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We investigate the steady two-dimensional flow of a viscous incompressible fluid in a rectangular
domain that is bounded by two permeable surfaces. The governing fourth-order nonlinear
differential equation is solved by applying the spectral-homotopy analysis method and a novel
successive linearisation method. Semianalytical results are obtained and the convergence rate
of the solution series was compared with numerical approximations and with earlier results
where the homotopy analysis and homotopy perturbation methods were used. We show that both
the spectral-homotopy analysis method and successive linearisation method are computationally
efficient and accurate in finding solutions of nonlinear boundary value problems.

1. Introduction

Laminar viscous flow in tubes that allow seepage across contracting or expanding permeable
walls is encountered in the transport of biological fluids such as blood and filtration in
kidneys and lungs. Such flows have many other practical applications such as in binary gas
diffusion, chromatography, ion exchange, and ground water movement [1–6]. In addition,
flow in channels with permeable walls provides a good starting point for the study of flow in
multichannel filtration systems such as the wall flowmonolith filter used to reduce emissions
from diesel engines introduced by Oxarango et al. in [7]. Consequently, in the past four
decades a considerable amount of research effort has been expended in the study of laminar
flows in rectangular domains that are bounded by permeable walls [8–15].

The equations governing such flows are generally nonlinear and in the past asymptotic
techniques, and numerical methods have been used to analyze such flows and to solve the
equations; for example, in the pioneering study by Berman [8] asymptotic methodswere used



2 Mathematical Problems in Engineering

to solve the steady flow problem for small suction. In the study by Uchida and Aoki [16],
numerical methods were used to solve the governing nonlinear equations and to explain
the flow characteristics. Majdalani and Roh [4] and Majdalani [3] studied the oscillatory
channel flow with wall injection, and the resulting governing equations were solved using
asymptotic formulations (WKB and multiple-scale techniques). The multiple-scale solution
was found to be advantageous over the others in that its leading-order term is simpler and
more accurate than other formulations, and it displayed clearly the relationship between
the physical parameters that control the final motion. It also provided means of quantifying
important flow features such as corresponding vortical wave amplitude, rotational depth of
penetration, and near wall velocity overshoot to mention a few. Jankowski and Majdalani
[12] used the same approach and drew similar conclusions about the multiple-scale solution
for oscillatory channel flow with arbitrary suction. An analytical solution by means of the
Liouville-Green transformation was developed for laminar flow in a porous channel with
large wall suction and a weakly oscillatory pressure by Jankowski and Majdalani [13]. The
scope of the problem hadmany limitations, for example, the study did not consider variations
in thermostatic properties and the oscillatory pressure amplitude was taken to be small in
comparison with the stagnation pressure. Zhou and Majdalani [17] investigated the mean-
flow for slab rocket motors with regressing walls. The transformed governing equation was
solved numerically, using finite differences, and asymptotically, using variation of parameters
and small parameter perturbations in the blowing Reynolds number. The results from the two
methods were compared for different Reynolds numbers Re and the wall regression rate α,
and it was observed that accuracy of the analytical solution deteriorates for small Re and large
α. A good agreement between the solutions was observed for large values of Re. A similar
analysis was done by Majdalani and Zhou [6] for moderate-to-large injection and suction
driven channel flows with expanding or contracting walls.

In recent years, the use of nonperturbation techniques such as the Adomian
decomposition method [18, 19]. He’s homotopy perturbation method [20, 21], and the
homotopy analysis method [22, 23] has been increasingly preferred to solve nonlinear
differential equations that arise in science and engineering. Dinarvand et al. [2] solved
Berman’s model of two-dimensional viscous flow in porous channels with wall suction
or injection using both the HAM and the homotopy perturbation method (HPM). They
concluded that the HPM solution is not valid for large Reynolds numbers, a weakness earlier
observed in the case of other perturbation techniques. Using the homotopy analysis method,
Xu et al. [24] developed highly accurate series approximations for two-dimensional viscous
flow between two moving porous walls and obtained multiple solutions associated with
this problem. The multiple solutions associated with this problem were also reported by
Zarturska et al. [25]. Although the homotopy analysis method is a reliable and efficient semi-
analytical technique, it however suffers from a number of limiting assumptions such as the
requirements that the solution ought to conform to the so-called rule of solution expression
and the rule of coefficient ergodicity. A modification of the homotopy analysis method, see
Motsa et al. [26, 27], seeks to produce a more efficient method while also addressing the
limitations of the HAM. In this paper, we use the spectral homotopy analysis method to
solve the nonlinear differential equation that governs the flow of a viscous incompressible
fluid in a rectangular domain bounded by two permeable walls. The problem is also solved
using a new and highly efficient technique, the successive linearisation method (see [28, 29])
so as to independently corroborate and validate the SHAM results. The results are also
compared with numerical approximations and the recent results reported in Xu et al. [24]
and Dinarvand and Rashidi [30].
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2. Governing Equations

