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An interface problem derived by a bistable reaction-diffusion system with the spatial average
of an activator is studied on an n-dimensional ball. We analyze the existence of the radially
symmetric solutions and the occurrence of Hopf bifurcation as a parameter varies in two and three-
dimensional spaces.

1. Introduction

The study of interfacial patterns is important in several areas of biology, chemistry, physics,
and other fields [1–4]. Internal layers (or free boundary), which separate two stable bulk
states by a sharp transition near interfaces, are often observed in bistable reaction-diffusion
equations when the reaction rate is faster than the diffusion effect. We consider a reaction-
diffusion system with a sufficiently small positive constant ε [5, 6]

σεut = ε2 ∇2u + f(u, v),

vt = D∇2v + g(u, v) t > 0, x ∈ Ω,

0 =
∂u

∂ν
=
∂v

∂ν
,

(1.1)

where ε, σ, and D are positive constants, Ω = {x ∈ R
n : |x| < R} is the ball in

n-dimensional space, and ν stands for the unit outward normal on the boundary ∂Ω.
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The nonlinear functions are

f(u, v) = −u +H(u − a0) − v +
(
1 − μ)〈u〉, g(u, v) = μu − v, (1.2)

where 0 < μ < 1 and 〈u〉 denotes the spatial average, describing a global feedback effect,
namely,

〈u〉 =
1
|Ω|
∫

Ω
udΩ =

1
|Ω|
∫

Ω
u(x, t)dx. (1.3)

The system (1.1) with (1.2) is a model for flow discharges proposed by et al. [7],
in which u is interpreted by the current density and v by the voltage drop across the gas
gap [7, 8] in a gas-discharge system. This system also exhibits a codimension-two Turing
Hopf bifurcation [9], where the conditions of a spatial Turing instability [10] with a certain
wavelength ε and a temporal Hopf bifurcation with a certain frequency 1/

√
εσ are met

simultaneously. Equation (1.1) determines the dynamics of an internal layer, and equation
(1.1) together with (1.2) represents a basic model of globally coupled bistable mediumwhich
is relevant for current density dynamics in large area bistable semiconductor systems [11–
14]. The internal layer has a physical reason as the current filament has a sharp profile with a
narrow transition layer connecting flat on- and off-states.

When ε in (1.1) is sufficiently small for the case of without the spatial average, the
singular limit analysis is applied to show the existence and the stability of localized radially
symmetric equilibrium solutions [15, 16]. In one-dimensional space for the case of without
the spatial average, such equilibrium solutions should undergo certain instabilities, and the
loss of stability resulting from a Hopf bifurcation produces a kind of periodic oscillation
in the location of the internal layers [2, 17–19]. As the parameter D varies, the stability
of the spherically symmetric solutions and their symmetry-breaking bifurcations into layer
solutions for the case of without the spatial average have been examined in [5, 6].

In this paper, the free boundary problem of (1.1) with (1.2) for the case when ε = 0
in two- and three-dimensional space will be studied. Suppose that there is only one (n − 1)-
dimensional hypersurface η(t) which is a single closed curve given in the domain Ω in such
a way that Ω × (0,∞) = Ω+(t) ∪ η(t) ∪Ω−(t), where Ω−(t) = {(x, t) ∈ Ω × (0,∞) : u(x, t) > a0}
and Ω+(t) = {(x, t) ∈ Ω × (0,∞) : u(x, t) < a0}. When D = 1 and ε = 0 in (1.1), the spatial
average 〈u〉 satisfies

μ〈u〉〈H(x − η)〉 − 〈v〉, 〈
H
(
x − η)〉 = 1

|Ωn|
∫

Ωn

H
(
x − η)dx = 1 −

(n
R

)n
, (1.4)

where |Ω2| = πR2 and |Ω3| = (4/3)πR3. The spatial average of v is a solution of 〈v〉′(t) =
μ〈u〉 − 〈v〉 = 1 − (η/R)n − 2〈v〉. Equation of η(t) is given by (see [20, 21])

dη(t)
dt

· ν = C(vi), x ∈ η(t), (1.5)
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where ν is the outward normal vector on η(t), vi is the value of v on the interface η(t), and
C(v) is the velocity of the interface. The reaction terms (1.2) satisfy the bistable condition,
that is, the nullclines of f(u, v) = 0 and g(u, v) = 0 must have three intersection points and
the nullcline f(u, v) = 0 is the triple-valued function of uwhich is called h+, h−, and h0. From
[2, 20, 22], the trajectory with a unique value of C = C(v) exists which is given by C(v) =
h+ − 2h0 + h−. Furthermore, the velocity of the interface C(v) is a continuously differentiable
function defined on an interval I := (−a0, 1 − a0), and thus the velocity of the interface can be
normalized by

C
((
v
(
η
)
, η, 〈v〉), t) = − 1 − 2a0 − 2V

σ
√
(V + a0)(1 − a0 − V )

