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We consider a semi-Markov modulated security market consisting of a riskless asset or bond with
constant interest rate and risky asset or stock, whose dynamics follow gemoetric Brownian motion
with volatility that depends on semi-Markov process. Two cases for semi-Markov volatilities are
studied: local current and local semi-Markov volatilities. Using the martingale characterization of
semi-Markov processes, we find the minimal martingale measure for this incomplete market. Then
we model and price variance and volatility swaps for local semi-Markov stochastic volatilities.

1. Introduction

Financial engineering is a multidisciplinary field involving financial theory, the methods
of financing, using tools of mathematics, computation, and the practice of programming
to achieve the desired end results. The financial engineering methodologies usually apply
engineering methodologies and quantitative methods to finance. It is normally used in the
securities, banking, and financial management and consulting industries, or by quantitative
analysts in corporate treasury and finance departments of general manufacturing and service
firms.

One of the recent and new financial products are variance and voaltility swaps, which
are useful for volatility hedging and speculation. The market for variance and volatility
swaps has been growing, and many investment banks and other financial institutions are
now actively quoting volatility swaps on various assets: stock indexes, currencies, as well
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as commodities. A stock’s volatility is the simplest measure of its riskiness or uncertainty.
Formally, the volatility σR is the annualized standard deviation of the stock’s returns during
the period of interest, where the subscript R denotes the observed or “realized” volatility.
Why trade volatility or variance? As mentioned in [1], “just as stock investors think they
know something about the direction of the stock market so we may think we have insight
into the level of future volatility. If we think current volatility is low, for the right price we
might want to take a position that profits if volatility increases”.

The Black-Scholes model for option pricing assumes that the volatility term is a
constant. This assumption is not always satisfied by real-life options as the probability
distribution of an equity has a fatter left tail and thinner right tail than the lognormal
distribution (see Hull [2]), and the assumption of constant volatility σ in financial model
(such as the original Black-Scholes model) is incompatible with derivatives prices observed
in the market. Stochastic volatility models are used in the field of quantitative finance and
financial engineering to evaluate derivative securities, such as options, swaps. By assuming
that the volatility of the underlying price is a stochastic process rather than a constant, it
becomes possible to more accurately model derivatives.

In this paper, we show how to model and price variance and volatility swaps for two
different types of stochastic volatility, local current and local semi-Markov volatilities.

The paper is organized as follows. Section 2 is devoted to the description of different
types of volatilities and swaps. Martingale characterization of semi-Markov processes is
considered in Section 3. Section 4 summaries relevant results from [3]. Minimal martingale
measure for stock price with local semi-Markov volatility is constructed in Section 5. Section 6
contains pricing of variance swap for local semi-Markov stochastic volatility (Theorem 6.1).
Section 7 is devoted to the pricing of volatility swap for local semi-Markov stochastic
volatility (Theorem 7.1).

2. Volatilities and Swaps

Volatility σ is the standard deviation of the change in value of a financial instrument with a
specific horizon. It is often used to quantify the risk of the instrument over that time period.
The higher volatility, the riskier the security.

Historical volatility is the volatility of a financial instrument based on historical returns.
It is a standard deviation (uses historical (daily, weekly, monthly, quarterly, yearly)) price
data to empirically measure the volatility of a market or instrument in the past.

The annualized volatility σ is the standard deviation of the instrument’s logarithmic
returns in a year,

σ :=

√
√
√
√

1
n − 1

n∑

i=1

(

Ri − R
)2
, (2.1)

where Ri := ln(Sti/Sti−1), R := (1/n)
∑n

i=1 ln(Sti/Sti−1), and Sti is a asset price at time ti, i =
1, 2, . . . , n.

Implied volatility is related to historical volatility; however, the two are distinct.
Historical volatility is a direct measure of the movement of the underlier’s price (realized
volatility) over recent history. Implied volatility, in contrast, is set by the market price
of the derivative contract itself, and not the underlier. Therefore, different derivative
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contracts on the same underlier have different implied volatilities. Most derivative markets
exhibit persistent patterns of volatilities varying by strike. The pattern displays different
characteristics for different markets. In some markets, those patterns form a smile curve. In
others, such as equity index options markets, they form more of a skewed curve. This has
motivated the name “volatility skew”. For markets where the graph is downward sloping,
such as for equity options, the term “volatility skew” is often used. For other markets, such
as FX options or equity index options, where the typical graph turns up at either end, the
more familiar term “volatility smile” is used. In practice, either the term “volatility smile” or
“volatility skew” may be used to refer to the general phenomenon of volatilities varying by
strike.

