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This paper reviewed the research on the nonlinear free vibration of pre-stressed orthotropic
membrane, which is commonly applied in building membrane structures. We applied the L-
P perturbation method to solve the governing equations of large amplitude nonlinear free
vibration of rectangular orthotropic membranes and obtained a simple approximate analytical
solution of the frequency and displacement function of large amplitude nonlinear free vibration of
rectangular membrane with four edges simply supported. By giving computational examples, we
compared and analyzed the frequency results. In addition, vibration mode of the membrane and
displacement and time curve of each feature point on the membrane surface were analyzed in the
computational example. Results obtained from this paper provide a simple and convenientmethod
to calculate the frequency and lateral displacement of nonlinear free vibration of rectangular
orthotropic membranes in large amplitude. Meanwhile, the results provide some theoretical
basis for solving the response of membrane structures under dynamic loads and provide
some computational basis for the vibration control and dynamic design of building membrane
structures.

1. Introduction

The orthotropic membrane materials are mainly applied in building membrane structures.
The membrane structure is a thin flexible structure, so it is easy to engender vibration and
relaxation deformation, thus results in engineering accident. Therefore, it is quite necessary
to study the vibration characteristic of membrane structure to provide some computational
basis for the design of membrane structure to ensure the safety of membrane structure.
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The amplitude of the membrane is much larger than its thickness in vibration
process, so the geometric nonlinearity caused by large amplitude must be considered. At
present, there are some reports about the nonlinear vibration problem of membranes. Shin
et al. [1] investigated the geometric nonlinear dynamic characteristics of the out-of-plane
vibration of an axially moving membrane by using Hamilton’s principle and Galerkin’s
method. The results showed that the translating speed, boundary conditions and aspect
ratio of the membrane have effects on the natural frequencies, mode shapes and stability
for the out-of-plane vibration of the moving membrane. Zhang and Shan [2] studied
initial equilibrium shape and free vibration properties pretensioned membrane structures
by applying relaxation method. Example analysis demonstrated that the method is a simple,
practical and accurate geometric nonlinear method to study the tensioned cladding-network
with big span. Li et al. [3] presented NBA-UM (Nonlinear Buckling Analysis-Update
Matrix) method to analyze the vibration behaviors of the wrinkled membrane. The results
reveal that the wrinkles have great effects on the free vibration characteristics of wrinkled
membrane. Pan and Gu [4] studied the effects of membrane’s prestrain, size, elastic ratio,
density, relative amplitude and dead load of square tensioned membrane to the structure’s
nonlinearity and deduced the free oscillating system’s equivalent fundamental frequency.
Reutskiy [5] adopted a new numerical method to study nonlinear vibration of arbitrarily
shaped membranes. The method is based on mathematical modeling of physical response
of a system that was excited over a range of frequencies. Formosa [6] presented a work
devoted to the study of the operation of a miniaturized membrane Stirling engine. The
nonlinearities of large amplitude vibration of Stirling enginewere concerned, and the stability
analysis to predict the starting of the engine and the instability problem that leads to the
steady-state behavior were displayed. Gonçalves et al. [7] presented a detailed analysis of
the geometrically and materially nonlinear vibration response of a prestretched hyperelastic
membrane subjected to finite deformations and a time-varying lateral pressure by using
Galerkin’s method and nonlinear finite element method. The results showed the strong
influence of the stretching ratio on the linear and nonlinear oscillations of the membrane.
The research objects of these above researches are all isotropic membrane material. There
are a few reports about the nonlinear vibration of orthotropic membrane material. Zheng
Zhou-lian et al. [8] studied the geometric nonlinear vibration of orthotropic membranes.
They established the governing equations by applying Von Kármán’s large deflection theory
and D’Alembert’s principle of membrane, and applied Galerkin’s method and power series
expansion method to solve the governing equations. They obtained the power series solution
of nonlinear vibration frequency of rectangular membrane with four edges xed, but the
power series formula is so complex that it is not very convenient for calculating and the
displacement function of the vibration membrane was not be solved.

