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Various aspects of the interaction of HIV with the human immune system can be modeled by
a system of ordinary differential equations. This model is utilized, and a multiobjective optimal
control problem (MOOCP) is proposed to maximize the CD4+ T cells population and minimize
both the viral load and drug costs. The weighted sum method is used, and continuous Pareto
optimal solutions are derived by solving the corresponding optimality system. Moreover, a model
predictive control (MPC) strategy is applied, with the final goal of implementing Pareto optimal
structured treatment interruptions (STI) protocol. In particular, by using a fuzzy approach, the
MOOCP is converted to a single-objective optimization problem to derive a Pareto optimal
solution which among other Pareto optimal solutions has the best satisfaction performance.
Then, by using an embedding method, the problem is transferred into a modified problem in
an appropriate space in which the existence of solution is guaranteed by compactness of the
space. The metamorphosed problem is approximated by a linear programming (LP) model, and
a piecewise constant solution which shows the desired combinations of reverse transcriptase
inhibitor (RTI) and protease inhibitor (PI) drug efficacies is achieved.

1. Introduction

Human Immunodeficiency Virus (HIV) infects CD4+ T-cells, which are an important part
of the human immune system, and other target cells. The infected cells produce a large
number of viruses. Medical treatments for HIV have greatly improved during the last two
decades. Highly active antiretroviral therapy (HAART) allows for the effective suppression
of HIV-infected individuals and prolongs the time before the onset of Acquired Immune
Deficiency Syndrome (AIDS) for years or even decades and increases life expectancy and
quality for the patient but eradication of HIV infection does not seem possible with currently
available antiretroviral drugs. This is due primarily to the establishment of a pool of latently
infected T-cells and sites within the body where drugs may not achieve effective levels [1–3].
HAART contains two major types of anti-HIV drugs, reverse transcriptase inhibitors (RTI)
and protease inhibitors (PI). Reverse transcriptase inhibitors prevent HIV from infecting
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cells by blocking the integration of the HIV viral code into the host cell genome. Protease
inhibitors prevent infected cells from replication of infectious virus particles and can reduce
and maintain viral load below the limit of detection in many patients. Moreover, treatment
with either type of drug can also increase the CD4+ T-cell count that are target cells for HIV.

Many of the host-pathogen interaction mechanisms during HIV infection and
progression to AIDS are still unknown. Mathematical modeling of HIV infection is of interest
to themedical community as no adequate animal models exist to test efficacy of drug regimes.
These models can test different assumptions and provide new insights into questions that are
difficult to answer by clinical or experimental studies. A number of mathematical models
have been formulated to describe various aspects of the interaction of HIV with healthy
cells [4]. The basic model of HIV infection is presented by Perelson et al. [5] that contains
three state variables: healthy CD4+ T-cells, infected CD4+ T-cells, and concentration of free
virus. Another model is presented in [6] that although maintaining a simple structure, it
offers important theoretical insights into immune control of the virus based on treatment
strategies. Furthermore, this modified model is developed to describe the natural evolution
of HIV infection, as qualitatively described in several clinical studies [7].

The problem of designing drug administration in HIV infected patients using
mathematical models can be considered as multi-objective optimal control problems. For
example, these objectives may include maximizing the level of healthy CD4+ T-cells and
minimizing the cost of treatment [8–15], maximizing immune response and minimizing both
the cost of treatment and viral load [16–21], maximizing both the level of healthy CD4+ T-
cells and immune response and minimizing the cost of treatment [22], maximizing the level
of healthy CD4+ T-cells while minimizing both the side effects and drug resistance [23], and
maximizing survival time of patient subject to drug cost [24].

When a multi-objective problem is treated, each objective conflicts with one another
and, unlike a single-objective optimization, the solution to this problem is not a single
point, but a family of solutions known as the Pareto-optimal set. Among these solutions,
the designer should find the best compromise taking into proper account the attributes and
characteristics of the handled problem.

There exists a wide variety of methods that can be used to compute Pareto optimal
points. A widely used technique consists of reducing the multi-objective problem to a single-
objective one by means of “scalarization” procedure. The weighted sum (WS) method is a
commonly used scalarization technique which consists of assigning each objective function a
weight coefficient and then optimizing the function obtained by summing up all the objective
functions scaled by their weight coefficients. Nevertheless, it has intrinsic drawbacks. TheWS
method is highly scale dependent, an equal distribution of weights does not necessarily lead
to an even spread along the Pareto front, and that points in a nonconvex part of the Pareto
front cannot be obtained [25].

Recent scalar multiple objective optimization techniques such as Normal Boundary
Intersection (NBI) [26] and Normalized Normal Constraint (NNC) [27] have been found to
mitigate the disadvantages of theWSmethod. Recently, thesemethods have been successfully
combined with direct optimal control approaches for the efficient solution of multi-objective
optimal control problems. For example, in [28], a successful application of NBI and NNC for
the multiple objective optimal control of (bio) chemical processes has been reported, and in
[29] several scalarization techniques for multi-objective optimization, for example,WS, NNC,
and NBI have been integrated with fast deterministic direct optimal control approaches.

The papers [8, 13, 22, 24, 30, 31] consider only RTI medication while the papers [14,
32] consider only PIs. In [6, 19–21], all effects of a HAART medication are combined to one
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control variable in the model. In [7, 10–12, 15, 17, 18, 33–35], dynamical multidrug therapies
based on RTIs and PIs are designed.

In the considered control approaches, the amount of medications can be either
continuous or on-off type. This treatment is also known as structured treatment interruption
(STI). STI has received considerable attentions as it might reduce the risk of HIV mutating to
strains which are resistant to current medication regimens. STI approach might also reduce
possible long-term toxicity of the drugs. A concise summary of clinical STI studies, including
protocols and results, is presented in [35].