Consider two-dimensional laminar, isothermal, and incompressible viscous fluid flow in a
rectangular domain bounded by two permeable surfaces that enable the fluid to enter or exit
during successive expansions or contractions. The walls are placed at a separation 2a and
contract or expand uniformly at a time-dependent rate ȧ(t). The governing Navier-Stokes
equations are given in Majdalani et al. [31] as

∂û

∂x̂
+
∂v̂

∂ŷ
= 0, (2.1)

∂û
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+ û

∂û
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where û and v̂ are the velocity components in the x̂ and ŷ directions, respectively, p̂, ρ, ν and
t are the dimensional pressure, density, kinematic viscosity, and time, respectively. Assuming
that inflow or outflow velocity is vw, then the boundary conditions are

û(x̂, a) = 0, v̂(a) = −vw = −ȧ/c,
∂û

∂ŷ
(x̂, 0) = 0, v̂(0) = 0, û

(

0, ŷ
)

= 0,
(2.4)

where c(= ȧ/vw) is the injection or suction coefficient. Introducing the stream function ψ̂ =
νx̂ ̂F(y, t)/a and the transformations

ψ =
ψ̂

aȧ
, u =

û

ȧ
, v =

v̂

ȧ
, x =

x̂

a
, y =

ŷ

a
, F =

̂F

Re
, (2.5)

Majdalani et al. [31] and Dinarvand and Rashidi [30] showed that (2.1)–(2.3) reduce to the
normalized nonlinear differential equation

FIV + α
(

yF ′′′ + 3F ′′) + Re
(

FF ′′′ − F ′F ′′) = 0, (2.6)

subject to the boundary conditions

F = 0, F ′′ = 0, at y = 0, (2.7)

F = 1, F ′ = 0, at y = 1, (2.8)

where α(t) = ȧa/ν is the nondimensional wall dilation rate defined to be positive for
expansion and negative for contraction, and Re = avw/ν is the filtration Reynolds number
defined positive for injection and negative for suction through the walls. Equation (2.6) is
strongly nonlinear and not easy to solve analytically, and most researchers have studied
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the classic Berman formula [8]; that is, when α = 0. In this paper, we seek to solve (2.6)
subject to the boundary conditions (2.7) and (2.8) using a novel spectral modification of the
homotopy analysis method and the successive linearisation method. By comparison with
the numerical approximations and previously obtained results, we show that these new
techniques are accurate and more efficient than the standard homotopy analysis method.

3. Spectral Homotopy Analysis Method Solution

In applying the spectral-homotopy analysis method, it is convenient to first transform the
domain of the problem from [0, 1] to [−1, 1] and make the governing boundary conditions
homogeneous by using the transformations

y =
ξ + 1
2

, U(ξ) = F
(

y
) − F0

(

y
)

, F0
(

y
)

=
3
2
y − 1

2
y3. (3.1)

Substituting (3.1) in the governing equation and boundary conditions (2.6)–(2.8) gives

16U1V + 8a1U′′′ + 4a2U′′ + 2a3U′ − 3ReU + 8Re
(

UU′′′ −U′U′′) = φ
(

y
)

, (3.2)

subject to

U = 0, U′′ = 0, ξ = −1,
U = 0, U′ = 0, ξ = 1,

(3.3)

where the primes denote differentiation with respect to ξ and

a1 = αy + Re
(

3
2
y − 1

2
y3
)

, a2 = 3α − 3
2
Re
(

1 − y2
)

,

a3 = 3yRe, φ
(

y
)

= 12αy + 3Rey3.