, (1.6)

where V = v(η) − ((1 − μ)/μ)(1 − (η/R)n − 〈v〉).
An analysis of the dynamics of this process has been shown (see, e.g., [2, 5, 6, 15]) to

lead a free boundary problem consisting of the initial-boundary value problem

vt = ∇2v + g
(
h±, v

)
, (x, t) ∈ Ω±(t),

v(x, 0) = v0(x),

v
(
η(t) − 0, t

)
= v
(
η(t) + 0, t

)
,

d

dν
v
(
η(t) − 0, t

)
=

d

dν
v
(
η(t) + 0, t

)
,

η′(t) = C
((
v
(
η
)
, η,w

)
, t
)
,

w′(t) = 1 −
( η
R

)n
− 2w, w(0) = w0,

(1.7)

where w = 〈v〉.
The organization of the paper is as follows. In Section 2, a change of variables is given

which regularizes problem (1.7) in such a way that results from the theory of nonlinear
evolution equations can be applied. In this way, we obtain enough regularity of the solution
for an analysis of the bifurcation. In Section 3, we show the existence of radially symmetric
localized equilibrium solutions for (1.7) and obtain the linearization of problem (1.7). In the
last section we show the existence of the periodic solutions and the bifurcation of the interface
problem as a parameter σ varies in two and three dimensions.

2. Regularized System

We look for an existence problem of radially symmetric equilibrium solutions of (1.7) with
|x| = r, where the center and the interface are located at the origin and r = η, respectively.
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The problem is given by

vt =
∂2v

∂r2
+
n − 1
r

∂v

∂r
− (μ + 1

)
v + μH

(
r − η(t)) + (1 − μ)

(
1 −
(
η(t)
R

)n

−w(t)
)
,

η′(t) = C
((
v
(
η
)
, η,w

)
, t
)
, t > 0, η(0) = η0,

w′(t) = −2w(t) + 1 −
(
η(t)
R

)n
, w(0) = w0,

∂v

∂r
v(0, t) = 0 =

∂v

∂r
v(R, t), 0 < r < R, t > 0.

(2.1)

As a first step we obtain more regularity for the solution by semigroup methods,
considering A := −(∂2/∂r2) + ((n − 1)/r)(∂/∂r) + μ + 1 as a densely defined operator
A : D(A) ⊂ X → X, where D(A) = {v ∈ H2,2((0, R)) : (∂v/∂r)(0, t) = 0 = (∂v/∂r)(R, t)} and
X := L2((0, R)) with norm ‖ · ‖2.

We define g : [0, R] × [0, R] × C → C,

g
(
r, η,w

)
:= A−1

(
μ
(
H
(· − η))(r) + (1 − μ)

(
1 −
( η
R

)n
−w
))

= μ
∫R

η

G
(
r, y
)
dy +

1 − μ
1 + μ

(
1 −
( η
R

)n
−w
)
,

(2.2)

and γ : [0, R] × C → C,

γ
(
η,w

)
:= g
(
η, η,w

)
. (2.3)

HereG : [0, R]2 → R is a Green’s function ofA satisfying theNeumann boundary conditions:
for n = 2,

G(r, z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

zI0
(
r
√
1 + μ

)
(

K0
(
z
√
1 + μ

)
+
K1
(
R
√
1 + μ

)

I1
(
R
√
1 + μ

) I0
(
z
√
1 + μ

)
)

, 0 < r < z,

zI0
(
z
√
1 + μ

)
(

K0
(
r
√
1 + μ

)
+
K1
(
R
√
1 + μ

)

I1
(
R
√
1 + μ

) I0
(
r
√
1 + μ

)
)

, z < r < R,

(2.4)
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and for n = 3,

G(r, z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
YR

z
sinh

(
r
√
1 + μ

)

r
√
1 + μ

(
R
√
1 + μ cosh

(
(R − z)√1 + μ

) − sinh
(
(R − z)√1 + μ

))
,

0 < r < z

1
YR

z
sinh

(
z
√
1 + μ

)

r
√
1 + μ

(
R
√
1 + μ cosh

(
(R − r)√1 + μ

) − sinh
(
(R − r)√1 + μ

))
,

z < r < R,

(2.5)

where Ii and Ki are modified Bessel functions (i = 0, 1) and YR is given by

YR =
√
1 + μ

(
R
√
1 + μ cosh

(
R
√
1 + μ

)
− sinh

(
R
√
1 + μ

))
. (2.6)

Moreover, g(·, η,w) ∈ D(A) for all η and w, (∂g/∂η)(r, η,w) ∈ H1,∞((0, R)2 × C) and γ ∈
C∞([0, R] × C).

Applying the transformation u(t)(r) = v(r, t) − g(r, η(t), w(t)), then we obtain an
equivalent abstract evolution equation of(2.1)

d

dt

(
u, η,w

)
+ Ã
(
u, η,w

)
= F

(
u, η,w

)
,

(
u, η,w

)
(0) =

(
u0, η0, w0

)
,

(2.7)

where Ã is a 3 × 3 matrix defined on D(Ã) = D(A) × (0, R) × C and given by

⎛

⎜⎜⎜⎜
⎝

A 0
2
(
1 − μ)

1 + μ

0 0 0

0 0 2

⎞

⎟⎟⎟⎟
⎠

(2.8)

The nonlinear forcing term F defined on the set W := {(u, η,w) ∈ C1([0, R]) × (0, R) × C :
u(η) + γ(η,w) − ((1 − μ)/μ)(1 − (η/R)n −w) ∈ I} ⊂open C

1([0, R]) × (0, R) × C as

F
(
u, η,w

)
=

⎛

⎜⎜⎜⎜⎜⎜
⎝

f2
(
u, η,w

) ·
(
f1
(
η
)
+
1 − μ
1 + μ

n

Rn
ηn−1
)
+
1 − μ
1 + μ

(
1 −
( η
R

)n)

f2
(
u, η,w

)

1 −
( η
R

)n

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.9)
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where f1 : (0, R) → X, f1(η)(r) := μG(r, η), and f2 : W → C, f2(u, η,w) := C(u(η), η,w).
We define ξ(η) := μ

∫R
η G(η, y)dy and then γ(η,w) = ξ(η) + ((1 − μ)/(1 + μ))(1 − (η/R)n −w).

