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We calculate some integrals involved in the temperature field evaluation of a workpiece during
the grinding process. For the case of dry continuous grinding, this calculation allows a faster
computation of the temperature field on surface and inside the workpiece.

1. Introduction

In the resolution of the heat equation that models the heat transfer during the grinding
process [1], there appear integrals [2] of the following type:

I1(a, b, c) :=
∫∞

0

[
erf
(
a

σ
+ bσ

)
− erf

(
a − c

σ
+ bσ

)]
dσ, (1.1)

I2
(
x, y
)
:=

∣∣y∣∣
π

∫∞

−∞
K0(|x − ξ|)

K1

(√
y2 + ξ2

)
√
y2 + ξ2

dξ, (1.2)

which have not been tabulated yet [3]. The first integral arises in the evaluation of the
temperature on the surface of the workpiece, while the second integral is used for the
evaluation of the field temperature inside the workpiece. On the one hand, despite the
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fact that these integrals can be computed by using the uniqueness of the solution to the
Laplace equation, as done in [2], this is cumbersome, since the integrals to be calculated are
subproducts of a wider framework. This framework is the resolution of the heat equation
in the stationary regime in two different ways. This paper presents a straightforward
proof, based on elementary integral calculus and complex variables. On the other hand, the
computation of these improper integrals, which show a parametric dependence on a, b, and
c for I1, and x and y for I2, is expensive in order to get the field temperature of the wokpiece
being ground. The goal of this paper is the resolution of (1.1) and (1.2), so that the evaluation
of the temperature field may be faster.

This paper is organized as follows. Sections 2 and 3 are devoted to the calculation of I1
and I2, respectively. Section 4 applies I1 and I2 to the solution of the stationary regime in dry
continuous grinding within the Samara-Valencia model [1].

2. First Integral

In order to calculate the integral (1.1), let us solve the integral (2.1) in two different ways.
Afterwards, comparing the results obtained, we will find the sought-for solution. Let us
define:

I :=
∫∞

0

{∫ c

0
exp

(
− (x − a − 4bs)2

4s

)
dx

}
ds

s
, (2.1)

where a, b, and c are parameters within the integral.

2.1. First Calculation

Applying Fubini’s theorem to (2.1), we can exchange the integration order, obtaining

I =
∫ c

0

{∫∞

0
exp

(
− (x − a − 4bs)2

4s

)
ds

s

}
dx. (2.2)

Let us develop the exponential within (2.2), as follows:

− (x − a − 4bs)2

4s
= − (x − a)2

4s
− 4b2s + 2b(x − a). (2.3)

Calling the inner integral in (2.2) Î and taking into account (2.3), we have

Î := e2b(x−a)
∫∞

0
exp

(
− (x − a)2

4s
− 4b2s

)
ds

s
. (2.4)

Let us perform the change of variables σ = 4b2s in (2.4), and let us define the variable z as

z := |2b(x − a)|, (2.5)
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so that (2.4) becomes

Î = e2b(x−a)
∫∞

0
exp

(
− z2

4σ
− σ

)
dσ

σ
. (2.6)

Knowing the following integral representation of the zero order modified Bessel function [4]:

K0(z) =
1
2

∫∞

0
exp

(
−σ − z2

4σ

)
σ−1dσ, (2.7)

and substituting (2.7) in (2.6), we get

Î = 2e2b(x−a)K0(z). (2.8)

Remembering the definition of z given in (2.5), and substituting (2.8) in (2.2), we find the
following expression for I:

I = 2
∫ c

0
e2b(x−a)K0(|2b(x − a)|)dx. (2.9)

Now, performing in (2.9) the change of variables u = 2b(x − a),we obtain

I =
1
b

∫2b(c−a)

−2ba
euK0(|u|)du. (2.10)

In the appendix, it is shown that,

Jg(x) :=
∫x

0
euK0(|u|)du =

⎧⎨
⎩
xex
[
K0(|x|) + sign(x)K1(|x|)

]
− 1, ∀x /= 0,

0, ∀x = 0.
(2.11)

Straightforwardly from (2.11), (2.10) can be rewritten as

I =
1
b

{
Jg(2b(c − a)) − Jg(−2ba)

}
. (2.12)

2.2. Second Calculation

Let us consider now the inner integral in (2.1):

I :=
∫ c

0
exp

(
− (x − a − 4bs)2

4s

)
dx. (2.13)



4 Mathematical Problems in Engineering

Performing the following change of variables in (2.13) u = (x − a − 4bs)/2
√
s, we obtain that