In this paper, we consider a mathematical model of HIV dynamics that includes
the effect of antiretroviral therapy, and we perform analysis of optimal control regarding
maximizing the CD4+ T-cell counts and minimizing both the viral load and cost of drugs.

The paper is organized as follows: in Section 2, the underlying HIV mathematical
model is presented. Our formulation of the MOOCP is described in Section 3. In Section 4,
the weighted summethod is used, and the MOOCP is converted to a single-objective optimal
control problem. First, we assume that the cost of the drug regime varies quadratically with
the amount of drug administered, and then we characterize the continuous Pareto optimal
solutions using Pontryagin’s Maximum Principle. Secondly, it is shown that the presence
of linear cost functionals leads to STI-type Pareto optimal solutions, and an MPC-based
technique is proposed to find this kind of solutions. In Section 5, a fuzzy approach is utilized
and the MOOCP is converted to a single-objective optimization problem, with the final goal
of finding a Pareto optimal solution which has the best satisfaction performance among other
Pareto optimal solutions. Moreover, the converted problem is approximated by an LP model
applying a measure-theoretical approach, and a piecewise constant solution is achieved.
Some numerical experiments are provided in Section 6. The last section is the conclusion.

2. Presentation of a Working Model

In this paper, the pathogenesis of HIV is modeled with a system of ordinary differential
equations (ODEs) described in [7]. This model can be viewed as an extension of basic HIV
Model of Perelson et al. [5]

ẋ = s − dx − rxv, (2.1)

ẏ = rxv − ay − fyz, (2.2)

ẇ = cxyw − qyw − bw, (2.3)

ż = qyw − hz, (2.4)

v̇ = k(1 − uP )y − τv, (2.5)

ṙ = r0 − uR. (2.6)

Most of the terms in the model have straightforward interpretations as following.
The first equation represents the dynamics of the concentration of healthy CD4+ T-cells

(x). The healthy CD4+ T-cells are produced from a source, such as the thymus, at a constant
rate s, and die at a rate dx. The cells are infected by the virus at a rate rxv. The second equation
describes the dynamics of the concentration of infected CD4+ T-cells (y). The infected CD4+
T-cells result from the infection of healthy CD4+ T-cells and die at a rate ay and are killed by
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Table 1: Parameter values for the HIV model.

Parameters Value/unit Description

s 7 cells μL−1 day−1 Production(source) rate of CD4+
T-cells

d 7 × 10−3 day−1 Death rate of uninfected CD4+
T-cell population

a 0.0999 day−1 Infected CD4+ T-cell death rate

f 2μL cells−1 day−1 Rate at which infected cells are
killed by CTL effectors

c 5 × 10−6 μL2 cells−2 day−1 Proliferation rate of CTL precursors

q 6 × 10−4 μL cells−1 day−1 Rate at which CTL effectors are
produced from CTL precursors

b 0.017 day−1 Death rate of CTL precursors
h 0.06 day−1 Death rate of CTL effectors

k 300 copiesmL−1 cells−1 μLday−1 Rate at which virus is produced
from infected cells.

τ 0.2 day−1 Virus natural death rate

r0 10−9 copies−1 mLday−2 Aggressiveness growth rate of the
virus

cytotoxic T-lymphocyte effectors CTLe (z) at a rate fyz. The population of cytotoxic T-cells is
divided into precursors or CTLp (w), and effectors or CTLe (z). Equations (2.3) and (2.4)
describe the dynamics of these compartments. In accordance with experimental, findings
establishment of a lasting CTL response depends on CD4+ T-cell help, and that HIV impairs
T-helper cell function. Thus, proliferation of the CTLp population is given by cxyw and is
proportional to both virus load (y) and the number of uninfected T-helper cells (x). CTLp
differentiation into effectors occurs at a rate qyw. Finally, CTLe dies at a rate hz. Equation (2.5)
describes the dynamics of the free virus particles (v). These free virus particles are produced
from infected CD4+ T-cells at a rate ky and are cleared at a rate τv. The model also contains
an index of the intrinsic virulence or aggressiveness of the virus (r). This index increases
linearly in the case of an untreated HIV-infected individual, with a growth rate that depends
on the constant r0. Finally, (2.6) describes the dynamic of this index. In model variables uP
and uR denote protease inhibitors (PI) and reverse transcriptase inhibitors (RTI), respectively.
The effect of PI drugs is modeled by reducing the proliferation rate of viruses from infected
cells, while the effect of RTI drugs is modeled by reducing the infection rate, and in this way,
blocking the infection of CD4+ T-cells by free virus. Hence, in this model the RTI drugs have
an effect on virulence because their main role is halting cellular infection and preventing virus
production by reducing the production rate from infected CD4+ T cells.

The model has several parameters that must be assigned for numerical simulations.
The descriptions, numerical values, and units of the parameters are summarized in Table 1.
These descriptions and values are taken from [7]. We note that (2.1)–(2.6) with these
parameters model dynamics of fast progressive patients (FPP).

3. Multiobjective Optimal Control Formulation

A problem arising from the use of most chemotherapy is the multiple and sometimes harmful
side effects, as well as the ineffectiveness of treatment after a certain time due to the capability



Mathematical Problems in Engineering 5

of the virus to mutate and become resistant to the treatment. Although we do not intend to
model effects of resistance or side effects, we impose a condition called a limited treatment
window, that monitors the global effects of these phenomena. The treatment lasts for a given
period from time t0 to tf , say. In clinical practice, antiretroviral therapy is initiated at t0,
the time at which CD4+ T-cell counts reach 350 cells/μL. We would like to maximize levels
of healthy CD4+ T-cells, minimize level of viral load, and also we want to minimize the
systemic costs of treatments. Thus, the following objective functionals are to be maximized
simultaneously