Let χ(u, η) := u(η) + ξ(η) − ((1 − μ)/(1 + μ))(η/R)n + ((1 − μ)/μ)(η/R)n, then the velocity of
η is written by

C
(
u
(
η
)
, η,w

)

= C
(
χ
(
u, η
)
, w
)

= − 1
σ

1−2a0 − 2
(
χ
(
u, η
)−((1−μ)/μ(1+μ))(1−w)

)

√(
a0+χ

(
u, η
)−((1−μ)/μ(1+μ))(1−w)

)(
1−a0−

(
χ
(
u, η
)− ((1−μ)/μ(1+μ))(1−w)

)) .

(2.10)

Lemma 2.1. The functions f1 : (0, R) → X, f2 :W → C and F :W → X×C×R are continuously
differentiable with derivatives given by

f ′
1

(
η
)
= μ

∂G

∂z

(·, η),

Df2
(
u, η,w

)(
û, η̂, ŵ

)
= Cχ

(
χ
(
u, η
)
, w
)
(

u′
(
η
)
η̂ + û

(
η
)
+ ξ′
(
η
)
η̂ +

1 − μ
μ
(
1 + μ

)
nηn−1

Rn
η̂

)

+ Cw

(
χ
(
u, η
)
, w
)
ŵ,

DF
(
u, η,w

)(
û, η̂, ŵ

)
= f2
(
u, η,w

) ·
(
f ′
1

(
η
)
+
1 − μ
1 + μ

n(n − 1)
Rn

ηn−2, 0, 0
)
η̂

+Df2
(
u, η,w

)(
û, η̂, ŵ

) ·
(
f1
(
η
)
+
1 − μ
1 + μ

n

Rn
ηn−1, 1, 0

)

+
(
−1 − μ
1 + μ

n

Rn
ηn−1, 0,− n

Rn
ηn−1
)
η̂,

(2.11)

where Cχ = ∂C/∂χ and Cw = ∂C/∂w.

The well posedness of solutions was shown in [23] applying the semigroup theory
using domains of fractional powers α ∈ (3/4, 1] of A and Ã [24]. Moreover, they obtained
that F : W ∩ D(Ãα) → X × C × R is a continuously differentiable function, where D(Ãα) =
D(Aα) × (0, R) × C.
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3. Radially Symmetric Equilibrium Solutions and Linearization

The steady states are solutions of the following problem:

Au∗ =
(
μ G
(·, η∗) + 1 − μ

1 + μ
n

Rn

(
η∗
)n−1
)
C
(
u∗
(
η∗
)
, η∗, w∗) +

1 − μ
1 + μ

(
−2w∗ + 1 −

(
η∗

R

)n)
,

0 = C
(
u∗
(
η∗
)
+ γ
(
η∗, w∗)),

0 = −2w∗ + 1 −
(
η∗

R

)n
,

u∗′(0) = 0 = u∗′(R)
(3.1)

for (u∗, η∗, w∗) ∈ D(Ã) ∩W .

Lemma 3.1. Define ξ(η) := μ
∫R
η G(η, y)dy < 0. Then ξ′(η) < 0, and ξ′(η) + μG(η, η) > 0 for

0 < η < R.

Proof. For n = 2, the derivative of ξ is given by

ξ′
(
η
)
= μη

(
−I0
(
η
√
1 + μ

)
K0

(
η
√
1 + μ

)
+ I1
(
η
√
1 + μ

)
K1

(
η
√
1 + μ

))

− μη
(
K1
(
R
√
1 + μ

)

I1
(
R
√
1 + μ

)
(
I20

(
η
√
1 + μ

)
+ I21

(
η
√
1 + μ

)))

.

(3.2)

Let h(η) = I0(η
√
1 + μ)K0(η

√
1 + μ) − I1(η

√
1 + μ)K1(η

√
1 + μ). Then limη→ 0h(η) = ∞, and

h(R) > 0. The derivative of h is

h′
(
η
)
= −
√
1 + μ

((
I0

(
η
√
1 + μ

)
+ I1
(
η
√
1 + μ

))
K1

(
η
√
1 + μ

)

+2I1
(
η
√
1 + μ

)
K0

(
η
√
1 + μ

))

≤ −2
√
1 + μ

(
I1

(
η
√
1 + μ

))(
K1

(
η
√
1 + μ

)
−K0

(
η
√
1 + μ

))
≤ 0.

