxu4x + guu5x + u7x = 0.

(2.7)

3. Solutions to Generalized LSKI KdV7

In order to look for solutions to (2.7), we will use the exp ansatz

u(ξ) = p +
q

1 + r exp(−ξ) + s exp(ξ) , (3.1)

where p, q, r, and s are some constants. Substituting (3.1) into (2.7) gives an algebraic system.
Solving it, we obtain

λ = − 1
63
d
(
e + f + g

)
p3 − μ2

(
dp2 + gpμ2 + μ4

)
, q =

126μ2

e + f + g
, s =

1
4r
, r = r, μ = μ. (3.2)
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From (2.4), (3.1), and (3.2), we obtain following solution to (2.7) subject:

u(x, t) = p +
126μ2

(
e + f + g

)(
1 + r exp(ξ) + (1/4r) exp(−ξ)) ,

ξ = μ(x + λt + δ),

λ = − 1
63
d
(
e + f + g

)
p3 − μ2

(
dp2 + gpμ2 + μ4

)
.

(3.3)

In particular, if r = 1/2, equation (3.3) gives

u(x, t) = p +
63μ2

e + f + g
sech2

(μ
2
(x + λt + δ)

)
,

λ = − 1
63
d
(
e + f + g

)
p3 −

(
dp2 + gpμ2 + μ4

)
μ2.

(3.4)

Replacing μ with μ
√−1 gives the following periodic solutions:

u(x, t) = p − 63μ2

e + f + g
sec2

(μ
2
(x + λt + δ)

)
,

λ = − 1
63
d
(
e + f + g

)
p3 +

(
dp2 − gpμ2 + μ4

)
μ2.

(3.5)

On the other hand, if r = −1/2, equation (3.3) gives

u(x, t) = p − 63μ2

e + f + g
csch2

(μ
2
(x + λt + δ)

)
,

λ = − 1
63
d
(
e + f + g

)
p3 −

(
dp2 + gpμ2 + μ4

)
μ2.

(3.6)

Replacing μ with μ
√−1 gives the following periodic solutions:

u(x, t) = p − 63μ2

e + f + g
csc2

(μ
2
(x + λt + δ)

)
,

λ = − 1
63
d
(
e + f + g

)
p3 +

(
dp2 − gpμ2 + μ4

)
μ2.

(3.7)
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4. Solutions to Sawada-Kotera-Ito KdV7 Equation

From (3.3)–(3.7) with d = 126, e = 63, f = 42, and g = 21, we obtain the following analytic
solutions to equation (1.3):

u(x, t) = p +
4rμ2 exp

(
μ(x + λt + δ)

)

(
1 + 2r exp

(
μ(x + λt + δ)

))2 , λ = −252p3 − 126p2μ2 − 21pμ4 − μ6,

u(x, t) = p +
1
2
μ2sech2

(
1
2
μ(x + λt + δ)

)
, λ = −252p3 − 126p2μ2 − 21pμ4 − μ6,

u(x, t) = p − 1
2
μ2sec2

(
1
2
μ(x + λt + δ)

)
, λ = −252p3 + 126p2μ2 − 21pμ4 + μ6,

u(x, t) = p − 1
2
μ2csch2

(
1
2
μ(x + λt + δ)

)
, λ = −252p3 − 126p2μ2 − 21pμ4 − μ6.

(4.1)

5. Conclusions

We exhibited an equation that generalizes both seventh-order Lax equation and seventh-
order Sawada-Kotera-Ito equation. At the same time, we obtained exact solutions to these
equations with the aid of a Cole-Hopf ansatz. These same ideas are suitable for the seventh-
order Kaup-Kupershmidt equation. We think that some of the solutions in this work are new
in the open literature. We may apply other methods to find exact solutions to a variety of
nonlinear PDE’s. See [3, 12–52].
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