In this paper, we apply the L-P perturbation method to solve the nonlinear free
vibration problem of orthotropic membranes in large amplitude. The L-P perturbation is one
kind of singular perturbation method, which was originated by Lindstedt and Poincaré. The
central idea of this method is to construct a progressive analytical expression to replace the
accurate solution of the definite problem of differential equation according to some artificial
specific steps. The applications of this method in many actual engineering problems proved
that this method is an effective mathematical method to solve the approximate analytical
solution of nonlinear differential equation [9–19].

Through using the L-P perturbation method to solve the governing equations of large
amplitude nonlinear free vibration of rectangular orthotropic membranes in this paper, we
obtained an approximate analytical frequency solution and displacement function of the
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Figure 1: Rectangle membrane with four edges simply supported.

nonlinear free vibration of prestressed orthotropic rectangular membrane with four edges
simply supported. Results obtained from this paper provide a simple and convenient new
method to calculate the frequency and lateral displacement of large amplitude nonlinear
free vibration of rectangular orthotropic membranes. Meanwhile, the results provide some
theoretical basis for solving the response of membrane structures under dynamic loads, and
provide some computational basis for the vibration control and dynamic design of building
membrane structures.

2. Governing Equations and Boundary Conditions

The membrane material studied is orthotropic. Its two orthogonal directions are the two
principal fiber directions, and the material characteristics of the two principal fiber directions
are different. Assume that the rectangular membrane studied is simply supported on its four
edges. The two principal fiber directions are x and y, respectively. a and b denote the length
of x and y direction, respectively; N0x andN0y denote initial tension in x and y, respectively,
as shown in Figure 1.

In the process of vibration, although the amplitude is much smaller than the boundary
size of membrane, it is not much smaller than its thickness. Therefore, the geometric
nonlinearity must be considered in the process of membrane vibration.

According to the Von Kármán’s large deflection theory and D’Alembert’s principle,
the vibration partial differential equation and consistency equation of orthotropic membrane
[8] are

ρ
∂2w

∂t2
− (Nx +N0x)

∂2w

∂x2
− (

Ny +N0y
)∂2w
∂y2

= 0,

1
E1h

∂2Nx

∂y2
− μ2

E2h

∂2Ny

∂y2
− μ1

E1h

∂2Nx

∂x2
+

1
E2h

∂2Ny

∂x2
− 1
Gh

∂2Nxy

∂x∂y
=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
,

(2.1)

where ρ denotes aerial density of membrane. Nx and Ny denote additional tension in x and
y direction, respectively.N0x andN0y denote initial tension in x and y direction, respectively.
Nxy denotes shear force. w denotes deflection. w(x, y, t); h denotes membrane’s thickness.
E1 and E2 denote Young’s modulus in x and y direction, respectively. G denotes shearing
modulus. μ1 and μ2 denote Poisson’s ratio in x and y direction, respectively.
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While the membrane is in vibration, the effect of shearing stress is so small that we
may take Nxy. = 0, Introduce the stress function

Nx = h
∂2ϕ

∂y2
, N0x = h · σ0x,

Ny = h
∂2ϕ

∂x2
, N0y = h · σ0y.

(2.2)

Equation (2.1) can be simplified as follows:

ρ

h

∂2w

∂t2
−
(

σ0x +
∂2ϕ

∂y2

)
∂2w

∂x2
−
(

σ0y +
∂2ϕ

∂x2

)
∂2w

∂y2
= 0, (2.3)

1
E1

∂4ϕ

∂y4
+

1
E2

∂4ϕ

∂x4
=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
. (2.4)

where ϕ denotes stress function ϕ(x, y, t), σ0x and σ0y denote initial tensile stress in x and y
direction, respectively.

The corresponding boundary conditions are as follows:

w
(
0,y, t

)
= 0,

∂2w

∂x2

(
0,y, t

)
= 0,

w
(
a,y, t

)
= 0,

∂2w

∂x2

(
a,y, t

)
= 0,

w(x, 0, t) = 0,
∂2w

∂y2 (x, 0, t) = 0,

w(x, b, t) = 0,
∂2w

∂y2 (x, b, t) = 0.