(3.3)

Thus h(η) > 0, and thus ξ′(η) < 0 for 0 < η < R. Moreover,

ξ′
(
η
)
+ μG

(
η, η
)

= η
I1
(
η
√
1 + μ

)

I1
(
R
√
1 + μ

)
(
I1

(
R
√
1 + μ

)
K1

(
η
√
1 + μ

)
− I1
(
η
√
1 + μ

)
K1

(
R
√
1 + μ

))
.

(3.4)
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Since Ii are increasing functions and Ki are decreasing functions (i = 0, 1),

I1

(
R
√
1 + μ

)
K1

(
η
√
1 + μ

)
− I1
(
η
√
1 + μ

)
K1

(
R
√
1 + μ

)

=
(
I1

(
R
√
1 + μ

)
− I1
(
η
√
1 + μ

))
K1

(
η
√
1 + μ

)

+
(
K1

(
η
√
1 + μ

)
−K1

(
R
√
1 + μ

))
I1

(
η
√
1 + μ

)
> 0,

(3.5)

and thus ξ′(η) + μG(η, η) > 0 for 0 < η < R. For n = 3, the derivative of ξ is

ξ′
(
η
)
=

μ

M2

(
R
√
1 + μ + 1

)[
1 −
(
1 − 2η

√
1 + μ + 2η2

(
1 + μ

)
)
e2η

√
1+μ
]

− μ

M2

(
R
√
1 + μ − 1

)[
e2R

√
1+μ −

(
1 + 2η

√
1 + μ + 2η2

(
1 + μ

)
)
e2(R−η)

√
1+μ
]
,

(3.6)

where M2 = 2η2(1 + μ)
√
1 + μ[R

√
1 + μ + 1 + (R

√
1 + μ − 1)e2R

√
1+μ]. Since e2η

√
1+μ ≥ (1 +

2η
√
1 + μ + 2η2(1 + μ)), we have ξ′(η) ≤ −(μ/M2)(1 + R

√
1 + μ)4η4(1 + μ2) < 0 for 0 < η < R.

Moreover, ξ′(η)+μG(η, η) > 2(μ/M2)(R−η)√1 + μ[(η
√
1 + μ+1)+(η

√
1 + μ−1)e2η

√
1+μ] > 0

for 0 < η < R.

Theorem 3.2. Suppose that (i) 0 < (1/2) − a0 < (2μ − 1)/2μ and ξ′(η) + (1 − μ)/2μ(1 +
μ)(n/Rn)ηn−1 < 0 or (ii) 0 < (2μ−1)/2μ < (1/2)−a0 and ξ′(η)+((1−μ)/2μ(1+μ))(n/Rn)ηn−1 > 0.
Then the stationary problem of (2.7) has the only stationary solution (u∗, η∗, w∗) for all σ /= 0 with
u∗ = 0 and 2w∗ = 1 − (η∗/R)n,η∗ ∈ (0, R). The linearization of F at (0, η∗, w∗) is

DF
(
0, η∗, w∗)(û, η̂, ŵ

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4
σ

(
û
(
η∗
)
+ γη
(
η∗, w∗)η̂ + γw

(
η∗, w∗)ŵ +

1 − μ
μ

( n
Rn

(
η∗
)n−1

η̂ + ŵ
))

·
(
μG
(·, η∗) + 1 − μ

1 + μ
n

Rn

(
η∗
)n−1
)
− 1 − μ
1 + μ

(
2ŵ +

n

Rn

(
η∗
)n−1

η̂
)

4
σ

(
û
(
η∗
)
+ γη
(
η∗, w∗)η̂ + γw

(
η∗, w∗)ŵ +

1 − μ
μ

( n
Rn

η∗n−1η̂ + ŵ
))

−2ŵ − n

Rn
η∗n−1η̂

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
(3.7)

The pair (0, η∗, w∗) corresponds to a unique steady state (v∗, η∗, w∗) of (2.1) for σ /= 0 with v∗(r) =
g(r, η∗, w∗).

Proof. From the system (3.1), η∗ and w∗ are solutions of the following equations:

u∗ = 0, C
(
0, η∗, w∗) = 0 2w∗ = 1 −

(
η∗

R

)n
. (3.8)
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We only check the existence of η∗ of (2.10) and (3.8), and thus we let

Γ
(
η
)
:=

1
2
− a0 − χ

(
0, η
)
+

1 − μ
μ
(
1 + μ

)

(

1 − 1 − (η/R)n
2

)

. (3.9)

Then

Γ(R) =
1
2
− a0, Γ(0) =

1
2
− a0 − ξ(0) +

1 − μ
2μ
(
1 + μ

) , Γ′
(
η
)
= −ξ′(η) − 1 − μ

2μ
(
1 + μ

)
n

Rn
ηn−1.

(3.10)

Since ξ′(η) < 0 and ξ(0) = μ/(1 + μ) for n = 2, 3, there is a unique η∗ ∈ (0, R) when Γ′(η) < 0,
Γ(0) > 0, Γ(R) < 0, or Γ′(η) > 0, Γ(0) < 0,Γ(R) > 0.

The formula for DF(0, η∗, w∗) follows from Lemma 2.1, the relation Cχ(0, η∗, w∗) =
4/σ, and Cw(0, η∗, w∗) = 4(1 − μ)/σμ(1 + μ). The corresponding steady state (v∗, η∗, w∗) for
(2.1) is obtained using the transformation and Theorem 2.1 in [17].