I1(u) =
∫ tf

t0

x(t)dt, I2(u) = −
∫ tf

t0

v(t)dt, I3(u) = −
∫ tf

t0

umP (t)dt, I4(u) = −
∫ tf

t0

umP (t)dt,

(3.1)

where x(t) and v(t) are the solution of ODEs (2.1)–(2.6) corresponding to control pair u =
(uP , uR) and m is a positive integer. Let U be the set of all measurable control pairs (uP , uR)
that

a1 ≤ uP (t) ≤ b1, a2 ≤ uR(t) ≤ b2, ∀t ∈ [
t0, tf

]
. (3.2)

Therefore, the optimal drug regimen problem can be represented as

Maximize
u∈U

{I1(u), I2(u), I3(u), I4(u)}. (3.3)

In general, there does not exist a pair of control functions (uP , uR) ∈ U that renders the
maximum value to each functional Ii, i = 1, 2, 3, 4, simultaneously, and one uses the concept
of Pareto optimality in the sense of following definition.

Definition 3.1. A pair u∗ = (u∗P , u
∗
R) ∈ U is said to be an Pareto optimal solution of the problem

(3.3) if, and only if, there exist no (uP , uR) ∈ U such that Ii(u∗) ≤ Ii(u) for all i ∈ {1, 2, 3, 4},
and Ii(u∗) < Ii(u) for some i ∈ {1, 2, 3, 4}.

As seen from Definition 3.1, in general there exist an infinite number of Pareto optimal
solutions. Actually, we should select one control function among the set of Pareto optimal
solutions. We are going to find a Pareto optimal solution of problem (3.3), combining the
techniques and methods from the classic multi-objective optimization and control theory.

4. The Weighted Sum Method

The weighted sum method scalarizes set of objectives into a single-objective by multiplying
each objective with user supplied weights. The weight of an objective is usually chosen in
proportion to the objective’s relative importance in the problem. After, a composite objective
functional I(u) can be formed by summing the weighted objectives and the MOOCP given
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in (3.3) is converted to a single-objective optimization problem as follows:

Maximize
u∈U

I(u) =
4∑
j=1

wjIj(u). (4.1)

Theorem 4.1. The solution of the weighted sum problem (4.1) is Pareto optimal if the weighting
coefficients are positive, that is, wi > 0 for all i = 1, 2, 3, 4.

Proof. Assume u∗ ∈ U is the optimal solution of problem (4.1). If u∗ is not a Pareto optimal
solution, then there is u ∈ U such that Ii(u∗) ≤ Ii(u) for all i ∈ {1, 2, 3, 4}, and Ij(u∗) < Ij(u)
for some j ∈ {1, 2, 3, 4}. Sincewi > 0 for all i = 1, 2, 3, 4, thus, I(u∗) < I(u), and this contradicts
the optimality of u∗.

4.1. Continuous Solutions

Here, we followed [8, 32] in assuming that systemic costs of the PI and RTI drugs treatment
are proportional to u2P (t) and u

2
R(t) at time t, respectively, (m = 2). We note that the existence

of the solution can be obtained using a result by Fleming and Rishel [36]. That is rather
straightforward to show that the right-hand sides of (2.1)–(2.6) are bounded by a linear
function of the state and control variables and that the integrand of the composed objective
functional I(u) is convex onU and is bounded. We now proceed to compute candidates for a
Pareto optimal solution. To this end, we apply the Pontryagin’s Maximum Principle [37] and
begin by defining the Lagrangian (which is the Hamiltonian augmented with penalty terms
for the constraints) to be

L
(
x, y,w, z, v, r, λ1, . . . , λ6, uP , uR

)

= w1x −w2v −w3u
2
P −w4u

2
R + λ1(s − dx − rxv) + λ2

(
rxv − ay − fyz)

+ λ3
(
cxyw − qyw − bw)

+ λ4
(
qyw − hz) + λ5(k(1 − uP )y − τ v) + λ6(r0 − uR)

+ω11(uP − a1) +ω12(b1 − uP ) +ω21(uR − a2) +ω22(b2 − uR),

(4.2)

where ωij(t) ≥ 0 are the penalty multipliers satisfying

ω11(uP − a1) = ω12(b1 − uP ) = 0 at u∗P ,

ω21(uR − a2) = ω22(b2 − uR) = 0 at u∗R.
(4.3)

Here, (u∗P , u
∗
R) is the optimal control pair yet to be found. Thus, the Maximum Principle gives

the existence of adjoint variables satisfying

λ̇1 = −∂L
∂x

= −w1 + (d + vr)λ1 − vrλ2 − cywλ3,

λ̇2 = −∂L
∂y

=
(
a + fz

)
λ2 −

(
cxw − qw)

λ3 − qwλ4 − k(1 − uP )λ5,
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λ̇3 = − ∂L
∂w

=
(−cxy + qy + b

)
λ3 − qyλ4,

λ̇4 = −∂L
∂z

= fyλ2 + hλ4,

λ̇5 = −∂L
∂v

= w2 + xrλ1 − xrλ2 + τλ5,

λ̇6 = −∂L
∂r

= xvλ1 − xvλ2,
(4.4)

where λi(tf) = 0, i = 1, . . . , 6, are the transversality conditions. The Lagrangian is maximized
with respect to uP and uR at the optimal pair (u∗P , u

∗
R), so the partial derivatives of the

Lagrangian with respect to uP and uR at u∗P and u∗R are zero. That is, ∂L/∂uP = 0 and
∂L/∂uR = 0.

Since

∂L

∂uP
= −2w3uP − kyλ5 +ω11 −ω12 = 0, (4.5)

then we have

u∗P (t) =
−ky(t)λ5(t) +ω11(t) −ω12(t)

2w3
. (4.6)

To determine an explicit expression for the optimal control without ω11, ω12, we consider the
following three cases.