(3.4)

The initial approximation is taken to be the solution of the nonhomogeneous linear
part of the governing equations (3.2) given by

16U1V
0 + 8a1U′′′

0 + 4a2U′′
0 + 2a3U′

0 − 3ReU0 = φ
(

y
)

, (3.5)

subject to

U0 = 0, U′′
0 = 0, ξ = −1,

U0 = 0, U′
0 = 0, ξ = 1.

(3.6)
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We use the Chebyshev pseudospectral method to solve (3.5)–(3.6). The unknown function
U0(ξ) is approximated as a truncated series of Chebyshev polynomials of the form

U0(ξ) ≈ UN
0
(

ξj
)

=
N
∑

k=0

̂UkTk
(

ξj
)

, j = 0, 1, . . . ,N, (3.7)

where Tk is the kth Chebyshev polynomial, ̂Uk, are coefficients and ξ0, ξ1, . . . , ξN are Gauss-
Lobatto collocation points (see [32]) defined by

ξj = cos
πj

N
, j = 0, 1, . . . ,N. (3.8)

Derivatives of the functionsU0(ξ) at the collocation points are represented as

drU0

dξr
=

N
∑

k=0

Dr
kjU0

(

ξj
)

, (3.9)

where r is the order of differentiation and D is the Chebyshev spectral differentiation matrix
([32, 33]). Substituting (3.7)–(3.9) in (3.5)–(3.6) yields

AU0 = Φ, (3.10)

subject to the boundary conditions

U0(ξ0) = 0, U0(ξN) = 0, (3.11)

N
∑

k=0

D2
NkU0(ξk) = 0,

N
∑

k=0

D0kU0(ξk) = 0, (3.12)

where

A = 16D4 + 8a1D3 + 4a2D2 + 2a3D − 3Re I,

U0 = [U0(ξ0), U0(ξ1), . . . , U0(ξN)]T ,

Φ =
[

φ
(

y0
)

, φ
(

y1
)

, . . . , φ
(

yN
)]T

,

(3.13)

as = diag
([

as
(

y0
)

, as
(

y1
)

, . . . , as
(

yN−1
)

, as
(

yN
)])

, s = 1, 2, 3. (3.14)

In the above definitions, the superscript T denotes transpose, diag is a diagonal matrix and I
is an identity matrix of size (N + 1) × (N + 1).

To implement the boundary conditions (3.11), we delete the first and the last rows
and columns of A and delete the first and last rows of U0 and Φ. The boundary conditions
(3.12) are imposed on the resulting first and last rows of the modified matrix A and
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setting the resulting first and last rows of the modified matrix Φ to be zero. The values of
[U0(ξ1), U0(ξ2), . . . , U0(ξN−1)] are then determined from

U0 = A−1Φ. (3.15)

To find the SHAM solutions of (3.2) we begin by defining the following linear operator:

L
[

˜U
(

ξ; q
)

]

= 16
∂4 ˜U

∂ξ4
+ 8a1

∂3 ˜U

∂ξ3
+ 4a2

∂2 ˜U

∂ξ2
+ 2a3

∂ ˜U

∂ξ
− 3Re ˜U, (3.16)

where q ∈ [0, 1] is the embedding parameter, and ˜U(ξ; q) is an unknown function.
The zeroth order deformation equation is given by

(

1 − q)L
[

˜U
(

ξ; q
) −U0(ξ)

]

= q�
{

N
[

˜U
(

ξ; q
)

]

−Φ
}

, (3.17)

where � is the nonzero convergence controlling auxiliary parameter and N is a nonlinear
operator given by

N
[

˜U
(

ξ; q
)

]

= 16
∂4 ˜U

∂ξ4
+ 8a1

∂3 ˜U

∂ξ3
+ 4a2

∂2 ˜U

∂ξ2
+ 2a3

∂ ˜U
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− 3Re ˜U + 8Re

(

U
∂3 ˜U

∂ξ3
− ∂ ˜U

∂ξ

∂2 ˜U

∂ξ2

)

.