Definition 3.3. Suppose that a0 and μ satisfy 0 < (1/2) − a0 < (2μ − 1)/2μ and ξ′(η) + ((1 −
μ)/2μ(1 + μ))(n/Rn)ηn−1 < 0. One defines (for 1 ≥ α > 3/4) the operator B that is a linear
operator from D(Ãα) to D(Ã) as

B :=
σ

4
DF
(
0, η∗, w∗). (3.11)

One then defines (0, η∗, w∗) to be a Hopf point for (2.7) if there exists an ε0 > 0 and a C1-curve

(−ε0 + τ∗, τ∗ + ε0) �−→
(
λ(τ), φ(τ)

) ∈ C ×D
(
Ã
)

C
(3.12)

(YC denotes the complexification of the real space Y ) of eigendata for −Ã + τB such that

(i) (−Ã + τB)(φ(τ)) = λ(τ)φ(τ), (−Ã + τB)(φ(τ)) = λ(τ) φ(τ),

(ii) λ(τ∗) = iβ with β > 0,

(iii) Re(λ)/= 0 for all λ in the spectrum of (−Ã + τ∗B) \ {±iβ},
(iv) Reλ′(τ∗)/= 0 (transversality),

where τ = 4/σ.

4. Hopf Bifurcation Analysis

We will show that there is a Hopf bifurcation from the curve σ �→ (0, η∗, w∗) of radially
symmetric stationary solution. The linearized eigenvalue problem of (2.7) is

−Ã(u, η,w) + τB(u, η,w) = λI3
(
u, η,w

)
, (4.1)
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where I3 is a 3 by 3 identity matrix. This is equivalent to

(A + λ)u = τ
(
u
(
η∗
)
+ γη
(
η∗, w∗)η + γw

(
η∗, w∗)w +

1 − μ
μ

(
w +

n

Rn

(
η∗
)n−1

η
))

·
(
μG
(·, η∗) + 1 − μ

1 + μ
n

Rn

(
η∗
)n−1
)
+
1 − μ
1 + μ

(
−2w − n

Rn

(
η∗
)n−1

η
)
,

λη = τ
(
u
(
η∗
)
+ γη
(
η∗, w∗)η + γw

(
η∗, w∗)w +

1 − μ
μ

(
w +

n

Rn

(
η∗
)n−1

η
))

,

λw = −2w − n

Rn

(
η∗
)n−1

η.

(4.2)

Our main theorem is stated as follows.

Theorem 4.1. Suppose that a0 and μ satisfy 0 < (1/2) − a0 < ((2μ − 1)/2μ) and ξ′(η) + ((1 −
μ)/2μ(1 + μ))(n/Rn)ηn−1 < 0, the problem (2.7), and (2.1), has a unique stationary solution
(u∗, η∗, w∗), where u∗ = 0 andw∗ = (1/2)(1− (n/Rn)(η∗)n−1), and (v∗, η∗, w∗), respectively, for all
τ > 0. Then there exists a unique τ∗ such that the linearization −Ã + τ∗B has a purely imaginary pair
of eigenvalues β. The point (0, η∗, w∗, τ∗) is then a Hopf point for (2.7), and there exists a C0-curve
of nontrivial periodic orbits for (2.7) and (2.1), bifurcating from (0, η∗, w∗, τ∗) and (v∗, η∗, w∗, τ∗),
respectively.

We will show the following three theorems that verify the above theorem. The next
theorem shows that the steady state is the only Hopf point.

Theorem 4.2. For τ∗ ∈ R \ {0}, the operator −Ã + τ∗B has a unique pair of purely imaginary
eigenvalues {±iβ}. Then the point (0, η∗, w∗, τ∗) satisfies the conditions (i), (ii), and (iii) in
Definition 3.3.

Proof. In the sequel, we denote bn = (n/Rn)(η∗)n−1, n = 2, 3. We assume without loss of
generality that β > 0 and Φ∗ is the (normalized) eigenfunction of −Ã + τ∗B with eigenvalue
iβ. We have to show that (Φ∗, iβ) can be extended to a C1-curve τ �→ (φ(τ), λ(τ)) of eigendata
for −Ã + τB with Re(λ′(τ∗))/= 0. For this, let Φ∗ := (ψ0, η0, w0) ∈ D(Ã). First, we note that if
w0 = 0, then η0 = 0 (vice versa) in the last equation of (4.2). We see that η0 /= 0 and w0 /= 0, for
otherwise, by (4.2), (A+ iβ)ψ0 = iβ (μG(·, η∗) η0+((1−μ)/(1+μ))bn+((1−μ)/(1+μ)) w0) = 0,
which is not possible because A is symmetric. So without loss of generality, let η0 = 1. Define

E : D(A)C × C × C × R −→ XC × C × C,

E(u,w, λ, τ)

:=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(A + λ)u − τ
(
u
(
η∗
)
+ γη + γww +

1 − μ
μ

(bn +w)
)(

μG
(·, η∗) + 1 − μ

1 + μ
bn

)

+
1 − μ
1 + μ

(2w + bn)

λ − τ
(
u
(
η∗
)
+ γη + γww +

1 − μ
μ

(bn +w)
)

λw + 2w + bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(4.3)
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The equation E(u,w, λ, τ) = 0 is equivalent to λ being an eigenvalue of −Ã + τB with
eigenfunction (u, 1, w). By (4.2), we have E(ψ0, w0, iβ, τ

∗) = 0 which is equivalent to

(
A + iβ

)
ψ0 = iβ

(
μG
(·, η∗) + 1 − μ

1 + μ
(bn +w0)

)
,

iβ = τ∗
(
ψ0
(
η∗
)
+ γη + γww0 +

1 − μ
μ

(bn +w0)
)
,

iβw0 = −2w0 − bn.