I = 2
√
s

∫ (c−a−4bs)/2
√
s

−(a+4bs)/2
√
s

e−u
2
du. (2.14)

We can rewrite (2.14) in terms of the error function [4], so that

I =
√
πs

[
erf
(
c − a − 4bs

2
√
s

)
+ erf

(
a + 4bs
2
√
s

)]
. (2.15)

Therefore, substituting (2.15) in (2.1), we obtain that

I =
√
π

∫∞

0

1√
s

[
erf
(

a

2
√
s
+ 2b

√
s

)
− erf

(
a − c

2
√
s
+ 2b

√
s

)]
ds. (2.16)

Let us perform now the change of variables σ = 2
√
s in (2.16), so that (2.16) becomes

I =
√
π

∫∞

0

[
erf
(
a

σ
+ bσ

)
− erf

(
a − c

σ
+ bσ

)]
dσ. (2.17)

2.3. Comparison

Comparing (2.12) and (2.17), and the remembering the definition given in (1.1), we finally
get,

I1(a, b, c) =
1

b
√
π

{
Jg(2b(c − a)) − Jg(−2ba)

}
, (2.18)

where the function Jg(x) has been defined in (2.11).

3. Second Integral

In order to calculate the second integral defined in (1.2), let us perform the translation of
coordinates, ξ′ = x − ξ, thus,

I2
(
x, y
)
=

∣∣y∣∣
π

∫∞

−∞
K0
(∣∣ξ′∣∣)

K1

(√
y2 + (ξ′ + x)2

)
√
y2 + (ξ′ + x)2

dξ′. (3.1)

Let us define the complex integral along the contour C, as presented in Figure 1:

IC
(
x, y
)
:=

∣∣y∣∣
π

∫
C

K0
(∣∣ξ′∣∣)

K1

(√
y2 + (ξ′ + x)2

)
√
y2 + (ξ′ + x)2

dξ′. (3.2)
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Figure 1

Observe that we can divide the integration path as follows:

IC
(
x, y
)
= I−R

(
x, y
)
+ I+R
(
x, y
)
+ ICR

(
x, y
)
+ ICε

(
x, y
)
, (3.3)

where we have defined:

I±R
(
x, y
)
:= ∓

∣∣y∣∣
π

∫±ε

±R
K0
(∣∣ξ′∣∣)

K1

(√
y2 + (ξ′ + x)2

)
√
y2 + (ξ′ + x)2

dξ′, (3.4)

ICR,ε

(
x, y
)
:=

∣∣y∣∣
π

∫
CR,ε

K0
(∣∣ξ′∣∣)

K1

(√
y2 + (ξ′ + x)2

)
√
y2 + (ξ′ + x)2

dξ′, (3.5)

and where CR and Cε are the semicircumferences appearing in Figure 1. Taking absolute
values and performing in (3.5) the changes of variables ξ′ = Reiθ and ξ′ = εeiθ along ICR

and ICε , respectively, we obtain that

∣∣ICR

(
x, y
)∣∣ =

∣∣∣∣∣∣∣∣
yR

π
K0(R)

∫π

0

K1

(√
y2 +

(
Reiθ + x

)2)
√
y2 +

(
Reiθ + x

)2 dθ

∣∣∣∣∣∣∣∣
, (3.6)

∣∣ICε

(
x, y
)∣∣ =

∣∣∣∣∣∣∣∣
yε

π
K0(ε)

∫π

0

K1

(√
y2 +

(
εeiθ + x

)2)
√
y2 +

(
εeiθ + x

)2 dθ

∣∣∣∣∣∣∣∣
. (3.7)

Taking limits in (3.6),

lim
R→∞

∣∣ICR

(
x, y
)∣∣ = lim

R→∞

∣∣∣∣yRπ K0(R)
∫π

0

K1(R)
R

dθ

∣∣∣∣ = lim
R→∞

∣∣yK0(R)K1(R)
∣∣ = 0. (3.8)
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Taking into account the asymptotic formula [4],

K0(z) ∼
z→ 0+

log
(
2
z

)
, (3.9)

we can take limits in (3.7), so that

lim
ε→ 0+

∣∣ICε

(
x, y
)∣∣ = lim

ε→ 0+

∣∣∣∣∣∣∣
yε

π
K0(ε)

∫π

0

K1

(√
y2 + x2

)
√
y2 + x2

dθ

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
y
K1

(√
y2 + x2

)
√
y2 + x2

∣∣∣∣∣∣∣
∣∣∣∣ limε→ 0+

ε log
(
2
ε

)∣∣∣∣ = 0.