(3.18)

Differentiating (3.17) m times with respect to q and then setting q = 0 and finally
dividing the resulting equations bym! yields themth order deformation equations

L[Um(ξ) − χmUm−1(ξ)
]

= �Rm, (3.19)

subject to the boundary conditions

Um(−1) = Um(1) = U′′
m(−1) = U′

m(1) = 0, (3.20)

where

Rm(ξ) = 16U1V
m−1 + 8a1U′′′

m−1 + 4a2U′′
m−1 + 2a3U′

m−1 − 3ReUm−1

+ 8Re
m−1
∑

n=0

(

UnU
′′′
m−1−n −U′

nU
′′
m−1−n

) − φ(y)(1 − χm
)

,
(3.21)

χm =

⎧

⎨

⎩

0, m ≤ 1

1, m > 1.
(3.22)

Applying the Chebyshev pseudospectral transformation on (3.19)–(3.21) gives

AUm =
(

χm + �
)

AUm−1 − �
(

1 − χm
)

Φ + �Pm−1 (3.23)
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subject to the boundary conditions

Um(ξ0) = 0, Um(ξN) = 0, (3.24)

N
∑

k=0

D2
NkUm(ξk) = 0,

N
∑

k=0

D0kUm(ξk) = 0, (3.25)

where A and Φ, are as defined in (3.13) and

Um = [Um(ξ0), Um(ξ1), . . . , Um(ξN)]T ,

Pm−1 = 8Re
m−1
∑

n=0

[

Un

(

D3Um−1−n
)

− (DUn)
(

D2Um−1−n
)]

.
(3.26)

To implement the boundary conditions (3.24) we delete the first and last rows of Pm−1 and
Φ and delete the first and last rows and first and last columns of A in (3.23). The boundary
conditions (3.25) are imposed on the first and last row of the modified A matrix on the left
side of the equal sign in (3.23). The first and last rows of the modifiedAmatrix on the right of
the equal sign in (3.23) are the set to be zero. This results in the following recursive formula
form ≥ 1:

Um =
(

χm + �
)

A−1
˜AUm−1 + �A−1[Pm−1 −

(

1 − χm
)

Φ
]

. (3.27)

Thus, starting from the initial approximation, which is obtained from (3.15), higher-order
approximationsUm(ξ) form ≥ 1 can be obtained through the recursive formula (3.27).

4. Successive Linearisation Method

In this section, we solve (2.6) using the successive linearisation method. The main
assumptions underpinning the use of the successive linearisation method are the following.

(i) The unknown function F(y)maybe expanded as

F
(

y
)

= Fi
(

y
)

+
i−1
∑

m=0

Fm
(

y
)

, i = 1, 2, 3, . . . , (4.1)

where Fi are unknown functions and Fm (m ≥ 1) are approximations which are
obtained by recursively solving the linear part of the equation that results from
substituting (4.1) in the governing equation (2.6).

(ii) Fi becomes progressively smaller as i becomes large, that is,

lim
i→∞

Fi = 0. (4.2)
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Substituting (4.1) in the governing equation gives

F
(iv)
i + a1,i−1F ′′′

i + a2,i−1F ′′
i + a3,i−1F

′
i + a4,i−1Fi + Re

(

FiF
′′′
i − F ′

iF
′′
i

)

= ri−1, (4.3)

where the coefficient parameters ak,i−1, (k = 1, 2, 3, 4), and ri−1 are defined as

a1,i−1 = Re
i−1
∑

m=0

Fm + αy, a2,i−1 = −Re
i−1
∑

m=0

F ′
m + 3α,

a3,i−1 = −Re
i−1
∑

m=0

F ′′
m, a4,i−1 = Re

i−1
∑

m=0

F ′′′
m,

ri−1 = −
(

i−1
∑

m=0

F
(iv)
m + αy

i−1
∑

m=0

F ′′′
m + 3α

i−1
∑

m=0

F ′′
m

)

− Re

(

i−1
∑

m=0

Fm
i−1
∑

m=0

F ′′′
m −

i−1
∑

m=0

F ′
m

i−1
∑

m=0

F ′′
m

)

.