(i) On the set {t | a1 < u∗P (t) < b1}, we set ω11(t) = ω12(t) = 0. Hence, the optimal
control is

u∗P (t) =
−ky(t)λ5(t)

2w3
. (4.7)

(ii) On the set {t | u∗P (t) = b1}, we set ω11(t) = 0. Hence, the optimal control is

u∗P (t) = b1 =
−ky(t)λ5(t) −ω12(t)

2w3
(4.8)

which implies that

−ky(t)λ5(t)
2w3

≥ b1 since ω12(t) ≥ 0. (4.9)
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(iii) On the set {t | u∗P (t) = a1}, we set ω12(t) = 0. Hence, the optimal control is

a1 = u∗1(t) =
−ky(t)λ5(t) +ω11(t)

2w3
(4.10)

which implies that

−ky(t)λ5(t)
2w3

≤ a1 since ω11(t) ≥ 0. (4.11)

Combining all the three cases in compact form gives

u∗P (t) = max
(
a1,min

(
b1,

−ky(t)λ5(t)
2w3

))
. (4.12)

Using similar arguments, we also obtain the following expression for the second optimal
control function

u∗R(t) = max
(
a2,min

(
b2,

−λ6(t)
2w4

))
. (4.13)

We point out that the optimality system consists of the state system (2.1)–(2.6)with the initial
conditions, the adjoint (or co-state) system (4.4) with the terminal conditions, together with
the expressions (4.12) and (4.13) for the control functions. The results of implementing the
optimal control policy obtained by this procedure are shown in Section 6.

4.2. STI Solution

From a therapeutic point of view, it may be unsafe to administrate drugs at a dose less than
maximumbecause virusmutationsmay occur (see, e.g., [21] and references therein for amore
exhaustive discussion on this point). Therefore, standardHAART protocols require persistent
drugs uptake at maximum value. However, a number of clinical and theoretical studies
attempted STI protocols in which periods of therapy at maximum dosages are alternated
with periods of treatment suspension [21, 38]. The reasons for these attempts can be found
in several side effects of HAART, such as serious hepatic damages and the high cost of
the therapy, but also in the evidence that appropriate suspension periods may enhance the
immune response of the patient.

In this section, we follow [24] in assuming that the cost of the drug regime varies
linearly with the amount of drug administered. Thus, I3 and I4 are considered as follow:

I3(u) = −
∫ tf

t0

uP (t)dt, I4(u) = −
∫ tf

t0

uR(t)dt. (4.14)
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We now proceed to compute candidates for a Pareto STI solution. To this end, we apply the
Pontryagin’s Maximum Principle again and begin by defining the Hamiltonian to be:

H
(
x, y,w, z, v, r, λ1, . . . , λ6, uP , uR

)
= w1x −w2v −w3uP −w4uR + λ1(s − dx − rxv) + λ2

(
rxv − ay − fyz)

+ λ3
(
cxyw − qyw − bw)

+ λ4
(
qyw − hz) + λ5(k(1 − uP )y − τv) + λ6(r0 − uR)

(4.15)

and the maximum principle requires that

H
(
x∗, y∗, w∗, z∗, v∗, r∗, λ∗1, . . . , λ

∗
6, uP , uR

)
≤ H(

x∗, y∗, w∗, z∗, v∗, r∗, λ∗1, . . . , λ
∗
6, u

∗
P , u

∗
R

)
, ∀(uP , uR) ∈ U

(4.16)

in which the optimal controls and corresponding states and costates satisfying (2.1)–(2.6) and
(4.4) are indicated by a star superscript ∗. From (4.16) and by performing straightforward
calculations it is concluded that the optimal pair (u∗P , u

∗
R) should maximize the following

expression:

−w3uP −w4uR − kλ∗5uPy∗ − λ∗6uR. (4.17)

Therefore,

u∗R(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b2 if S1 < 0,

uR,sin g if S1 = 0,

a2 if S1 > 0,

u∗P (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1 if S2 < 0,

uP,sin g if S2 = 0,

a1 if S2 > 0.

(4.18)

where S1 = w4 + λ∗6(t) and S2 = w3 + kλ∗5(t)y
∗(t) are the switching functions which determine

the type of optimal control pair (u∗P , u
∗
R). Nowwe consider an opportunity for the control pair

(u∗P , u
∗
R) to contain singular arcs. Let us assume that the switching function S1 is zero on the

singular interval J1 = [t1, t2]. To find a singular control uR,sin g , we use the fact that S1 = 0, and
Ṡ1 = 0, on J1; hence, λ̇∗6(t) = 0. Therefore, from the last two equations (4.4), it is concluded
that

λ∗1(t) = λ
∗
2(t), λ∗5(t) = −w2

τ
+

(
ς +

w2

τ

)
eτ(t−t1) ∀t ∈ J1, (4.19)

where ς = λ∗5(t1). Since λ̇
∗
1(t) = λ̇∗2(t), equating right-hand sides of first two equations (4.4)

and then substituting (4.19) into the resulting expression yield

x∗ = K1
(
t, y∗, w∗, z∗, λ∗1, λ

∗
3, λ

∗
4, u

∗
P

)
, (4.20)
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where,

K1
(
t, y,w, z, λ1, λ3, λ4, uP

)
= y +

w1

cwλ3
+
q

c

(
1 − λ4

λ3

)
+

(
a + fz − d) λ1

cwλ3

− k(1 − uP )
cwλ3

{
−w2

τ
+

(
ς +

w2

τ

)
eτ(t−t1)

}
.