(4.4)

To apply the implicit function theorem to E, we have to check that E is in C1 and that

D(u,w,λ)E
(
ψ0, w0, iβ, τ

∗) ∈ L(D(A)C × C × C, XC × C × C) is an isomorphism. (4.5)

In addition, the mapping

D(u,w,λ)E
(
ψ0, w0, iβ, τ

∗)
(
û, ŵ, λ̂

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(
A + iβ

)
û + λ̂ψ0

−τ∗
(
û
(
η∗
)
+ γwŵ +

1 − μ
μ

ŵ

)(
μG
(·, η∗) + 1 − μ

1 + μ
bn

)
+ 2

1 − μ
1 + μ

ŵ

λ̂ − τ∗
(
û
(
η∗
)
+ γwŵ +

1 − μ
μ

ŵ

)

λ̂w0 + iβŵ + 2ŵ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.6)

is a compact perturbation of the mapping

(
û, ŵ, λ̂

)
�−→
((
A + iβ

)
û, ŵ, λ̂

)
(4.7)

which is invertible. In order to verify (4.5), it suffices to show that the system

D(u,w,λ)E
(
ψ0, w0, iβ, τ

∗)
(
û, ŵ, λ̂

)
= 0, (4.8)

which are

(
A + iβ

)
û + λ̂ψ0 = τ∗

(
û
(
η∗
)
+ γwŵ +

1 − μ
μ

ŵ

)(
μG
(·, η∗) + 1 − μ

1 + μ
bn

)
− 2

1 − μ
1 + μ

ŵ,

λ̂ = τ∗
(
û
(
η∗
)
+ γwŵ +

1 − μ
μ

ŵ

)
,

λ̂w0 = −iβŵ − 2ŵ,

(4.9)
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necessarily implies that û = 0, ŵ = 0, and λ̂ = 0. We define φ := ψ0 − (μG(·, η∗) + ((1 − μ)/(1 +
μ))bn + ((1 − μ)/(1 + μ))w0), then the first equation of (4.9) is given by

(
A + iβ

)
û + λ̂φ = iβ

1 − μ
1 + μ

ŵ. (4.10)

Since (v, η,w, λ) = (ψ0, 1, w, iβ) solves (4.2), φ is a solution to the equation

(
A + iβ

)
φ = −μδη∗ −

(
1 − μ)(bn +w0), (4.11)

iβ

τ∗
= φ
(
η∗
)
+
1 − μ
μ

(bn +w0), (4.12)

(
2 + iβ

)
w0 = −bn. (4.13)

Multiply (4.11) by rn−1 (n = 2, 3) and integrate, then

∫R

0

(
−φrr − n − 1

r
φr +

(
μ + 1 + iβ

)
φ

)
rn−1dr =

∫R

0

(−μδη∗ −
(
1 − μ)(bn +w0)

)
rn−1dr (4.14)

which implies that

∫R

0

(
∂

∂r

(
−rn−1φr

)
+
(
μ + 1 + iβ

)
∫
rn−1φ

)
dr = −μ(η∗)n−1 − (1 − μ)(bn +w0)

Rn

n
. (4.15)

Therefore we obtain

(
μ + 1 + iβ

)
∫
rn−1φ = −μ(η∗)n−1 − (1 − μ)(bn +w0)

Rn

n
. (4.16)

Multiply (4.10) by rn−1 (n = 2, 3) and (4.11) by rn−1φ. Nowwe integrate the resulting equation
to obtain

(
μ + 1 + iβ

)
∫
rn−1û = −λ̂

∫
rn−1φ + iβ

1 − μ
1 + μ

· R
n

n
ŵ. (4.17)

Multiply (4.10) and (4.11) by rn−1φ, and then eliminate the term λ̂(A + iβ)rφ2.
Integrating the resulting equation, we have

0 = λ̂μ
(
η∗
)n−1

φ
(
η∗
)
+ λ̂
(
1 − μ)(bn +w0)

∫
rn−1φ + μ

(
η∗
)n−1

û
(
η∗
)(
μ + 1 + iβ

)

+
(
1 − μ)(bn +w0)

(
μ + 1 + iβ

)
∫
rn−1 û + iβ

1 − μ
1 + μ

ŵ
(
μ + 1 + iβ

)
∫
rn−1φ

= μ
(
η∗
)n−1
(

λ̂φ
(
η∗
) − iβ 1 − μ

1 + μ
ŵ +

(
μ + 1 + iβ

)
(
λ̂

τ∗
− 1 − μ
μ
(
1 + μ

)ŵ

))

(4.18)
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by (4.16) and (4.17). Using (4.9), (4.12), and (4.13) in the above equation, then we obtain

0 = λ̂

(
μ + 1 + i2β

τ∗
− (μG(η∗, η∗) + ξ′(η∗)) − 1 − μ

μ
bn +

1 − μ
μ

bn
(
2 + iβ

)2

)

. (4.19)

Suppose that λ̂ /= 0. Then the real and imaginary parts of (4.19) are given by

0 =
μ + 1
τ∗

− (μG(η∗, η∗) + ξ′(η∗)) −
(
1 − μ)bn

μ
· β

4 + 9β2 + 12
(
4 + β2

)2 ,

0 =
1
τ∗

− 1 − μ
μ

· 2bn
(
4 + β2

)2 .