(3.10)

Observe that from (3.4) and (3.10), the following limit is satisfied:

lim
R→∞, ε→ 0+

I−R
(
x, y
)
+ I+R
(
x, y
)
= I2
(
x, y
)
. (3.11)

Therefore, taking limits in (3.3) and applying the results (3.11), (3.8), we can conclude that

lim
R→∞,ε→ 0+

IC
(
x, y
)
= I2
(
x, y
)
. (3.12)

Since the integrand in (3.2) contains an unique singularity inside the contour C at the point,

ξ0 = −x + i
∣∣y∣∣, (3.13)

applying the residue theorem [5], we can contract the contour C to the contour C0, the latter
surrounding the neighbourhood of the point ξ0, as shown in Figure 1. Therefore, according to
(3.12),

IC0

(
x, y
)
= lim

R→∞,ε→ 0+
IC
(
x, y
)
= I2
(
x, y
)
, (3.14)

where

IC0

(
x, y
)
:=

∣∣y∣∣
π

∫
C0

K0
(∣∣ξ′∣∣)

K1

(√
y2 + (ξ′ + x)2

)
√
y2 + (ξ′ + x)2

dξ′. (3.15)
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Taking a circular contour C0 around ξ0, we can perform in (3.15) the change of variables
ξ′ = ξ0 + ηeiθ

IC0

(
x, y
)
= iη

∣∣y∣∣
π

∫2π

0
K0

(∣∣∣ξ0 + ηeiθ
∣∣∣)

K1

(√
y2 +

(
ξ0 + ηeiθ + x

)2)
√
y2 +

(
ξ0 + ηeiθ + x

)2 eiθdθ. (3.16)

Taking now into account the asymptotic formula [4],

K1(z) ∼
z→ 0+

1
z
, (3.17)

we can take limits in (3.16),

IC0

(
x, y
)
= lim

η→ 0+
IC0

(
x, y
)
= i

∣∣y∣∣
π

K0(|ξ0|) lim
η→ 0+

η

∫2π

0

eiθdθ

y2 +
(
ξ0 + η eiθ + x

)2 . (3.18)

Substituting the value of ξ0 given in (3.13), and simplifying,

IC0

(
x, y
)
= i

∣∣y∣∣
π

K0(|ξ0|) lim
η→ 0+

∫2π

0

dθ

ηeiθ + 2i
∣∣y∣∣

= K0(|ξ0|) = K0

(√
x2 + y2

)
.

(3.19)

Finally, from (3.14) and (3.19) we conclude that

I2
(
x, y
)
= K0

(√
x2 + y2

)
. (3.20)

4. Application to the Grinding Process

4.1. Samara-Valencia Model

The Samara-Valencia model setup is depicted in Figure 2. The workpiece moves at a constant
speed vd and is assumed to be infinite alongOx andOz, and semiinfinte alongOy. The plane
y = 0 is the surface being ground. The contact area between the wheel and the workpiece is
an infinitely long strip of width δ located parallel to the Oz axis and on the plane y = 0. Both
the wheel and the workpiece are assumed rigid.

The Samara-Valencia model [1] solves the convection heat equation,

∂tT
(
t, x, y

)
= k
[
∂xxT

(
t, x, y

)
+ ∂yyT

(
t, x, y

)]
− vd∂xT

(
t, x, y

)
, (4.1)

subject to the initial condition

T
(
0, x, y

)
= 0, (4.2)
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Wheel
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Figure 2

and the boundary condition,

k0∂yT(t, x, 0) = b(t, x)T(t, x, 0) + d(t, x), (4.3)

where −∞ < x < ∞ and t, y ≥ 0. The first term of (4.3)models the application of coolant over
the workpiece surface considering b(t, x) as the heat transfer coefficient. The second term,
d(t, x), represents the heat flux entering into the workpiece. This heat flux is generated on the
surface by friction between the wheel and the workpiece. The solution of the Samara-Valencia
model (4.1)–(4.3) may be presented as the sum of two terms,

T
(
t, x, y

)
:= T (0)(t, x, y) + T (1)(t, x, y), (4.4)

where

T (0)(t, x, y) := − 1
4πk0

∫ t

0

ds

s
exp

(
−y2

4ks

)

×
∫∞

−∞
dx′ d

(
t − s, x′) exp

(
− (x

′ − x − vds)
2

4ks

)
,

T (1)(t, x, y) := 1
4π

∫ t

0

ds

s
exp

(
−y2

4ks

)∫∞

−∞
dx′
(

y

2ks
− b(t − s, x′)

k0

)

× T
(
t − s, x′, 0

)
exp

(
− (x

′ − x − vds)
2

4ks

)
.