(4.4)

The SLM algorithm starts from the initial approximation

F0
(

y
)

=
1
2
(

3 + β
)

y − 1
2
(

1 + 3β
)

y3 + βy4, (4.5)

which is chosen to satisfy the boundary conditions (2.7)–(2.8). The parameter β in (4.5) is an
arbitrary constant which when varied results in multiple solutions. The subsequent solutions
for Fm, m ≥ 1 are obtained by successively solving the linearized form of (4.3) and which is
given as

F
(iv)
i + a1,i−1F ′′′

i + a2,i−1F ′′
i + a3,i−1F

′
i + a4,i−1Fi = ri−1, (4.6)

subject to the boundary conditions

Fi(0) = 0, F ′′
i (0) = 0, Fi(1) = 1, F ′

i(1) = 0. (4.7)

Once each solution for Fi, (i ≥ 1) has been found from iteratively solving (4.6) for each i, the
approximate solution for F(y) is obtained as

F
(

y
) ≈

M
∑

m=0

Fm
(

y
)

, (4.8)

where M is the order of SLM approximation. Since the coefficient parameters and the right
hand side of (4.6), for i = 1, 2, 3, . . ., are known from previous iterations, (4.6) can easily
be solved using analytical means or any numerical methods such as finite differences, finite
elements, Runge-Kutta-based shooting methods, or collocation methods. In this paper, (4.6)
is integrated using the Chebyshev spectral collocation method [32, 33] as described in the
previous section.
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Applying the Chebyshev spectral method to (4.6) leads to the matrix equation

Ai−1Fi = Ri−1, (4.9)

in which A is an (N + 1) × (N + 1) square matrix and Y and R are (N + 1) × 1 column vectors
defined by

A = D4 + a1,i−1D3 + a2,i−1D2 + a3,i−1D + a4,i−1,

Ri−1 = ri−1,
(4.10)

with

Fi = [Fi(x0), Fi(x1), . . . , Fi(xN−1), Fi(xN)]T ,

ri−1 = [ri−1(x0), ri−1(x1), . . . , ri−1(xN−1), ri−1(xN)]T .
(4.11)

In the above definitions,N is the number of collocation points, x = 2y−1, ak,i−1, (k = 1, 2, 3, 4)
are diagonal matrices of size (N+1)×(N+1), andD = 2D. After modifying the matrix system
(4.9) to incorporate boundary conditions, the solution is obtained as

˜Yi = A−1
i−1Ri−1. (4.12)

5. Results and Discussion

In this section, we compare the results obtained using the various methods: the SHAM, the
SLM, and the numerical approximations with those obtained using the HAM in Dinarvand
and Rashidi [30] and the homotopy-Páde method in Xu et al. [24]. The solution obtained
using most numerical solutions depends on the initial approximation. Using different initial
guesses can give rise to multiple solutions. Multiple solutions were obtained if the initial
guess in (4.5) is used in the SHAM method in place of F0(y) in (3.1). In this paper, it
was observed that using different values of β results in multiple solutions. For the multiple
solutions comparison was made against the HAM results of [24].

An optimal � value can easily be sought that can considerably improve the
convergence rate of the results. However, for comparison purposes we used � = −1. It is
however worth noting, as pointed out in Dinarvand et al. [2], that when � = −1, the solution
series obtained by the HAM is the same solution series obtained by means of the homotopy
perturbation method.

In Table 1 we compare the values of F(y) when α = −1 and Re = −2, 0 and 2 with the
numerical and the HAM results reported in Dinarvand and Rashidi [30]. In [30], convergence
up to six decimal places was achieved at the sixth order of the HAM approximation for Re = 0
and 2. In this study, the same level of convergence and accuracy was achieved at the first
order approximation for the same values of Re. For Re = −2 the convergence of the homotopy
analysis method series solutionwas achieved at the eighth order of approximation while with
the spectral homotopy analysis method series solution gives the same level of convergence at
the second order.
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Table 1: Comparison of the numerical results against the SHAM approximate solutions for F(y) when
α = −1 withN = 60 and � = −1.
Re y 0th order 1st order 2nd order 3rd order Numerical Ref. [30]
−2 0.2 0.273828 0.273831 0.273832 0.273832 0.273832 0.273832

0.4 0.532827 0.532839 0.532839 0.532839 0.532839 0.532839
0.6 0.759442 0.759467 0.759468 0.759468 0.759468 0.759468
0.8 0.928967 0.928990 0.928990 0.928990 0.928990 0.928990

0 0.2 0.279449 0.279449 0.279449 0.279449 0.279449 0.279449
0.4 0.542243 0.542243 0.542243 0.542243 0.542243 0.542243
0.6 0.768950 0.768950 0.768950 0.768950 0.768950 0.768950
0.8 0.933889 0.933889 0.933889 0.933889 0.933889 0.933889

2 0.2 0.283996 0.283983 0.283983 0.283983 0.283983 0.283983
0.4 0.549759 0.549738 0.549738 0.549738 0.549738 0.549738
0.6 0.776328 0.776306 0.776306 0.776306 0.776306 0.776306
0.8 0.937518 0.937507 0.937507 0.937507 0.937507 0.937507

Table 2: Comparison of the numerical results against the SHAM approximate solutions for F ′′(1) when
α = −1 withN = 60 and � = −1 for different values of Re.