(4.21)

Differentiating both sides of (2.1) and then substituting (4.20) into the resulting expression,
lead to

uR,sin g(t) =
K̈1

(
t, y∗, w∗, z∗, λ∗1, λ

∗
3, λ

∗
4, u

∗
P

) −K2
(
r∗, x∗, y∗, v∗, u∗P

)
x∗v∗ , t ∈ J1, (4.22)

where

K2
(
r, x, y, v, uP

)
= (s − dx − rxv)(−d − rv) − (r0 − τr)xv − krxy(1 − uP ). (4.23)

Obviously, K̈1 can be calculated using the Chain rule. Now, we find the value of singular
control uP,sin g . With respect to this fact that d�S2/dt

� = 0, � = 0, 1, 2, and from second last
equation (4.4) and (2.2) it is easy to see that during the corresponding singular interval, say
J2,

ÿ∗

=
2w3

(
r∗x∗v∗ − ay∗ − fy∗z∗

)2 − 2k
(
w2 + x∗r∗λ∗1 − x∗r∗λ∗2 + τλ

∗
5

)(
r∗x∗v∗ − ay∗ − fy∗z∗

)
y∗2

w3y∗ + ky∗2λ∗5
.

(4.24)

Moreover, differentiating both sides of (2.2) and then substituting (4.24) into the resulting
expression yield

uP,sin g(t) =
K3

(
x∗, y∗, w∗, z∗, v∗, r∗, u∗R

)
kr∗x∗y∗

− 2
(
r∗x∗v∗ − ay∗ − fy∗z∗

)
r∗x∗(w3 + kλ∗5

)
{
w3

(
r∗x∗v∗ − ay∗ − fy∗z∗

)
ky∗2 − λ∗5

}
, t ∈ J2,

(4.25)

where

K3
(
x, y,w, z, v, r, uR

)
= (r0 − uR)xv + srv − (a + d + τ)xrv − r2v2x + krxy + a2y

+
(
2af + fh

)
yz − fqy2w − frxvz + f2yz2.

(4.26)
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Note that the sets J1 and J2 are considered such that (uP,sin g, uR,sin g) ∈ U. Moreover, for the
control pair (u∗P , u

∗
R) to be optimal, the Kelley’s condition [39] must be satisfied

(−1)γ ∂

∂uR

[
d2γ

dt2γ
S1

]
≥ 0, (−1)ζ ∂

∂uP

[
d2ζ

dt2ζ
S2

]
≥ 0, (4.27)

where γ and ζ are known as the order of singularity.
The above discussion shows that using linear cost functionals, while ignoring singular

arcs, leads to an STI solution. Unfortunately, solving the corresponding optimality system is
not analytically possible and the gradient method [40] fails to converge; therefore, we resort
to model predictive control- (MPC-) based approach. MPC is a control technology widely
used in many areas, especially in the process industries [41], for systems with a large number
of controlled and manipulated variables, which interact significantly. In general, feedback
control technologies, and MPC in particular, have started to gain significant attention in the
biomedical area [12, 19–21]. A thorough overview of the history of MPC and its various
incarnations can be found in [42]. In order to give a formal description of the proposed MPC
algorithm, some preliminary definitions are necessary. LetΔ be the sampling time, we denote
with X(i) the state of the system at time ti = iΔ, that is,

X(i) =
[
x(ti) y(ti) w(ti) z(ti) v(ti) r(ti)

]
=

[
x(i) y(i) w(i) z(i) v(i) r(i)

]
. (4.28)

Next, let U(i) = [uP (ti) uR(ti)] = [uP (i) uR(i)] denote the vector of PI and RTI drugs taken
in the time interval [iΔ, (i + 1)Δ], and rewrite the system model (2.1)–(2.6) in the integrated
form X(i + 1) = F(X(i), U(i)), where F(·) is a vector-value function obtained by numerical
integration of (2.1)–(2.6) over the sampling Δ, assuming a constant drug uptake during the
sampling time. With these definitions, it is now possible to state the following finite-horizon
optimal control problem (FHOCP) to be solved at each discrete time k:

Maximize
Uk

N+k−1∑
i=k

w1x(i) −w2v(i) −w3uP (i) −w4uR(i)

subject to : X(k) is given, X
(
j + 1

)
= F

(
X

(
j
)
, U

(
j
))
, j = k, . . . ,N + k − 1,

U
(
j
) ∈ {a1, b1} × {a2, b2}, j = k, . . . ,N + k − 1,

(4.29)

in which N is an integer(control horizon), and Uk = [U(k) · · ·U(N + k − 1)] is the decision
variable. Let U∗

k be a maximizing control input sequence. The first input in the optimal
sequence, that is,U∗(k), is injected into the system, and the entire optimization is repeated at
subsequent control intervals.

5. Piecewise Constant Solution Using Fuzzy Aggregation and
Embedding Method

In this section, as in continuous solutions, we setm = 2. With respect to the nature of controls
uP and uR, that indicate the PI and RTI drug efficacies as a function of time, piecewise constant
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MimiIi(u)

µi(Ii(u))

1

Figure 1: Linear membership function for the ith fuzzy objective.

control is more practical from the clinical point of view. In this section, we are going to
propose such kind of solutions for problem (3.3).

Setting, ξ = (x, y,w, z, v, r) and u = (uP , uR), the system of differential equations (2.1)–
(2.6) can be represented in a generalized form as

ξ̇(t) = g(t, ξ(t), u(t)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s − dξ1 − ξ1ξ5ξ6
ξ1ξ5ξ6 − aξ2 − fξ2ξ4
cξ1ξ2ξ3 − qξ2ξ3 − bξ3

qξ2ξ3 − hξ4
k(1 − uP )ξ2 − τξ5

r0 − uR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ξ(0) = ξ0. (5.1)

In the absence of importance on the objectives and without knowledge of the possible level
of attainment for those objectives, finding a Pareto optimal solution that the best satisfies the
decision maker can be viewed as a fuzzy problem. In this situation, for each of the objective
functionals, Ii, i = 1, 2, 3, 4, of problem (3.3) we associate a linear membership function
μi(Ii(u)) as