The models by Black and Scholes [4] (continuous-time (B, S)-security market) and
Cox et al. [5] (discrete-time (B, S)-security market (binomial tree)) are unable to explain the
negative skewness and leptokurticity (fat tail) commonly observed in the stock markets The
famous implied-volatility smile would not exist under their assumptions.

Given the prices of call or put options across all strikes and maturities, we may deduce
the volatility which produces those prices via the full Black-Scholes equation (Black and
Scholes [4], Dupire [6] and Derman and Kani [7]). This function has come to be known as
local volatility. Local volatility-function of the spot price St and time t: σ ≡ σ(St, t) (see Dupire
[6] formulae for local volatility).

Level-dependent volatility (e.g., CEV or Firm Model)-function of the spot price alone.
To have a smile across strike price, we need σ to depend on S: σ ≡ σ(St). In this case, the
volatility and stock price changes are now perfectly correlated.

Black and Scholes (1973)made a major breakthrough by deriving pricing formulas for
vanilla options written on the stock. The Black-Scholes model assumes that the volatility term
is a constant. This assumption is not always satisfied by real-life options as the probability
distribution of an equity has a fatter left tail and thinner right tail than the lognormal
distribution (see Hull [2]), and the assumption of constant volatility σ in financial model
(such as the original Black-Scholes model) is incompatible with derivatives prices observed
in the market. Stochastic volatility models are used in the field of quantitative finance to
evaluate derivative securities, such as options, swaps. By assuming that the volatility of the
underlying price is a stochastic process rather than a constant, it becomes possible to more
accurately model derivatives.

The above issues have been addressed and studied in several ways, such as

(i) volatility is assumed to be a deterministic function of the time: σ ≡ σ(t) (see
Wilmott et al. [8], Merton [9]); extended the term structure of volatility to σ :=
σt (deterministic function of time), with the implied volatility for an option of
maturity T given by σ̂2

T = (1/T)
∫T

0 σ2
udu,

(ii) volatility is assumed to be a function of the time and the current level of the stock
price S(t): σ ≡ σ(t, S(t)) (see Dupire [6], Hull [2]); the dynamics of the stock price
satisfies the following stochastic differential equation:

dS(t) = μS(t)dt + σ(t, S(t))S(t)dW1(t), (2.2)

where W1(t) is a standard Wiener process,
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(iii) the time variation of the volatility involves an additional source of randomness,
besides W1(t), represented byW2(t), and is given by

dσ(t) = a(t, σ(t))dt + b(t, σ(t))dW2(t), (2.3)

where W2(t) and W1(t) (the initial Wiener process that governs the price process)
may be correlated (see Hull and White [10], Heston [11]),

(iv) the volatility depends on a random parameter x such as σ(t) ≡ σ(x(t)), where x(t)
is some random process (see Elliott and Swishchuk [12], Swishchuk [3, 13]),

(v) another approach is connected with stochastic volatility, namely, uncertain
volatility scenario. This approach is based on the uncertain volatility model
developed in Avellaneda et al. [14], where a concrete volatility surface is selected
among a candidate set of volatility surfaces. This approach addresses the sensitivity
question by computing an upper bound for the value of the portfolio under
arbitrary candidate volatility, and this is achieved by choosing the local volatility
σ(t, S(t)) among two extreme values σmin and σmax such that the value of the
portfolio is maximized locally,

(vi) the volatility σ(t, St) depends on St := S(t + θ) for θ ∈ [−τ, 0], namely, stochastic
volatility with delay (see Kazmerchuk et al. [15]).

In the approach (i), the volatility coefficient is independent of the current level of the
underlying stochastic process S(t). This is a deterministic volatility model, and the special
case where σ is a constant reduces to the well-known Black-Scholes model that suggests
changes in stock prices are lognormal distributed. But the empirical test by Bollerslev [16]
seems to indicate otherwise. One explanation for this problem of a lognormal model is the
possibility that the variance of log(S(t)/S(t − 1)) changes randomly.

In the approach (ii), several ways have been developed to derive the corresponding
Black-Scholes formula: one can obtain the formula by using stochastic calculus and, in
particular, the Ito’s formula (see, e.g., Shiryaev [17]).