(4.5)

Notice that T (0) contains the friction function d(t, x), and T (1) contains the temperature field
on the surface and the heat transfer coefficient b(t, x).
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4.2. Stationary Regime in Dry Continuous Grinding

Let us consider a wrokpiece being ground with thermal diffusivity k(m2s−1) and thermal
conductivity k0(Wm−1K−1). In the stationary regime, t → ∞, let us define,

T (0)(x, y) := lim
t→∞

T (0)(t, x, y),
T (1)(x, y) := lim

t→∞
T (1)(t, x, y). (4.6)

For the case of dry grinding, b(t, x) = 0, and a constant flux q(Wm−2) entering into the
workpiece, we can rewrite (4.6) as, [2]

T (0)(X,Y ) = T
∫X

X−Δ
e−u K0

(√
Y 2 + u2

)
du, (4.7)

T (1)(X,Y ) =
Y

2π

∫∞

−∞
T(X − u, 0)e−u

K1

(√
Y 2 + u2

)
√
Y 2 + u2

du, (4.8)

where we have used dimensionless variables,

Y :=
vd

2k
y,

X :=
vd

2k
x,

Δ :=
vd

2k
δ,

(4.9)

and a normalized temperature,

T :=
qk

πk0vd
. (4.10)

Notice that the numerical solution of the temperature field

T(X,Y ) = T (0)(X,Y ) + T (1)(X,Y ), (4.11)

is cumbersome since (4.8) involves the temperature field at the workpiece surface inside the
integrand. We will see in the following section that this integral equation can be solved by
using I2(x, y).
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4.3. Application of I2

For simplicity, let us define the functions, for Y ≥ 0,

n(u, Y ) := Ye−u
K1

(√
Y 2 + u2

)
√
Y 2 + u2

,

m(u, Y ) := e−uK0

(√
Y 2 + u2

)
.

(4.12)

so that we can rewrite (1.2), (4.7), and (4.8) into a simpler form,

m(X,Y ) =
1
π

∫∞

−∞
m(X − u, 0)n(u, Y )du, (4.13)

T (0)(X,Y ) = T
∫X

X−Δ
m(u, Y )du, (4.14)

T (1)(X,Y ) =
1
2π

∫∞

−∞
T(X − u, 0)n(u, Y )du. (4.15)

Defining the Fourier transform as

F
[
f(x)

]
(ω) := f̂(ω) :=

1
2π

∫∞

−∞
f(x)eiωxdx, (4.16)

we may apply the convolution theorem of the Fourier transform to (4.13) and (4.15) [3],
obtaining

m̂(ω,Y ) = 2m̂(ω, 0)n̂(ω,Y ), (4.17)

T̂ (1)(ω,Y ) = T̂(ω, 0)n̂(ω,Y ). (4.18)

Performing the derivative with respect to X in (4.14),

∂T (0)

∂X
= T[m(X −Δ, Y ) −m(X,Y )], (4.19)

and applying the Fourier transform to (4.19), we eventually obtain

T̂ (0)(ω,Y ) = h(ω)m̂(ω,Y ), (4.20)

where we have defined

h(ω) := T1 − eiΔω

iω
. (4.21)
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Multiplying by h(ω) (4.17) and taking into account (4.20), we get,

T̂ (0)(ω,Y ) = 2T̂ (0)(ω, 0)n̂(ω,Y ). (4.22)

Let us divide now (4.18) and (4.22) for Y = 0,

T̂ (1)(ω, 0)

T̂ (0)(ω, 0)
=

T̂(ω, 0)

2T̂ (0)(ω, 0)
. (4.23)

But straightforwardly from (4.11),

T̂(ω, 0) = T̂ (0)(ω, 0) + T̂ (1)(ω, 0), (4.24)

so that (4.23) can be rearranged, leading to,

T̂ (1)(ω, 0) = T̂ (0)(ω, 0), (4.25)

thus,

T̂(ω, 0) = 2T̂ (0)(ω, 0). (4.26)

Substituting (4.26) into (4.18) and comparing the result to (4.22),

T̂ (1)(ω,Y ) = 2T̂ (0)(ω, 0)n̂(ω,Y ) = T̂ (0)(ω,Y ), (4.27)

so that,

T̂(ω,Y ) = 2T̂ (0)(ω,Y ). (4.28)