μi(Ii(u)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, Ii(u) < mi,

Ii(u) −mi

Mi −mi
, mi ≤ Ii(u) ≤Mi,

1, Ii(u) > Mi,

(5.2)

where mi or Mi denotes the value of the objective functional such that the degree of
membership function is 0 or 1, respectively, and it is depicted in Figure 1. Following the
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principle of the fuzzy decision of Bellman and Zadeh [43], the MOOCP (3.3) can be
interpreted as the following problem:

Maximize
u∈U

min
i=1,...,4

{
μi(Ii(u))

}
. (5.3)

Let ρ be a given small positive number. Introducing an auxiliary variable λ and by adding
the augmented term ρ

∑4
k=1 Ii(u) to it, a solution to problem (3.3), can be obtained by solving

the following problem:

max
λ,u∈U

λ + ρ
4∑
i=1

Ii(u) (5.4)

subject to mi ≤ Ii(u) − λ(Mi −mi), i = 1, 2, 3, 4 (5.5)

ξ̇ = g(t, ξ, u), ξ(t0) = ξ0. (5.6)

Theorem 5.1. If (λ∗, u∗) is the optimal solution of the problem (5.4)–(5.6), then u ∗ is a Pareto optimal
solution of (3.3).

Proof. If u∗ is not a Pareto optimal solution for the problem (3.3), then there exists u ∈ U such
that Ii(u∗) ≤ Ii(u) for all i ∈ {1, 2, 3, 4}, and Ij(u∗) < Ij(u) for some j ∈ {1, 2, 3, 4}. Obviously,
λ∗ = mini=1,...,4{μi(Ii(u∗))} ≤ mini=1,...,4{μi(Ii(u))} = λ and

∑4
i=1 Ii(u

∗) <
∑4

i=1 Ii(u). Therefore,
λ∗ +ρ

∑4
i=1 Ii(u

∗) < λ+ρ
∑4

i=1 Ii(u). This contradicts the assumption that (λ∗, u∗) is the optimal
solution for problem (5.4)–(5.6).

Using the measure theory for solving optimal control problems based on the idea
of Young [44], which was applied for the first time by Wilson and Rubio [45], has been
theoretically established by Rubio in [46]. In the rest of this section, we follow their approach
and we transfer the problem (5.4)-(5.6) into a modified problem in an appropriate space that
the existence of the optimal solution (λ∗, u∗) is guaranteed.

5.1. Transformation to Functional Space

We assume that state variable ξ(·) and control input u(·) get their values in the compact sets
A = A1 × · · · ×A6 ⊂ R6 andU = U1 ×U2 ⊂ R2, respectively. Set J = [t0, tf].

Definition 5.2. A pair p = [ξ, u] is said to be admissible if the following conditions hold.

(i) The vector function ξ(·) is absolutely continuous and belongs to A for all t ∈ J .

(ii) The function u(·) takes its values in the setU and is Lebesgue measurable on J .

(iii) p satisfies in (5.5) and (5.6) on J0, that is, the interior set of J .
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We assume that the set of all admissible pairs is nonempty and denote it by W . Let p be an
admissible pair and B an open ball in R6 containing J × A, and C′(B) the space of all real-
valued continuous differentiable functions on it. Let ϕ ∈ C′(B) and define ϕg as follows:

ϕg(t, ξ(t), u(t)) =
dϕ(t, ξ(t))

dt
=

6∑
j=1

∂ϕ(t, ξ(t))
∂ξj

gj(t, ξ(t), u(t)) +
∂ϕ(t, ξ(t))

∂t
(5.7)

for each [t, ξ(t), u(t)] ∈ Ω, where Ω = J × A × U. The function ϕg is in the space C(Ω), the
set of all continuous functions on the compact set Ω. Since p = [ξ, u] is an admissible pair, we
have

∫ tf

t0

ϕg(t, ξ(t), u(t))dt = ϕ
(
tf , ξ

(
tf

)) − ϕ(t0, ξ(t0)) = Δϕ, (5.8)

for all ϕ ∈ C′(B). Let D(J0) be the space of infinitely differentiable all real-valued functions
with compact support in J0. Define

ψn(t, ξ(t), u(t)) = ξn(t)ψ ′(t) + gn(t, ξ(t), u(t))ψ(t), n = 1, . . . , 6, ∀ψ ∈ D
(
J0

)
. (5.9)

Assume p = [ξ, u] be an admissible pair. Since the function ψ(·) has compact support in J0,
so, ψ(t0) = ψ(tf) = 0. Thus, for n = 1, . . . , 6, and for all ψ ∈ D(J0), by integrating both sides of
(5.9) and using integration by parts, we have

∫ tf

t0

ψn(t, ξ(t), u(t))dt =
∫ tf

t0

ξn(t)ψ ′(t)dt +
∫ tf

t0

gn(t, ξ(t), u(t))ψ(t)dt

= ξn(t)ψ(t)|tft0 −
∫ tf

t0

(
ξ̇n(t) − gn(t, ξ(t), u(t))

)
ψ(t)dt = 0.

(5.10)

Also by choosing the functions which are dependent only on time, we have

∫ tf

t0

ϑ(t, ξ(t), u(t))dt = aϑ, ∀ϑ ∈ C1(Ω), (5.11)

where C1(Ω) is the space of all functions in C(Ω) that depend only on time and aϑ is the
integral of ϑ on J . Equations (5.8), (5.10), and (5.11) are weak forms of (5.6). Now, we
consider the following positive linear functional on C(Ω)

Γp : F −→
∫
J

F(t, x(t), u(t))dt, ∀F ∈ C(Ω). (5.12)

Proposition 5.3. Transformation p → Γp of admissible pairs in W into the linear mappings Γp
defined in (5.12) is an injection.
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Proof. See [46].