(2.5)

3. Simplification of Governing Equations

Functions that satisfy the boundary conditions (2.5) are expressed as follows:

w
(
x,y, t

)
= W

(
x,y

)
T(t), (3.1)

ϕ
(
x,y, t

)
= φ

(
x,y

)
T2(t), (3.2)

whereW(x,y) is the given mode shape function, φ(x,y) and T(t) are the unknown functions.
Assume that the mode shape function is as follows:

W
(
x,y

)
= sin

mπx

a
sin

nπy

b
, (3.3)
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where m and n are integer, and denote the sine half-wave number in x and y, respectively.
Equation (3.3) satisfies the boundary conditions automatically.

Substituting (3.1) and (3.2) into (2.4) yields

1
E1

∂4φ

∂y4
+

1
E2

∂4φ

∂x4
=

(
∂2W

∂x∂y

)2

− ∂2W

∂x2

∂2W

∂y2
. (3.4)

Substituting (3.3) into (3.4) yields

1
E1

∂4φ

∂y4
+

1
E2

∂4φ

∂x4
=

m2n2π4

2a2b2

(
cos

2mπx

a
+ cos

2nπy
b

)
. (3.5)

Assume the solution of (3.5) is:

φ
(
x,y

)
= α · cos 2mπx

a
+ β · cos 2nπy

b
. (3.6)

Substituting (3.6) into (3.5) yields

α =
E2n

2a2

32m2b2
, β =

E1m
2b2

32n2a2
. (3.7)

Substituting (3.1) and (3.2) into (2.3), according to the Galerkin method yields

∫∫

S

(
ρ

h

∂2w

∂t2
−
(

σ0x +
∂2ϕ

∂y2

)
∂2w

∂x2
−
(

σ0y +
∂2ϕ

∂x2

)
∂2w

∂y2

)

W
(
x,y

)
ds

=
∫∫

S

[
ρ

h
W

∂2T(t)
∂t2

−
(

σ0x · ∂
2W

∂x2
+ σ0y · ∂

2W

∂y2

)

T(t)

−
(

∂2φ

∂y2

∂2W

∂x2
+
∂2φ

∂x2

∂2W

∂y2

)

T3(t)

]

W
(
x,y

)
ds = 0.

(3.8)

Obviously, (3.8) is a nonlinear differential equation with respect to T(t). It can be
expressed as follows:

A · d
2T(t)
dt2

− B · T(t) − C · T3(t) = 0, (3.9)
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where

A =
∫∫

S

ρ

h
W2ds =

∫∫

S

ρ

h
sin2mπx

a
sin2nπy

b
ds =

ρab

4h
,

B =
∫∫

S

(

σ0x · ∂
2W

∂x2
+ σ0y · ∂

2W

∂y2

)

Wds = −π
2ab

4

(
m2

a2
σ0x +

n2

b2
σ0y

)

,

C =
∫∫

S

(
∂2φ

∂y2

∂2W

∂x2
+
∂2φ

∂x2

∂2W

∂y2

)

Wds = −abπ
4

64

(
E1m

4

a4
+
E2n

4

b4

)

.

(3.10)

Substituting the value of A, B and C into (3.9) yields

d2T(t)
dt2

+
hπ2

ρ

(
m2

a2
σ0x +

n2

b2
σ0y

)

T(t) +
hπ4

16ρ

(
E1m

4

a4
+
E2n

4

b4

)

T3(t) = 0. (3.11)

4. The L-P Perturbation Solution of Governing Equations

Apply the L-P perturbation method to obtain the approximate analytical solution that satisfy
(3.11). Assuming that the perturbation parameter is ε=(h 2/ab) � 1, (3.11) can be simplified
as follows:

d2T(t)
dt2

+ω2
0

(
T(t) + ε · α1 · T3(t)

)
= 0, (4.1)

whereω2
0 = (hπ2/ρ)((m2/a2)σ0x+(n2/b2)σ0y), α1 = (π4ab/16ρhω2

0)((E1m
4/a4)+(E2n

4/b4)).
Introducing a new variable: τ = ω · t, then (4.1) can be expressed as

ω2d
2T(τ)
dτ2

+ω0T(τ) = −εα1ω
2
0T

3(τ). (4.2)

Spread ω and T(τ) as a power series with respect to ε:

T(τ) = T0(τ) + εT1(τ) + ε2T2(τ) + · · · + εnTn(τ) +O
(
εn+1

)
,

ω = ω0 + εω1 + ε2ω2 + · · · + εnωn +O(εn).
(4.3)

Substituting (4.3) into (4.2) yields

(
ω0 + εω1 + ε2ω2 + · · ·

)2(
T̈0(τ) + εT̈1(τ) + ε2T̈2(τ) + · · ·

)

+ω2
0

(
T0(τ) + εT1(τ) + ε2T2(τ) + · · ·

)

= −εα1ω
2
0

(
T0(τ) + εT1(τ) + ε2T2(τ) + · · ·

)3
.