Re 0th order 1st order 2nd order 3rd order 4th order Numerical
0 −3.8213722 −3.8213723 −3.8213723 −3.8213723 −3.8213723 −3.8213723
5 −3.1725373 −3.1731774 −3.1731800 −3.1731800 −3.1731800 −3.1731800
10 −2.9069253 −2.9069653 −2.9069654 −2.9069654 −2.9069654 −2.9069654
15 −2.7783086 −2.7784366 −2.7784369 −2.7784369 −2.7784369 −2.7784369
20 −2.7056150 −2.7060556 −2.7060557 −2.7060557 −2.7060557 −2.7060557
25 −2.6596223 −2.6603920 −2.6603907 −2.6603907 −2.6603907 −2.6603907
30 −2.6281102 −2.6291718 −2.6291682 −2.6291682 −2.6291682 −2.6291682
40 −2.5879160 −2.5894333 −2.5894247 −2.5894247 −2.5894247 −2.5894247
50 −2.5634446 −2.5652868 −2.5652732 −2.5652733 −2.5652733 −2.5652733
100 −2.5139141 −2.5165255 −2.5164964 −2.5164967 −2.5164967 −2.5164967
150 −2.4972813 −2.5001845 −2.5001479 −2.5001484 −2.5001484 −2.5001484

In Table 2, we demonstrate the computational efficiency of the SHAM solution for
large values of Re. As has been noted in the introduction, some semi-analytical methods
fail to converge at large values of Re, for example, Dinarvand et al. [2] have shown that for
|Re | > 9.5 the HPM fails to converge. However, in using the SHAM convergence up seven
decimal places is achieved at the third order of approximation for values of Re as large as
Re = 150. For 5 ≤ Re < 100 convergence up six decimal places is achieved at the second order.
In Table 3, Re = 2 is fixed and F ′′(1) evaluated for −2.5 ≤ α ≤ 2.5. Convergence up to seven
digits is achieved at the first order for α = 0, at the second order for −2 ≤ α ≤ −0.5, and at the
third-order approximation for α = −2.5. Clearly the SHAM gives faster convergence than the
HAM under the same conditions.

Table 3 also gives a comparison of the SHAM approximate results with the numerical
results generated using different values ofN. It is evident however that for small values ofN
(say less thanN = 20) the SHAM results are not very accurate. Accuracy however improves
with an increase inN.

Table 4 gives a comparison of the numerical and the SHAM results of F ′′(1) when
−2.5 ≤ α ≤ 2.5. Convergence is generally achieved at either the third- or the fourth-order
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Table 3: Comparison of the numerical results against the SHAM approximate solutions for F ′′(1) when
α = −1 with Re = 10 and � = −1 for different values ofN.

N 0th order 1st order 2nd order 3rd order 4th order Numerical
10 −2.7059921 −2.7064302 −2.7064302 −2.7064302 −2.7064302 −2.7060557
15 −2.7056141 −2.7060549 −2.7060550 −2.7060549 −2.7060549 −2.7060557
20 −2.7056150 −2.7060556 −2.7060557 −2.7060557 −2.7060557 −2.7060557
30 −2.7056150 −2.7060556 −2.7060557 −2.7060557 −2.7060557 −2.7060557
40 −2.7056150 −2.7060556 −2.7060557 −2.7060557 −2.7060557 −2.7060557
60 −2.7056150 −2.7060556 −2.7060557 −2.7060557 −2.7060557 −2.7060557