Thus, the problem (5.4)–(5.6) is converted to the following optimization problem in
functional space:

maximize
λ,p∈W

λ + Γp
(
f0

)
(5.13)

subject to mi ≤ Γp
(
fi

) − λ(Mi −mi) i = 1, 2, 3, 4, (5.14)

Γp
(
ϕg

)
= Δϕ, ϕ ∈ C′(B), (5.15)

Γp
(
ψn

)
= 0, n = 1, . . . , 6, ψ ∈ D

(
J0

)
, (5.16)

Γp(ϑ) = aϑ, ϑ ∈ C1(Ω), (5.17)

where f0(t, ξ, u) = ρ(ξ1 − ξ5 − u2P − u2R), f1(t, ξ, u) = ξ1, f2(t, ξ, u) = −ξ5, f3(t, ξ, u) = −u2P , and
f4(t, ξ, u) = −u2R.

5.2. Transformation to Measure Space

LetM+(Ω) denote the space of all positive Radon measures onΩ. By the Riesz representation
theorem [46], there exists a unique positive Radon measure μ on Ω such that

Γp(F) =
∫
J

F(t, ξ(t), u(t))dt =
∫
Ω
F(t, ξ, u)dμ ≡ μ(F), F ∈ C(Ω). (5.18)

So, we may change the space of optimization problem to measure space. In other words, the
optimization problem in functional space (5.13)–(5.17) can be replaced by the following new
problem in measure space:

maximize
λ,μ∈M+(Ω)

λ + μ
(
f0

)
(5.19)

subject to mi ≤ μ
(
fi

) − λ(Mi −mi), i = 1, 2, 3, 4, (5.20)

μ
(
ϕg

)
= Δϕ, ϕ ∈ C′(B), (5.21)

μ
(
ψn

)
= 0, n = 1, . . . , 6, ψ ∈ D

(
J0

)
, (5.22)

μ(ϑ) = aϑ, ϑ ∈ C1(Ω). (5.23)

Obviously, λ takes its values in the compact set [0, 1] ⊆ R. We shall consider the maximization
of (5.21) over the set Q of all pairs (μ, λ) ∈ M+(Ω) × [0, 1] satisfying (5.20)–(5.23). The
main advantages of considering this measure theoretic form of the problem is the existence
of optimal pair (μ∗, λ∗) ∈ Q, where this point can be studied in a straightforward manner
without having to impose conditions such as convexity which may be artificial. Define
function σ : Q → R, as σ(μ, λ) = λ + μ(f0). The following theorem guarantees the existence
of an optimal solution.
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Table 2: Considered ranges for states and controls and corresponding number of partitions.

State Range Number of partitions
ξ1 (Healthy CD4 + T cells) A1 = [200, 1000] n1 = 5
ξ2 (Infected CD4 + T cells) A2 = [5, 30] n2 = 3
ξ3 (CTLp) A3 = [0, 1.6] n3 = 2
ξ4 (CTLe) A4 = [0, 1.3] n4 = 2
ξ5 (Viral load) A5 = [500, 35000] n5 = 10
ξ6 (aggressiveness of the virus) A6 = [0, 2 × 10−7] n6 = 1
uP (PI Control) U1 = [0, 0.7] s1 = 3
uR (RTI Control) U2 = [0.9 × 10−10] s2 = 3

Theorem 5.4. Function σ attains its maximum (μ∗, λ∗) on the set Q.

Proof. The set Q can be written as

Q = Q1 ∩Q2, (5.24)

where

Q1 =
{(
μ, λ

) ∈M+(Ω) × [0, 1] : mi ≤ μ
(
fi

) − λ(Mi −mi), i = 1, 2, 3, 4
}
,

Q2 =
{(
μ, λ

) ∈M+(Ω) × [0, 1] : μ satisfies in (5.21)–(5.23)
}
.

(5.25)

We will show in the next section that (5.22) and (5.23) are special cases of (5.21). Therefore,
the set Q2 can be written as Q2 = Π × [0, 1], where

Π =
⋂

ϕ∈C′(B)

{
μ ∈M+(Ω) : μ

(
ϕg

)
= Δϕ

}
. (5.26)

It is well known that the set {μ ∈ M+(Ω) : μ(1) = tf − t0} is compact in weak∗-topology [46].
Furthermore, for ϕ ∈ C′(B), the set Π as intersection of inverse image of the closed singleton
sets {Δϕ} under the continuous functions μ → μ(ϕg) is also closed. Thus,Π is a closed subset
of a compact set. This proves the compactness of the set Π. Hence, the compactness of [0, 1]
implies the compactness of Q2 with the product topology. Besides, for i = 1, 2, 3, 4, the set Q1

as intersection of the inverse image of the closed sets [mi,∞) under the continuous functions
(μ, λ) → μ(fi) − λ(Mi − mi) is also closed. Therefore, the set Q as a closed subset of the
compact set Q2 is compact also. Since the function σ mapping the compact set Q on the real
line is continuous so it has a maximum on the compact set Q.

5.3. Approximation

Since M+(Ω) is an infinite-dimensional space, the problem (5.19)–(5.23) is an infinite-
dimensional linear programming problem and we are mainly interested in approximating
it. First, the maximization of σ is considered not over the set Q, but over a subset of it
denoted by requiring that only a finite number of constraints (5.21)–(5.23) be satisfied.
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Let {ϕi : i = 1, 2, . . .}, {ψj : j = 1, 2, . . .}, and {ϑs : s = 1, 2, . . .} be the sets of total functions,
respectively, in C′(B), D(J0) and C1(Ω).

Remark 5.5. From (5.7) and (5.9), it can be seen that (5.22) and (5.23) are also achieved from
(5.21) by setting ϕ(t, ξ(t)) = ξn(t)ψ(t) and ϕ(t, ξ(t)) =

∫ t
0 ϑ(τ)dτ , respectively.

Now, the first approximation will be completed by choosing finite number of total
functions and using following propositions.