A generalized volatility coefficient of the form σ(t, S(t)) is said to be level-dependent.
Because volatility and asset price are perfectly correlated, we have only one source of
randomness given by W1(t). A time and level-dependent volatility coefficient makes the
arithmetic more challenging and usually precludes the existence of a closed-form solution.
However, the arbitrage argument based on portfolio replication and a completeness of the
market remain unchanged.

The situation becomes different if the volatility is influenced by a second “nontrad-
able” source of randomness. This is addressed in the approachs (iii), (iv), and (v)we usually
obtains a stochastic volatility model, introduced by Hull and White [10], which is general
enough to include the deterministic model as a special case.

Hobson and Rogers [18] suggested a new class of nonconstant volatility models,
which can be extended to include the aforementioned level-dependent model and share
many characteristics with the stochastic volatility model. The volatility is nonconstant and
can be regarded as an endogenous factor in the sense that it is defined in terms of the past
behaviour of the stock price. This is done in such a way that the price and volatility form a
multidimensional Markov process.

The Generalized Auto-Regression Conditional Heteroskedacity (GARCH)model (see
Bollerslev [16]) is another popular model for estimating stochastic volatility. It assumes that
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the randomness of the variance process varies with the variance, as opposed to the square root
of the variance as in the Heston model. The standard GARCH(1,1) model has the following
form for the variance differential:

dσt = κ(θ − σt)dt + γσtdBt. (2.4)

The GARCH model has been extended via numerous variants, including the
NGARCH, LGARCH, EGARCH, GJR-GARCH, and so forth.

Volatility swaps are forward contracts on future realized stock volatility, variance
swaps are similar contract on variance, the square of the future volatility, both these
instruments provide an easyway for investors to gain exposure to the future level of volatility.

A stock’s volatility is the simplest measure of its risk less or uncertainty. Formally, the
volatility σR is the annualized standard deviation of the stock’s returns during the period of
interest, where the subscript R denotes the observed or ”realized” volatility.

The easy way to trade volatility is to use volatility swaps, sometimes called realized
volatility forward contracts, because they provide pure exposure to volatility (and only to
volatility).

Demeterfi et al. [1] explained the properties and the theory of both variance and
volatility swaps. They derived an analytical formula for theoretical fair value in the presence
of realistic volatility skews, and pointed out that volatility swaps can be replicated by
dynamically trading the more straightforward variance swap.

Javaheri et al. [19] discussed the valuation and hedging of a GARCH(1,1) stochastic
volatility model. They used a general and exible PDE approach to determine the first two
moments of the realized variance in a continuous or discrete context. Then they approximate
the expected realized volatility via a convexity adjustment.

Brockhaus and Long [20] provided an analytical approximation for the valuation of
volatility swaps and analyzed other options with volatility exposure.

Elliott and Swishchuk [12] studied option pricing formulae and pricing swaps for
Markov-modulated Brownian with jumps.

In [3] we considered a semi-Markov modulated market consisting of a riskless asset
or bond, B, and a risky asset or stock, S, whose dynamics depend on a semi-Markov
process x. Using the martingale characterization of semi-Markov processes, we noted the
incompleteness of semi-Markov modulated markets and found the minimal martingale
measure. We priced variance and volatility swaps for stochastic volatilities driven by the
semi-Markov processes.

In this paper, we study some extensions of the results obtained in [3] for models
such as local current and local semi-Markov volatilities. We obtain the prices of variance
(Theorem 6.1) and volatility swaps (Theorem 7.1) for these models.

3. Martingale Characterization of Semi-Markov Processes:
Definitions and Preliminary Results

3.1. Markov Renewal and Semi-Markov Processes

Let (Ω,F, P) be a probability space, (X,X) be a measurable space and Q(x, B, t) =
P(x, B)Gx(t), x ∈ X, B ∈ X, t ∈ R+, be a semi-Markov kernel. Let us consider a (X×R+,X⊗B+)-
valued stochastic process (xn, τn; n ≥ 0), with τ0 ≤ τ1 ≤ · · · ≤ τn ≤ τn+1 ≤ · · · , (see [21, 22]).
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Definition 3.1. A Markov renewal process is a two-component Markov chain, (xnτn; n ≥ 0),
homogeneous with respect to the second component with transition probabilities

P(xn+1 ∈ B, τn+1 − τn ≤ t | Fn) = Q(xn, B, t) = P(x, B)Gx(t) a.s., (3.1)

where Fn is a σ-algebra generated by (xn, τn).
Define the counting process of jumps ν(t) by ν(t) = sup{n ≥ 0: τn ≤ t}, that gives the

number of jumps of the Markov renewal process in the time interval (0, t].