(4.20)

From these equations, we have

0 = μG
(
η∗, η∗

)
+ ξ′
(
η∗
)
+

(
1 − μ)bn

μ
· β

4 + 9β2 + 10 − 2μ
(
4 + β2

)2 . (4.21)

This leads to a contradiction that the right hand side is positive for β > 0 and 0 < μ < 1.
Therefore, we should have λ̂ = 0. Thus ŵ = 0 and û = 0.

Theorem 4.3. Under the same condition as in Definition 3.3, (0, η∗, w∗, τ∗) satisfies the transversal-
ity condition. Hence this is a Hopf point for (2.7).

Proof. By implicit differentiation of E(ψ0(τ), w(τ), λ(τ), τ) = 0,

D(u,w,λ)E
(
ψ0, w0, iβ, τ

∗)(ψ ′
0(τ

∗), w′(τ∗), λ′(τ∗)
)

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

(
μ G
(
η∗, η∗

)
+
1 − μ
1 + μ

bn

)(
ψ0
(
η∗
)
+ γη + γww0 +

1 − μ
μ

bn +
1 − μ
μ

w′(τ∗)
))

ψ0
(
η∗
)
+ γη + γww0 +

1 − μ
μ

bn +
1 − μ
μ

w′(τ∗)
)

0

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

(4.22)
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This means that the functions ũ := ψ ′
0(τ

∗), w̃ := w′(τ∗), and λ̃ := λ′(τ∗) satisfy the equations

(
A + iβ

)
ũ + λ̃ψ0 − τ∗

(
ũ
(
η∗
)
+ γww̃ +

1 − μ
μ

w̃

)(
μ G
(
η∗, η∗

)
+
1 − μ
1 + μ

bn

)
+ 2

1 − μ
1 + μ

w̃

=
(
ψ0
(
η∗
)
+ γη + γww0 +

1 − μ
μ

bn +
1 − μ
μ

w0

)(
μG
(
η∗, η∗

)
+
1 − μ
1 + μ

bn

)
,

λ̃ − τ∗
(
ũ
(
η∗
)
+ γww̃ +

1 − μ
μ

w̃

)
= ψ0

(
η∗
)
+ γη + γww0 +

1 − μ
μ

(bn +w0),

λ̃w0 +
(
2 + iβ

)
w̃ = 0.

(4.23)

By letting φ := ψ0 − (μG(·, η) + ((1 − μ)/(1 + μ))bn + ((1 − μ)/(1 + μ))w0), then

(
A + iβ

)
ũ + λ̃φ = iβ

1 − μ
1 + μ

w̃. (4.24)

From (4.9) and (4.23), we obtain

λ̃

τ∗
= ũ
(
η∗
)
+
(
γw +

1 − μ
μ

)
w̃ +

iβ

τ∗2
. (4.25)

We now multiply (4.24) by rn−1φ and (4.11) by rn−1ũ and then subtract these two equations,
then we get

λ̃rn−1φ2 = μrn−1ũ(r)δη∗ +
(
1 − μ)(bn +w0)rn−1ũ + iβ

1 − μ
1 + μ

w̃rn−1φ. (4.26)

Comparing to (4.11) and then integrating, we have

0 = −μ(η∗)n−1φ(η∗)λ̃ − λ̃(1 − μ)(bn +w0)
∫
rn−1φ − μ(η∗)n−1ũ(η∗)(μ + 1 + iβ

)

− (1 − μ)(bn +w0)
(
μ + 1 + iβ

)
∫
rn−1ũ − iβ1 − μ

1 + μ
w̃
(
μ + 1 + iβ

)
∫
rn−1φ.

(4.27)

Using (4.16) and (4.17) in the above equation, then

0 = μ
(
η∗
)n−1
(
λ̃φ
(
η∗
)
+
(
μ + 1 + iβ

)
ũ
(
η∗
) − iβ1 − μ

1 + μ
w̃

)
. (4.28)

By substituting (4.12), (4.13), and (4.23), we have

(
μ + 1 + iβ

) iβ

τ∗2
= λ̃

(
μ + 1 + 2iβ

τ∗
− μG(η∗, η∗) − ξ′(η∗) − 1 − μ

μ
bn +

1 − μ
μ

bn
(
2 + iβ

)2

)

.