Table 4: Comparison of the numerical results against the SHAM approximate solutions for F ′′(1) when
Re = 2 withN = 60 and � = −1 for different values of α.
α 1st order 2nd order 3rd order 4th order Numerical
−2.5 −4.5258487 −4.5258506 −4.5258505 −4.5258505 −4.5258505
−2.0 −4.1673848 −4.1673892 −4.1673892 −4.1673892 −4.1673892
−1.5 −3.8209704 −3.8209740 −3.8209740 −3.8209740 −3.8209740
−1.0 −3.4873966 −3.4873982 −3.4873982 −3.4873982 −3.4873982
−0.5 −3.1674332 −3.1674334 −3.1674334 −3.1674334 −3.1674334
0.0 −2.8618116 −2.8618116 −2.8618116 −2.8618116 −2.8618116
0.5 −2.5712067 −2.5712055 −2.5712055 −2.5712055 −2.5712056
1.0 −2.2962176 −2.2962075 −2.2962076 −2.2962076 −2.2962076
1.5 −2.0373492 −2.0373088 −2.0373092 −2.0373092 −2.0373092
2.0 −1.7949940 −1.7948795 −1.7948810 −1.7948810 −1.7948810
2.5 −1.5694172 −1.5691503 −1.5691557 −1.5691556 −1.5691556

of the SHAM approximation. Figures 1 and 2 give a comparison of the numerical and the
SHAM solutions for the characteristic mean-flow function F(y) = −ν/c and F ′(y) = μc/x at
different Reynolds numbers and α. The mean-flow function F(y), increases with increasing
(positive) values of Re and α while F ′(y) decreases, which makes sense since F(y) is
inversely proportional to the injection or suction coefficient c = α/Re while F ′(y) is directly
proportional. Figure 1 further illustrates the efficiency of the solution method with excellent
agreement for Re as large as 200.

Using the initial approximation F0(y) in (4.5)with different values of β in place of (3.1)
in the SHAM implementation leads to multiple solutions. When β = 0 and −5, the SHAM
gives the multiple solutions observed in Xu et al. [24]. A comparison of the SHAM results
against the HAM results reported in [24] is presented in Table 5. It is evident that the SHAM
results converge much more rapidly than the HAM results of [24] for both branches of the
solution.

Tables 6 and 7 give, first, the analytical approximations of F ′(0)/Re and F ′′′(0)/Re
for the two solutions obtained using the successive linearisation method. Secondly, the tables
give a direct comparison of the convergence rates of the SLM and the [m,m] homotopy-Padé
method used by Xu et al. [24]. The fourth-order SLM approximation gives the same level
of accuracy as the twenty-fourth-order of the [m,m] homotopy-Páde approximation, which
suggests that the successive linearisation method is much more computationally efficient and
accurate compared to the [m,m] homotopy-Páde approximation (although it is not clear at
this stage whether this could be attributed to the use of a more efficient initial guess).
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Figure 1: Comparison between numerical and SHAM approximate solution of F(y) and F ′(y) for different
values of Re when α = −1 when � = −1.14 (for Re = −10) and � = −1 (for Re = 0, 200).

α = 5
α = 2.5
α = 0

α = −2.5
α = −5

0
0 0.2 0.4 0.6 0.8 1

y

0.2

0.4

0.6

0.8

1

0.1

0.3

0.5

0.7

0.9

F
(y

)

(a)

2

1

1.5

0.5

α = 5
α = 2.5
α = 0

α = −2.5
α = −5

0
0 0.2 0.4 0.6 0.8 1

y

F
′ (
y
)

(b)

Figure 2: Comparison between numerical and SHAM approximate solution of F(y) and F ′(y) for different
values of αwhen Re = 2 when � = −1 (for α = −5,−2.5, 0, 2.5) and � = −0.94 (for α = 5).

Table 5: Comparison between the multiple solutions of HAM results (see [24]) and the present SHAM
results in the case of Re = −10 and α = 4.

HAM solution [24] SHAM solution
Order of approx. F ′(0) F ′′′(0) Order of approx. F ′(0) F ′′′(0)

First solution 10 0.624 161 8.267 56 5 0.625549 8.24662
20 0.624 967 8.256 03 10 0.625016 8.25532
30 0.625 005 8.255 48 15 0.625008 8.25544
40 0.625 007 8.255 45 20 0.625007 8.25545
50 0.625 007 8.255 45 25 0.625007 8.25545

Second solution 10 −1.189 95 35.8984 5 −1.190529 35.85647
20 −1.190 03 35.8474 10 −1.190322 35.85414
30 −1.190 41 35.8555 15 −1.190323 35.85416
40 −1.190 31 35.8539 20 −1.190323 35.85416
50 −1.190 33 35.8542 25 −1.190323 35.85416
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Table 6: Comparison of F ′(0)/Re and F ′′′(0)/Re obtained at different orders for the SLM, and the [m,m]
homotopy-Páde approximation when Re = −10 and α = 4. For the SLM first solution, β = −1, andN = 25,
and for the SLM second solution, β = −5, andN = 25.