Definition 3.2. A stochastic process x(t), t ≥ 0, defined by x(t) = xν(t) is called a semi-Markov
process, associated to the Markov renewal process (xnτn; n ≥ 0).

Remark 3.3. Markov jump processes are special cases of semi-Markov processes with semi-
Markov kernel Q(x, B, t) = P(x, B)[1 − e−λ(x)t].

Definition 3.4. The auxiliary process γ(t) = t − τν(t) is called the backward recurrence time-the
time period since the last renewal epoch before t (or the current life in the terminology of
reliability theory, or age random variable); see [22].

Remark 3.5. The current life is a Markov process with generator Qf(t) = f ′(t) + λ(t)[f(0) −
f(t)], where λ(t) = −F ′(t)/F(t), F(t) = 1 − F(t), Domain(Q) = C1(R).

Remark 3.6. If we expand the state space of the semi-Markov process to include a component
that records the amount of time already spent in the current state, then this additional
information in the state descriptionmakes the semi-Markov processMarkovian. For example,
the following process (x(t), γ(t)) is a Markov process; see [21, 22].

Definition 3.7. The compensating operatorQ of the Markov renewal process is defined by the
following relation:

Qf(x0, τ0) = q(x0)E
[

f(x1, τ1) − f(x0, τ0)|F|0
]

, (3.2)

where q(x) = 1/m(x),m(x) =
∫+∞
0 Gx(t)dt, Ft = σ{x(s), τν(s); 0 ≤ s ≤ t}.

Lemma 3.8. The compensating operator of the Markov renewal process can be defined by the relation

Qf(x, t) = q(x)
[∫+∞

0
Gx(ds)

∫

X

P
(

x, dy
)

f
(

y, t + s
) − f(x, t)

]

. (3.3)

This statement follows directly from Definition 3.7.

Lemma 3.9. Let (xn, τn) be the Markov renewal process, Q be the compensating operator,

mn := f(xn, τn) −
n∑

i=1

(τi − τi−1)Qf(xi−1, τi−1), (3.4)

and Fn = σ{xk, τk; k ≤ n}. Then the process mn is a Fn-martingale for any function f such that
Ex|f(x1, τ1)| < +∞.
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Let x(t) be a Markov process with infinitesimal generator Q.

Theorem 3.10. The process

m(t) := f(x(t)) − f(x) −
∫ t

0
Qf(x(s))ds (3.5)

is an Fx
t = σ{x(s); s ≤ t}-martingale (see [12, 22]).

This statement follows from the Dynkin formula (see [23]).

Theorem 3.11. The quadratic variation of the martingale m(t) is the process

〈m(t)〉 =
∫ t

0

[

Qf2(x(s)) − 2f(x(s))Qf(x(s))
]

ds. (3.6)

(See [12]).

3.2. Jump Measure for a Semi-Markov Process

The jump measure for x(t) is defined in the following way (see [22]):

μ([0, t] ×A) =
∑

n≥0
1(xn ∈ A, τn ≤ t), A ∈ X, t ≥ 0. (3.7)

It is known (see [12]) that the predictable projection (compensator) for μ has the following
form:

ν
(

dt, dy
)

=
∑

n≥0
1(τn < t ≤ τn+1)

P
(

xn, dy
)

gxn(t)

Gxn(t)
dt, (3.8)

where Gx(t) = 1 −Gx(t), gx(t) = dGx(t)/dt, for all x ∈ X.

3.3. Martingale Characterization of Semi-Markov Processes

Let xt be a semi-Markov process with semi-Markov kernel Q(x, B, t) = P(x, B)Gx(t) and γ(t)
be the current life.

Lemma 3.12. The process

m
f
t := f

(

xt, γ(t)
) −

∫ t

0
Qf
(

xs, γ(s)
)

ds (3.9)
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is a martingale with respect to the filtration F∗
t := σ{xs, τν(s); 0 ≤ s ≤ t}, whereQ is the infinitesimal

operator of Markov process (xt, γ(t)):

Qf(x, t) =
df(x, t)

dt
+

gx(t)

Gx(t)

∫

X

P
(

x, dy
)[

f
(

y, t
) − f(x, t)

]

. (3.10)

This statement follows from Theorem 3.10 and the fact that (x(t), γ(t)) is a Markov
process (see Remark 3.6).