(4.4)

In (4.4), T̈(τ) = d2T(τ)/dτ2, Ṫ(τ) = dT(τ)/dτ .
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Spread (4.4), and compare the coefficient of each power of ε yields

(1) ε0:

T̈0(τ) + T0(τ) = 0. (4.5)

The general solution of (4.5) is

T0(τ) = C1 · cos τ + C2 · sin τ. (4.6)

Assume that the initial condition is:

T(0) = T0(0) + εT1(0) + ε2T2(0) + · · · = a0,

Ṫ(0) = Ṫ0(0) + εṪ1(0) + ε2Ṫ2(0) + · · · = 0.
(4.7)

According to (4.7), we can obtain: T0(0) = a0, Ṫ0(0) = 0, substituting them into (4.6)
yields

T0(τ) = a0 · cos τ. (4.8)

(2) ε1:

2ω0ω1T̈0(τ) +ω2
0T̈1(τ) +ω2

0T1(τ) = −α1ω
2
0T

3
0 (τ). (4.9)

Substituting (4.8) into (4.9) yields

T̈1(τ) + T1(τ) = −3
4
α1a

3
0 cos τ − 1

4
α1a

3
0 cos 3τ + 2

ω1

ω0
a0 cos τ. (4.10)

A homogeneous general solution of (4.10) is g = cos τ,
The inhomogeneous term of (4.10) is

f = −3
4
α1a

3
0 cos τ − 1

4
α1a

3
0 cos 3τ + 2

ω1

ω0
a0 cos τ. (4.11)

In order to make the general solution of (4.10) not contain secular terms, we must
orthogonalize g and f , namely 〈g, f〉 = 0 yields

2
ω1

ω0
a0 − 3

4
α1a

3
0 = 0. (4.12)

According to (4.12) yields

ω1 =
3ω0α1a

2
0

8
. (4.13)
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Substituting (4.13) into (4.10) yields

T̈1(τ) + T1(τ) = −1
4
α1a

3
0 cos 3τ (4.14)

The general solution of T1(τ) is:

T1(τ) = C3 · cos τ + C4 · sin τ +
α1a

3
0

32
cos 3τ (4.15)

According to (4.7), we can obtain: T1(0) = 0, Ṫ1(0) = 0 substituting them into (4.15)
yields

T1(τ) =
α1a

3
0

32
(cos 3τ − cos τ). (4.16)

Substituting (4.8), (4.16), and (4.13) into (4.3) yields

T(τ) = a0 · cos τ +
α1a

3
0ε

32
(cos 3τ − cos τ) +O

(
ε2
)
, (4.17)

ω = ω0 +
3ω0α1a

2
0ε

8
+O

(
ε2
)
. (4.18)

Substituting (4.18) into τ = ωt yields

τ =

(

ω0 +
3ω0α1a

2
0ε

8
+O

(
ε2
))

· t. (4.19)

Substituting (4.19) into (4.17) yields

T(t) = a0 · cos
(

1 +
3α1a

2
0ε

8

)

ω0t

+
α1a

3
0ε

32

(

cos 3

(

1 +
3α1a

2
0ε

8

)

ω0t − cos

(

1 +
3α1a

2
0ε

8

)

ω0t

)

.