(4.29)
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The real part of λ̃ is given by

β

τ∗
((
μ + 1

)2 + β2
)
Re λ̃ =

∣
∣
∣λ̃
∣
∣
∣
2((

μ + 1
)
Q − βP), (4.30)

where

P =
μ + 1
τ∗

− μG(η∗, η∗) − ξ′(η∗) − 1 − μ
μ

bn +

(
1 − μ)bn

μ
· 4 − β2
(
4 + β2

)2 ,

Q =
2β
τ∗

− 1 − μ
μ

· 4bnβ
(
4 + β2

)2 ,

(
μ + 1

)
Q − βP =

(
μ + 1

)
β

τ∗
+ β
(
μG
(
η∗, η∗

)
+ ξ′
(
η∗
))

+

(
1 − μ)bnβ
μ
(
4 + β2

)2

(
β4 + 9β2 + 8 − 4μ

)
.

(4.31)

Since (μ + 1)Q − βP > 0 for 0 < μ < 1, we have Re λ̃ > 0. Therefore, Reλ′(τ∗) > 0 for β > 0
and for 0 < μ < 1, and thus by the Hopf-bifurcation theorem in [17], there exists a family of
periodic solutions which bifurcates from the stationary solution as τ passes τ∗.

The next theorem shows that a critical Hopf point τ∗ exists uniquely.

Theorem 4.4. Under the same condition as in Definition 3.3, there exists a unique, purely imaginary
eigenvalue λ = iβ of (4.2) with β > 0 for a unique critical point τ∗ > 0 in order for (0, η∗, w∗, τ∗) to
be a Hopf point.

Proof. We only need to show that the function (u, β, τ) �→ E(u,w, iβ, τ) has a unique zero
with β > 0 and τ > 0. This means solving the system (4.2) with λ = iβ, η0 = 1, and ψ0 =
φ + μG(·, η∗) + ((1 − μ)/(1 + μ))bn + ((1 − μ)/(1 + μ))w0,

(
A + iβ

)
φ = −μδη∗ −

(
1 − μ)(bn +w0),

iβ

τ∗
= φ
(
η∗
)
+ μG

(
η∗, η∗

)
+ ξ′
(
η∗
)
+
1 − μ
μ

(bn +w0),

(
2 + iβ

)
w0 = −bn.

(4.32)

The second equation becomes

iβ

τ∗
= −μGβ

(
η∗, η∗

)
+ μG

(
η∗, η∗

)
+ ξ′
(
η∗
) − 1

μ + 1 + iβ
(
1 − μ)(bn +w0 ) +

1 − μ
μ

(bn +w0),

(4.33)
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whereGβ is a Green’s function of the differential operatorA+iβ. The real and imaginary parts
of this above equation are given by

β

τ∗
= −μ ImGβ

(
η∗, η∗

)
+

(
1 − μ)bnβ
μ
(
4 + β2

) +

(
1 − μ)bnβ

(
1 − μ + β2

)

(
4 + β2

)((
1 + μ

)2 + β2
)

= −μ ImGβ

(
η∗, η∗

)
+

(
1 − μ)bnβ

μ
(
4 + β2

)((
1 + μ

)2 + β2
)
((

1 + μ
)
β2 + 3μ + 1

)
,

0 = −μReGβ

(
μ∗, μ∗) + μG

(
η∗, η∗

)
+ ξ′
(
η∗
)
+

(
1 − μ)bn

(
2 + β2

)

μ
(
4 + β2

)

−
(
1 − μ)bn

((
μ + 1

)(
2 + β2

)
+ β2
)

((
μ + 1

)2 + β2
)(

4 + β2
)

= −μReGβ

(
μ∗, μ∗) + μG

(
η∗, η∗

)
+ ξ′
(
η∗
)
+

(
1 − μ)bnβ

μ
(
4 + β2

)((
1 + μ

)2 + β2
)

×
(
β4 + 3β2 + 2

(
1 + μ

))
.

(4.34)

Since ImGβ(η∗, η∗) < 0 in [17, Lemma 12] and μ > 0, there is a unique τ in the first equation
if it does guarantee the existence of β. Now, we let

T
(
β
)
:= −μReGβ

(
μ∗, μ∗) + μG

(
η∗, η∗

)
+ ξ′
(
η∗
)
+

(
1 − μ)bnβ

μ
(
4 + β2

)((
1 + μ

)2 + β2
)

×
(
β4 + 3β2 + 2

(
1 + μ

))
,

(4.35)

then T(∞) = μ G(η∗, η∗)+ξ′(η∗) > 0 and T(0) = ξ′(η∗)+(1−μ)bn/2μ(1+μ) < 0 by assumption.
If we show that T ′(β) < 0, then the existence of β is proved:

T ′(β
)
= −μ(ReGβ

(
η∗, η∗

))′ +
2
(
1 − μ)bnβ

μ
(
4 + β2

)2((1 + μ
)2 + β2

)2

×
((
μ2 + 2μ + 2

)
β4 + 4

(
1 + μ

)(
1 + 2μ

)
β2 + 2

(
1 + μ

)(
1 + 4μ − μ2

))
.

(4.36)

Since 1+4μ−μ2 > 0 for 0 < μ < 1 and (ReGβ(η∗, η∗))′ < 0 in [17, Lemma 12], we have T ′(β) > 0
for all β > 0.

There is a unique pure imaginary eigenvalue β > 0 and the critical point τ∗ of (2.1) and
thus there exists a family of periodic solutionswhich bifurcates from the stationary solution as
τ passes τ∗ under the condition of Theorem 4.4. Thus we also found the relationship between
μ and a0 for which Hopf bifurcation occurs for the problem (2.1).
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