Let us calculate the quadratic variation of the martingale mf
t .

Lemma 3.13. Let Q in (3.10) be such that if f ∈ Domain(Q), then f2 ∈ Domain(Q). The quadratic
variation 〈mf

t 〉 of the martingale mf
t in (3.9) is equal to

〈

m
f
t

〉

=
∫ t

0

[

Qf2(xs, γ(s)
) − 2f

(

xs, γ(s)
)

Qf
(

xs, γ(s)
)
]

ds. (3.11)

This statement follows from Theorem 3.11 and the fact that (x(t), γ(t)) is a Markov
process (see Remark 3.6).

Lemma 3.14. Let the following condition (Novikov’s condition) is satisfied

EP exp

{

1
2

∫ t

0

[

Qf2(xs, γ(s)
) − 2f

(

xs, γ(s)
)

Qf
(

xs, γ(s)
)
]

ds

}

< +∞, ∀f2 ∈ Domain(Q).

(3.12)

Then EPe
f
t = 1, where

e
f
t := em

f
t −(1/2)〈m

f
t 〉, (3.13)

and e
f
t in (3.13) is a P -martingale (Doléans-Dade martingale). Here, 〈mf

t 〉 is defined in (3.11) and
Q in (3.10).

4. Pricing of Variance and Volatility Swaps for
Semi-Markov Volatilities

In [3]we stated twomain results on pricing of variance and volatility swaps for semi-Markov
volatility. We considered the following (B, S)-security market (B stands for risk-free security
“Bond” and S stands for risky security “Stock”). Assume the stock price St satisfies the
stochastic differential eqaution

dSt = St

(

μdt + σ
(

xt, γ(t)
)

dwt

)

, (4.1)
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where μ ∈ R is the appreciation rate and σ(xt, γ(t)) is the semi-Markov volatility, and the
bond price B(t) is

B(t) = B0e
rt, (4.2)

where r > 0 is the risk-free rate of return (interest rate). Then the folllowing two theorems are
valid.

Theorem 4.1 (Price of Variance Swap [3]). The value of a variance swap for semi-Markov
stochastic volatility σ(xt, γ(t)) equals to

Pvar(x) = e−rT
(

1
T

∫T

0
etQσ2(x, 0)dt −Kvar

)

. (4.3)

Theorem 4.2 (Price of Volatility Swap [3]). The value of a volatility swap for semi-Markov
stochastic volatility σ(xt, γ(t)) is

Pvol(x)

≈ e−rT

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

√

1
T

∫T

0
etQσ2(x, 0)dt

−

[
(

1/T2)
∫T

0

∫T

0 Eσ2(xt, γ(t)
)

σ2(xs, γ(s)
)

dt ds −
(

(1/T)
∫T

0 etQσ(x, 0)dt
)2
]

(

8
((

1
T

)
∫T

0 etQσ2(x, 0)dt
)3/2

)

−Kvol

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

.

(4.4)

Here Q is defined as

Qf(x, t) =
df(x, t)

dt
+

gx(t)

Gx(t)

∫

X

P
(

x, dy
)[

f
(

y, t
) − f(x, t)

]

. (4.5)

In this paper, we generalize these results for local semi-Markov volatilities.

5. Minimal Martingale Measure for Stock Price with
Local Semi-Markov Volatility

We suppose that the stock price St satisfies the following stochastic differential equation

dSt = St

(

rdt + σloc
(

St, xt, γ(t)
)

dwt

)

(5.1)
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with the volatility σ := σloc(St, xt, γ(t)) depending on the process xt, which is independent
on standard Wiener process wt, stock price St, and the current life γ(t) = t − τν(t). We call the
volatility σ(St, xt, γ(t)) the local current semi-Markov volatility.

Remark 5.1. We note that process (St, xt, γt) is a Markov process on (R+, X, R+) with
infinitesimal operator

Qf(s, x, t) =
∂f(s, x, t)

∂t
+

gx(t)

Gx(t)

∫

X

P
(

x, dy
)[

f
(

s, y, t
) − f(s, x, t)

]

+ rS
∂f(s, x, t)

∂s
+
1
2
σ2(s, x, 0)S2 ∂

2f(s, x, t)
∂s2

.