(4.20)

Equation (4.20) is the approximate analytical solution of (3.11). According to (4.18), the
approximate analytical expression of the frequency is

ω = ω0

(

1 +
3α1a

2
0ε

8

)

. (4.21)
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In [8], the power series frequency solution of the vibration of rectangular orthotropic
membranes in large deflection is

ω =
2π
Z

=

√
M + (N/2)a2

0
∑∞

n=0 (−1)p
((
2p − 1

)
!!/

(
2p

)
!!
)2(

Na2
0/

(
2M +Na2

0

))p , (4.22)

where M = (hπ2/ρ)((m2/a2)σ0x + (n2/b2)σ0y), N = (π4h/16ρ)(E1m
4/a4 + E2n

4/b4) and a0

is the amplitude of the membrane, p = 0, 1, 2, 3, . . . .
In (4.21) and (4.22), let a0 → 0, (4.21) and (4.22) can be transformed into the frequency

formula of the vibration of rectangular orthotropic membranes in small deflection:

ω = ω0 = π

√
h

ρ
·
√

m2

a2
σ0x +

n2

b2
σ0y. (4.23)

This proves that the frequency formula of this paper is qualitatively consistent with the
result in paper [8]. In the computational example, the results calculated according to (4.21),
(4.22) and (4.23) will be compared and analyzed.

Substituting (3.3) and (4.20) into (3.1), we can obtain the displacement function of
nonlinear free vibration of rectangular orthotropic membranes in large amplitude:

w
(
x,y, t

)
=

∞∑

m=1

∞∑

n=1

sin
mπx

a
sin

nπy

b

×
(

a0 cos

(

1 +
3α1a

2
0ε

8

)

ω0t

+
α1a

3
0ε

32

(

cos 3

(

1 +
3α1a

2
0ε

8

)

ω0t − cos

(

1 +
3α1a

2
0ε

8

)

ω0t

))

(4.24)

We can obtain the lateral displacement of any point on the membrane surface
according to (4.24), and analyze the vibration modes and displacement time histories of each
point on the membrane surface.

5. Computational Example and Discussion

Take the membrane material commonly applied in project as an example. The Young’s
modulus in x and y are E1 = 1.4 × 106 KN/m2 and E2 = 0.9 × 106 KN/m2, respectively;
the aerial density of membranes is ρ = 1.7 kg/m2; the membrane’s thickness is h = 1.0mm,
a = 1m, b = 1m, σ0x = σ0y = 5.0 × 103 KN/m2.

5.1. Calculation of Frequency

The frequencies of the first nine orders under different initial conditions are calculated
according to (4.21), (4.22) and (4.23). The results are shown in Table 1.
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Figure 3: The second-order vibration mode.

The comparison and analysis of Table 1 are as follows.

(1) All of the frequency values calculated according to (4.21) and (4.22) enlarge with
the increase of initial displacement. This is due to the fact that the inner force,
lateral rigidity and elastic restoring force will increase with the increase of initial
displacement of membrane, and then the membrane will vibrate more quickly.
This reflects the geometric nonlinearity characteristic of the vibration of membrane
in large amplitude. Meanwhile, the frequency values under the same initial
displacement enlarge with the increase of orders. When the initial displacement
approaches zero, namely, a0 → 0, the frequency values calculated according to
(4.21) and (4.22) are the same as the frequency values calculated according to the
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small amplitude frequency formula (4.23). This further proved that the frequency
formula (4.21) was qualitatively consistent with the frequency formula (4.22).

(2) The frequency values calculated according to (4.21) are slightly larger than the
corresponding ones calculated according to (4.22). The relative differences become
larger and larger with the increase of initial displacement; meanwhile, the relative
differences also become larger and larger with the increase of order. This is because
that, the geometric nonlinearity of membrane vibration will become stronger and
stronger with the increase of initial displacement and order, and it will become
more and more difficult for the approximate analytical solution (4.21) to reflect
the accurate analytical solution. Nevertheless, when the initial displacement is
small and order is low, using formula (4.21) to calculate the vibration frequency
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of membrane still satisfy the engineering precision and it is simpler and more
convenient than formula (4.22).

(3) When calculating the frequency of the first-order (fundamental frequency), the
results calculated according to (4.21) are very close to the results calculated
according to (4.22), the largest relative difference is 6.7557%. Hereby, we can infer
that while a0/a � 0.1, using formula (4.21) to calculate the fundamental frequency
can satisfy the engineering precision and is simple and convenient.