Performing now the Fourier antitransformation in (4.28),

T(X,Y ) = 2T (0)(X,Y ), (4.29)

and according to (4.7),

T(X,Y ) = 2T
∫X

X−Δ
e−uK0

(√
Y 2 + u2

)
du. (4.30)

Equation (4.29) agrees with [6]. Notice that the numerical computation of T(X,Y ) in (4.30) is
now quite more simple.
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4.4. Application of I1

According to the integral representation of theK0 Bessel function (2.7), we can rewrite (4.30)
as

T(X,Y ) = T
∫X

X−Δ
e−udu

∫∞

0
exp

(
−t − Y 2 + u2

4t

)
dt

t
. (4.31)

By Fubini’s theorem, we may rearrange (4.31) as

T(X,Y ) = T
∫∞

0
exp

(
−Y

2

4t

)
dt

t

∫X

X−Δ
exp

[
−
(

u

2
√
t
+
√
t

)2
]
du. (4.32)

The inner integral in (4.32) can be expressed in terms of the error function [4],

T(X,Y ) =
√
πT
∫∞

0
exp

(
−Y

2

4t

)

×
[
erf
(

X

2
√
t
+
√
t

)
− erf

(
X −Δ

2
√
t

+
√
t

)]
dt√
t
.

(4.33)

Performing the change of variables σ = 2
√
twe get

T(X,Y ) =
√
πT
∫∞

0
exp

(
−Y

2

σ2

)

×
[
erf
(
X

σ
+
σ

2

)
− erf

(
X −Δ
σ

+
σ

2

)]
dσ,

(4.34)

so that the temperature field on the surface, Y = 0, is

T(X, 0) =
√
πT
∫∞

0

[
erf
(
X

σ
+
σ

2

)
− erf

(
X −Δ
σ

+
σ

2

)]
dσ. (4.35)

Applying now (2.18), taking a = X, b = 1/2, and c = Δ, we may calculate (4.35),

T(X, 0) = 2T
[
Jg(Δ −X) − Jg(−X)

]
. (4.36)
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Appendix

A. The Function Jg(x)

In order to solve the integral (2.10), we can take advantage of the following result, known as
King’s integral [7]:

∫x

0
e±uK0(u)du = xe±x[K0(x) ±K1(x)] ∓ 1. (A.1)

Let us define the function Jg(x) as follows:

Jg(x) :=
∫x

0
euK0(|u|)du. (A.2)

We can distinguish three different cases, x > 0, x < 0, and x = 0.

A.1. Jg(x) for x > 0

Straightforwardly from King’s integral, (A.1), we obtain that

Jg(x) =
∫x

0
euK0(u)du = xex[K0(x) +K1(x)] − 1. (A.3)

A.2. Jg(x) for x < 0

We can perform in (A.2) the change of variables u = −u′, so that

Jg(x) =
∫x

0
euK0(−u)du = −

∫−x

0
e−u

′
K0
(
u′)du′. (A.4)

Now, we can apply in (A.4) the result given by King’s integral (A.1),

Jg(x) = xex[K0(−x) −K1(−x)] − 1. (A.5)

A.3. Jg(x) for x = 0

We can rewrite (A.3) and (A.5) as a single expression, for x /= 0,

Jg(x) = xex
[
K0(|x|) + sign(x)K1(|x|)

]
− 1, (A.6)

where

sign(x) =
|x|
x
, x /= 0 (A.7)
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In order to evaluate Jg(x) at x = 0, we can perform the following limit

Jg(0) = lim
x→ 0

xex
[
K0(|x|) + sgn(x)K1(|x|)

]
− 1. (A.8)

Applying now the asymptotic representation of K0 and K1 [4],

K0(z) ∼
z→ 0+

log
(
2
z

)
, K1(z) ∼

z→ 0+

1
z
, (A.9)

and taking into account (A.7), we can evaluate (A.8),

Jg(0) = lim
x→ 0

xex
[
log
(

2
|x|

)
+
|x|
x

1
|x|

]
− 1 = lim

x→ 0
− x log

( |x|
2

)
= 0. (A.10)

Finally, according to (A.6) and (A.10), we can express Jg(x) in the following terms:

Jg(x) :=
∫x

0
euK0(|u|)du =

⎧⎨
⎩
xex

[
K0(|x|) + sign(x)K1(|x|)

]
− 1, ∀x /= 0,

0, ∀x = 0.
(A.11)
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