(5.2)

Remark 5.2 (Local Semi-Markov Volatility). Let’s suppose that the stock price St satisfies the
following stochastic differential equation

dSt = St(rdt + σ(St, xt, t)dwt) (5.3)

with the volatility σ := σ(St, xt, t) depending on the process xt, which is independent on
standard Wiener process wt, stock price St and current time t.

Suppose also that σ(S, x, t) is differentiable function by twith bounded derivative.
Then we can reduce the problem of calculating of swaps with local semi-Markov

volatility to the previous one with local current semi-Markov volatility by the following
expansion:

σ(St, xt, t) = σ
(

St, xt, γ(t)
)

+ τν(t)
dσ(St, xt, t)

dt
+ o
(

τν(t)
)
. (5.4)

The error of estimation will be

E
[

σ(St, xt, t) − σ
(

St, xt, γ(t)
)]2 ≤ E

[

τν(t)
]2 × C, (5.5)

where C = max0≤t≤TE[dσ(St, xt, t)/dt]
2.

In this way, it is enough to consider the case with the local current stochastic volatility
in (5.1).

5.1. Minimal Martingale Measure

We consider the following (B, S) security market. Let the stock price St satisfies the following
equation:

dSt = St

(

μdt + σ
(

St, xt, γ(t)
)

dwt

)

, (5.6)
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where μ ∈ R is the appreciation rate and σ(St, xt, γ(t)) is the local current semi-Markov
volatility, and the bond price B(t) is

B(t) = B0e
rt, (5.7)

where r > 0 is the risk-free rate of return (interest rate).
As long as we have two sources of randomness, Brownian motion w(t) and semi-

Markov process xt, the above (B, S)-security market (4.1)-(4.2) is incomplete (see [12,
Theorem 1]) so there are many risk-neutral (or martingale) measures. We are going to
construct the minimal martingale measure (see [12]). With respect to this construction (see
[12, Lemma 4]), the minimal martingale measure P ∗ is as follows.

Using Girsanov’s Theorem (see [17]), we obtain the following result concerning the
minimal martingale measure in the above market (5.6)-(5.7).

Lemma 5.3. Under the assumption
∫T

0 ((r − μ)/σ(St, xt, γ(t)))
2dt < +∞, a.s., the following holds:

(1) There is a probability measure P ∗ equivalent to P such that

dP ∗

dP
= exp

⎧

⎨

⎩

∫T

0

r − μ

σ
(

St, xt, γ(t)
)dw(t) − 1

2

∫T

0

(

r − μ

σ
(

St, xt, γ(t)
)

)2

dt

⎫

⎬

⎭
(5.8)

is its Radon-Nikodym density.

(2) The discounted stock price Z(t) = St/B(t) is a positive local martingale with respect to P ∗

and is given by

Z(t) = exp

{

−1
2

∫ t

0
σ2(St, xs, γ(s)

)

ds +
∫ t

0
σ
(

St, xs, γ(s)
)

dw∗(s)

}

, (5.9)

where w∗(t) =
∫ t

0((r − μ)/σ(St, xs, γ(s)))ds +w(t) is a standard Brownian motion with
respect to P ∗.

Remark 5.4. Measure P ∗ is called the minimal martingale measure.

Remark 5.5. We note that under the P ∗ measure the stock price St satisfies the following
equation:

dSt = St

(

rdt + σ
(

St, xt, γ(t)
)

dw∗(t)
)

, (5.10)

and discounted process Z(t) has the presentation

dZ(t) = Z(t)σ
(

St, xs, γ(s)
)

dw∗(t). (5.11)
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Remark 5.6. A sufficient condition (Novikov’s condition) for the right-hand side of (5.8) to be
a martingale is

E exp

⎧

⎨

⎩

1
2

∫T

0

(

r − μ

σ
(

St, xt, γ(t)
)

)2

dt

⎫

⎬

⎭
< +∞. (5.12)

6. Pricing of Variance Swaps for Local Semi-Markov
Stochastic Volatility

A variance swap is a forward contract on annualized variance, the square of the realized
volatility. Its payoff at expiration is equal to

N
(

σ2
R(x) −Kvar

)

, (6.1)

where σ2
R(x) is the realized stock variance (quoted in annual terms) over the life of the

contract,

σ2
R(x) :=

1
T

∫T

0
σ2(St, xs, γ(s)

)

ds, (6.2)

Kvar is the delivery price for variance, and N is the notional amount of the swap in dollars
per annualized volatility point squared. The holder of a variance swap receives, at expiry, N
dollars for every point by which the stock’s realized variance σ2

R(x) has exceeded the variance
delivery price Kvar. See [1, 24].