(4) When calculating the frequency of the other order, we can deduce that while
a0/a � 0.05, using formula (4.21) to calculate the frequencies of the first four
orders can satisfy the engineering precision; and while a0/a � 0.03, using formula
(4.21) to calculate the frequencies of the first nine orders can satisfy the engineering
precision. In general, the vibration of membrane is mainly dominated by the first
three orders, while a0/a � 0.5, the largest relative difference between the frequency
results of the first three orders calculated according to (4.21) and the corresponding
ones calculated according to (4.22) is 6.865%. So, using formula (4.21) to calculate
the main vibration frequency of rectangular orthotropic membranes in large
deflection can satisfy the requirement of engineering precision when the initial
displacement is relatively small.
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5.2. Analysis of Vibration Mode

We substituted the material and geometric parameters in computational example and the
frequency values calculated according to (4.21) (while a0/a = 0.05m) into (4.24) to obtain
the displacement function of the vibration of the first four orders.

(1) The first-order vibration mode (m = 1, n = 1)

w
(
x,y, t

)
=
(
0.05 cos 273t + 5.54 × 10−4(cos 819t − cos 273t)

)
sinπx sinπy. (5.1)

(2) The second-order vibration mode (m = 1, n = 2)

w
(
x,y, t

)
=
(
0.05 cos 520t + 1.523 × 10−3(cos 1560t − cos 520t)

)
sinπx sin 2πy. (5.2)

(3) The third-order vibration mode (m = 2, n = 1)

w
(
x,y, t

)
=
(
0.05 cos 586t + 2.246 × 10−3(cos 1758t − cos 586t)

)
sin 2πx sinπy. (5.3)
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Figure 10: Displacement and time curve of C point.
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Figure 11: Displacement and time curve of D point.

(4) The fourth-order vibration mode (m = 2, n = 2)

w
(
x,y, t

)
=
(
0.05 cos 738t + 2.217 × 10−3(cos 2214t − cos 738t)

)
sin 2πx sin 2πy. (5.4)

According to these displacement functions, we can draw the vibration mode figures of
the first four orders while t = 0.01 s. The figures are shown as Figures 2, 3, 4, and 5.

We superposed the vibration mode of the first four orders to obtain the superposed
vibration mode figure. It is shown in Figure 6.

From the result of the vibration mode analysis, we can conclude that using the
deflection function (4.24) can calculate the vibration mode of each order and obtain the total
superposed vibration mode of the nonlinear vibration of orthotropic membranes in large
deflection conveniently.

5.3. Analysis of Displacement Time Histories of Feature Points

We substituted the material and geometric parameters in computational example and the
frequency values calculated according to (4.21) (while a0/a = 0.05m) into (4.24) to calculate
the displacement time histories of the feature points on membrane surface and draw the
displacement and time curves. These feature points are A (x = 0.25m, y = 0.25m),
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Figure 12: Displacement and time curve of E point.

B (x = 0.25m, y = 0.75m), C (x = 0.5m, y = 0.5m), D (x = 0.75m, y = 0.25m) and E
(x = 0.75m, y = 0.75m). these feature points are shown in Figure 7.

We obtain the following conclusion from the analysis of Figures 8, 9, 10, 11, and 12.
The displacement time history of each point on membrane surface is superposed by

the vibration of each order. The displacement time history of center point C is relatively
special. It is a complete and regular cosine curve. This is because the membrane calculated
in this computational example is a square; the distances between center point C and each
boundary of the membrane are equal, which makes all the higher harmonic waves are
counteracted by each other after superposing at center point C, leaving a complete and
regular cosine wave. We can affirmatively infer that if the membrane is not a square, the
displacement and time curve of its center point would not be a complete and regular cosine
curve.

6. Conclusions

(1) This paper applied L-P perturbation method to solve the governing equations
of nonlinear free vibration of rectangular orthotropic membranes in large amplitude, and
obtained the approximate analytical solution of the frequency and displacement function of
the nonlinear free vibration of rectangular membrane with four edges simply supported.

(2) The comparison and analysis of the computational example proved that using
formula (4.21) to calculate the mainly nonlinear free vibration frequency of rectangular
orthotropic membranes in large amplitude could satisfy the requirement of engineering
precision when the initial displacement is relatively small, and the smaller the initial
displacement is, the higher the precision is.

(3) Results obtained from this paper provide some theoretical basis for the calculation
and control of nonlinear vibration of membrane structures; and provide some theoretical
references for solving the response of membrane structures under dynamic loads and the
dynamic design and manufacture of membrane structures.
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