[m,m] homotopy-Padé [24] SLM
order F ′(0)/Re F ′′′(0)/Re order F ′(0) F ′′′(0)

First solution 4 0.624478732 8.265444222 2 0.624485895 8.26283765
8 0.625005336 8.255477422 3 0.625007516 8.25544430
16 0.625007395 8.255446127 4 0.625007396 8.25544612
20 0.625007396 8.255446125 6 0.625007396 8.25544612
24 0.625007396 8.255446124 8 0.625007396 8.25544612

Second solution 4 −1.219891 36.01091 2 −1.190934 35.86042
8 −1.178465 35.17878 3 −1.190323 35.85416
16 −1.190319 35.85409 4 −1.190323 35.85416
20 −1.190323 35.85415 6 −1.190323 35.85416
24 −1.190323 35.85416 8 −1.190323 35.85416

Table 7: Comparison of F ′(0)/Re and F ′′′(0)/Re obtained at different orders for the SLM, and the [m,m]
homotopy-Páde approximation when Re = −11 and α = 3/4. For the SLM first solution, β = −5, and
N = 25, β = 1, andN = 25 for the SLM second solution, and for the SLM third solution β = 3, andN = 25.

[m,m] homotopy-Páde [24] SLM
order F ′(0)/Re F ′′′(0)/Re order F ′(0) F ′′′(0)

First solution 4 −1.0231621 24.2925851 2 −1.3250168 27.8640486
8 −1.0237700 24.2863797 3 −1.0765777 24.9095006
16 −1.0237712 24.2863088 4 −1.0259527 24.3119987
20 −1.0237712 24.2863088 6 −1.0237712 24.2863088
24 −1.0237712 24.2863088 8 −1.0237712 24.2863088

Second solution 4 0.1668590 10.282860 2 0.2134950 9.682581
8 0.1679980 10.239451 3 0.1718420 10.216566
16 0.1693518 10.245026 4 0.1693573 10.245102
20 0.1693532 10.245150 6 0.1693531 10.245151
24 0.1693532 10.245151 8 0.1693531 10.245151

Third solution 4 . . . . . . 2 2.76262 −15.5266
8 2.81591 −15.8950 3 2.76111 −15.5123
16 2.76154 −15.5157 4 2.76111 −15.5122
20 2.76113 −15.5123 6 2.76111 −15.5122
24 2.76111 −15.5123 8 2.76111 −15.5122

6. Conclusion

In this paper, we have used the spectral homotopy analysis method (SHAM) and the
successive linearisation method (SLM) to solve a fourth-order nonlinear boundary value
problem that governs the two-dimensional Laminar flow between two moving porous walls.
Multiple solutions recently reported in Xu et al. [24] have been obtained, depending on the
initial approximation used. Comparison of the computational efficiency and accuracy of the
results between the current methods and the previous homotopy analysis method results
described in Dinarvand and Rashidi [30] and Xu et al. [24] has been made. Our simulations
show that the convergence of the SHAM solution series to the numerical solution (up to six
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decimal place accuracy) is achieved at the second order (for Re = −2) and first order for
R = 0, 2. In contrast to the standard homotopy analysis method (c.f. Dinarvand and Rashidi
[30]) convergence was achieved at the eighth order (for Re = −2) and sixth order for Re = 0, 2.
The SHAM is apparently more efficient because it offers more flexibility in choosing linear
operators compared to the standard HAM. It is however important to note that if the same
initial guess and linear operators were to be used, the two methods would give the same
solution.

We have further shown that notwithstanding the acceleration of the convergence
ratio of the homotopy series by means of the homotopy-Padé technique, the successive
linearisation techniques is more computationally efficient (although this again could be due,
in part, to the use of a different initial guess) and gives accurate results.
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