Pricing a variance forward contract or swap is no different from valuing any other
derivative security. The value of a forward contract F on future realized variance with strike
price Kvar is the expected present value of the future payoff in the risk-neutral world:

Pvar(x) = E
{

e−rT
(

σ2
R(x) −Kvar

)}

, (6.3)

where r is the risk-free discount rate corresponding to the expiration date T , E denotes the
expectation with respect to the minimal martingale measure P (from now on we use simplier
notation P instead of P ∗), and σ2

R(x) is defined in (6.2).
Let us show how we can calculate EV (x), where V (x) := σ2

R(x). For that we need to
calculate Eσ2(St, xt, γ(t)).

We note (see Section 3.3, Lemma 3.12) that for σ(x) ∈ Domain(Q) the following
process

mσ
t := σ

(

St, xt, γ(t)
) − σ(x, 0) −

∫ t

0
Qσ
(

Ss, xs, γ(s)
)

ds (6.4)

is a zero-mean martingale with respect to Ft := σ{ws, xs, τν(s); 0 ≤ s ≤ t} and Q is the
infinitesimal operator defined in (5.2).
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The quadratic variation of the martingale mf
t by Lemma 3.13 is equal to

〈

mσ
t

〉

=
∫ t

0

[

Qσ2(Ss, xs, γ(t)
) − 2σ

(

Ss, xs, γ(t)
)

Qσ
(

Ss, xs, γ(t)
)
]

ds,

σ2(s, x, t) ∈ Domain(Q).

(6.5)

Since σ(Ss, xs, γ(s)) satisfies the following stochastic differential equation:

dσ
(

St, xt, γ(t)
)

= Qσ
(

St, xt, γ(t)
)

dt + dmσ
t (6.6)

then, we obtain from Itô formula (see [22]) that σ2(St, xt, γ(t)) satisfies the following
stochastic differential equation:

dσ2(St, xt, γ(t)
)

= 2σ
(

St, xt, γ(t)
)

dmσ
t + 2σ

(

St, xt, γ(t)
)

Qσ
(

St, xt, γ(t)
)

dt + d
〈

mσ
t

〉

, (6.7)

where 〈mσ
t 〉 is defined in (6.5).

Substituting (6.3) into (6.5) and taking the expectation of both parts of (6.7), we obtain
that

Eσ2(St, xt, γ(t)
)

= σ2(s, x, 0) +
∫ t

0
QEσ2(Ss, xs, γ(s)

)

ds, s = S0, (6.8)

and solving this equation we have

Eσ2(St, xt, γ(t)
)

= etQσ2(s, x, 0). (6.9)

Finally, we obtain that

EV (x) =
1
T

∫T

0
etQσ2(s, x, 0)dt. (6.10)

In this way, we have obtained the following result (see (6.3)–(6.10)).

Theorem 6.1. The value of a variance swap for local current semi-Markov stochastic volatility
σ(St, xt, γ(t)) is

Pvar(s, x) = e−rT
(

1
T

∫T

0
etQσ2(s, x, 0)dt −Kvar

)

, (6.11)

where Q is defined in (5.2).
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7. Pricing of Volatility Swaps for Local Semi-Markov Volatility

Volatility swaps are forward contracts on future realized stock volatility.
A stock’s volatility is the simplest measure of its risk less or uncertainty. Formally, the

volatility σR(S) is the annualized standard deviation of the stock’s returns during the period
of interest, where the subscript R denotes the observed or “realized” volatility for the stock
S.

The easy way to trade volatility is to use volatility swaps, sometimes called realized
volatility forward contracts, because they provide pure exposure to volatility (and only to
volatility) (see [1, 19, 20, 24, 25]).

A stock volatility swap is a forward contract on the annualized volatility. Its payoff at
expiration is equal to

N(σR(S) −Kvol), (7.1)

where σR(S) is the realized stock volatility (quoted in annual terms) over the life of contract,

σR(S) :=

√

1
T

∫T

0
σ2
sds, (7.2)

σt is a stochastic stock volatility, Kvol is the annualized volatility delivery price, and N is
the notional amount of the swap in dollar per annualized volatility point. The holder of a
volatility swap receives, at expiry, N dollars for every point by which the stock’s realized
volatility σR has exceeded the volatility delivery price Kvol. The holder is swapping a fixed
volatilityKvol for the actual (floating) future volatility σR. We note that usuallyN = αI, where
α is a converting parameter such as 1 per volatility-square, and I is a long-short index (+1 for
long and −1 for short).

Pricing a variance forward contract or swap is no different from valuing any other
derivative security. The value of a forward contract F on future realized variance with strike
price Kvar is the expected present value of the future payoff in the risk-neutral world:

Pvol(x) = E
{

e−rT(σR(x) −Kvol)
}

, (7.3)

where r is the risk-free discount rate corresponding to the expiration date T , E denotes the
expectation with respect to the minimal martingale measure P (from now on we use simplier
notation P instead of P ∗) and σR(x) is defined in (7.3).

Thus, for calculating variance swaps we need to know only E{σ2
R(S)}, namely, mean

value of the underlying variance.
To calculate volatility swaps we need more. From [20] we have the approximation

(which uses the second-order Taylor expansion for function
√
x) (see also [19, page 16]):

E

{√

σ2
R(S)

}

≈
√

E{V } − Var{V }
8E{V }3/2

, (7.4)

where V := σ2
R(S) and Var{V }/8E{V }3/2 is the convexity adjustment.

Thus, to calculate volatility swaps we need both E{V } and Var{V }.
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7.1. Pricing of Volatility Swap

From Brockhaus and Long approximation [20]we have (see also [19, page 16]):

E

{√

σ2
R(S)

}

≈
√

E{V } − Var{V }
8E{V }3/2

, (7.5)

where V := σ2
R(S) and Var{V }/8E{V }3/2 is the convexity adjustment.

As we can see from (7.5), to calculate volatility swaps we need both E{V } and Var{V }.
We have already calculated E{σ2

R(S)} = E[V ] (see (6.10)). Let us calculate Var(V ) :=
E[V ]2 − (E[V ])2. In this way, we need E[V ]2 = Eσ4

R(S). Taking into account the expression
for V = σ2

R(S)we have:

E[V ]2 =
1
T2

∫∫T

0
E
[

σ2(St, xt, γ(t)
)

σ2(Ss, xs, γ(s)
)

dt ds
]

. (7.6)

In this way, the variance of V , Var[V ], is

Var[V ] = E
[

V 2
]

− (E[V ])2

=
1
T2

∫∫T

0
Eσ2(St, xt, γ(t)

)

σ2(Ss, xs, γ(s)
)

dt ds −
(

1
T

∫T

0
etQσ2(s, x, 0)dt

)2

.

(7.7)

Taking into account (7.3)–(7.7), we obtain:

Pvol(s, x)

= e−rT[EσR(S) −Kvol]

= e−rT

⎡

⎣E

√

1
T

∫T

0
σ2
(

Ss, xs, γ(s)
)

dt −Kvol

⎤

⎦

≈ e−rT
[√

EV − Var(V )

8(EV )3/2
−Kvol

]

= e−rT

⎧

⎪
⎪
⎨

⎪
⎪
⎩

√

1
T

∫T

0
etQσ2(s, x, 0)dt

−

[
(

1/T2)
∫T

0

∫T

0 Eσ2(St, xt, γ(t)
)

σ2(Ss, xs, γ(s)
)

dt ds−
(

(1/T)
∫T

0 etQσ2(s, x, 0)dt
)2
]

(

8
(

(1/T)
∫T

0 etQσ2(s, x, 0)dt
)3/2

)

−Kvol

⎫

⎪
⎪
⎬

⎪
⎪
⎭

.

(7.8)

Summarizing (7.3)–(7.8), we have the following.
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Theorem 7.1. The value of volatility swap for local current semi-Markov stochastic volatility
σ(St, xt, γ(t)) is

Pvol(s, x)

≈ e−rT

⎧

⎨

⎩

√

1
T

∫T

0
etQσ2(s, x, 0)dt

−

[
(

1/T2)
∫T

0

∫T

0 Eσ2(St, xt, γ(t)
)

σ2(Ss, xs, γ(s)
)

dtds −
(

(1/T)
∫T

0 etQσ(x, 0)dt
)2
]

(

8
(

(1/T)
∫T

0 etQσ2(s, x, 0)dt
)3/2

)

−Kvol

⎫

⎪
⎪
⎬

⎪
⎪
⎭

,

(7.9)

where Q is defined in (5.2).
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