Proposition 5.6. Consider the linear program consisting of maximizing the function σ over the set
Q(K) of pairs (μ, λ) inM+(Ω) × [0, 1] satisfying

mi ≤ μ
(
fi

) − λ(Mi −mi) i = 1, 2, 3, 4,

μ
(
ϕ
g

j

)
= Δϕj, j = 1, . . . , K.

(5.27)

Then, ηK ≡ maxQ(K)σ tends to η∗ ≡ maxQσ as K → ∞.

Proof. We have Q(1) ⊇ Q(2) ⊇ · · · ⊇ Q(M) ⊇ · · · ⊇ Q and hence, η1 ≥ η2 ≥ · · · ≥ ηM ≥ · · · ≥ η∗.
Therefore, {ηj} is nonincreasing and bounded sequence then converges to a number ζ such
that ζ ≥ η∗. We show that, ζ = η∗. Set R ≡ ⋂∞

K=1Q(K). Then, R ⊇ Q and ζ ≡ maxRσ. It is
sufficient to show thatR ⊆ Q. Assume (μ, λ) ∈ R and ϕ ∈ C′(B). Since the Linear combinations
of the functions {ϕj, j = 1, 2, . . .} are uniformly dense in C′(B), there is the sequence {ϕ̃k} ∈
span{ϕj, j = 1, 2, . . .} such that ϕ̃k tends to ϕ uniformly as k → ∞. Hence, S1, S2, and S3 tend
to zero as k → ∞, where,

S1 = sup
∣∣ϕξ(t, ξ) − ϕ̃kξ(t, ξ)∣∣, S2 = sup

∣∣ϕt(t, ξ) − ϕ̃kt(t, ξ)∣∣, S3 = sup
∣∣ϕ(t, ξ) − ϕ̃k(t, ξ)∣∣.

(5.28)

We have μ ∈ R and functional f → μ(f) is linear. Therefore, μ(ϕ̃g
k
) = Δϕ̃k and

∣∣μ(ϕg) −Δϕ
∣∣ = ∣∣∣μ(ϕg) −Δϕ − μ

(
ϕ̃
g

k

)
+ Δϕ̃k

∣∣∣

=
∣∣∣∣
∫
Ω

{[
ϕξ(t, ξ) − ϕ̃kξ(t, ξ)

]
g(t, ξ, u) +

[
ϕt(t, ξ) − ϕ̃kt(t, ξ)

]}
dμ − (

Δϕ −Δϕ̃k
)∣∣∣∣

≤ S1

∫
Ω

∣∣g(t, ξ, u)∣∣dμ + S2

∫
Ω
dμ + 2S3.

(5.29)

Since the right-hand side of the above inequality tends to zero as k → ∞, while left-hand side
is independent of k, therefore, μ(ϕg) = Δϕ. Thus R ⊆ Q and η∗ ≥ ζ which implies ζ = η∗.

Proposition 5.7. An optimal pair (μ∗, λ∗) in the set Q(K) at which the function σ attains its
maximum can be found where the measure μ∗ has the form

μ∗ =
K+4∑
j=1

α∗j δ
(
z∗j

)
, (5.30)
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where α∗j ≥ 0, z∗j ∈ Ω, and δ(z) is unitary atomic measure with the support being the singleton set
{z∗j }, characterized by δ(z)(F) = F(z), z ∈ Ω.

Proof. Assume that (μ∗, λ∗) is an optimal solution of maximizing the function σ over the set
Q(K). Denote the set of all measures μ ∈M+(Ω) satisfying in (5.27) for a fixed λ = λ∗, byQλ∗ .
The set Qλ∗ is a weak∗-compact subset of M+(Ω) [46]. Therefore, from Theorem A.5 of [46],
Qλ∗ has at least one extreme point in the form of (5.30).

Therefore, our attention is restricted to finding a measure in the form of (5.30) which
maximizes the function σ and satisfies in (5.20) and K number of the constraints (5.21)–
(5.23). Thus, by choosing the functions ϕi, i = 1, 2, . . . , K1, ψk, k = 1, . . . , K2, and ϑs, s =
1, . . . , S, the infinite-dimensional problem (5.19)–(5.23) is approximated by the following
finite-dimensional nonlinear programming (NLP) problem:

maximize
λ, αj≥0, zj∈Ω

λ +
K+4∑
j=1

αjf0
(
zj

)

subject to mi ≤
K+4∑
j=1

αjfi
(
zj

) − λ(Mi −mi), i = 1, 2, 3, 4,

K+4∑
j=1

αjϕ
g

i

(
zj

)
= Δϕi, i = 1, . . . , K1,

K+4∑
j=1

αjψ
n
k

(
zj

)
= 0, k = 1, . . . , K2, n = 1, . . . , 6,

K+4∑
j=1

αjϑs
(
zj

)
= aϑs , s = 1, . . . , S,

(5.31)

where K = K1 + 6K2 + S. Clearly, (5.31) is an NLP problem with 2(K + 4) + 1 unknowns λ,
αj , zj , j = 1, . . . , K + 4. One is interested in LP problem. The following proposition enables us
to approximate the NLP problem (5.31) by a finite-dimensional LP problem.

Proposition 5.8. Let ΩN = {y1, y2, . . . , yN} be a countable dense subset of Ω, where N is
asufficiently large number. Given ε > 0, a measure v ∈M+(Ω) can be found such that

∣∣v(fi) − μ∗(fi)∣∣ ≤ ε, i = 0, 1, 2, 3, 4,

∣∣∣v(ϕgj
)
− μ∗

(
ϕ
g

j

)∣∣∣ ≤ ε, j = 1, . . . , K1,

∣∣v(ψnk) − μ∗(ψnk)
∣∣ ≤ ε, k = 1, . . . , K2, n = 1, . . . , 6,

∣∣v(ϑs) − μ∗(ϑs)
∣∣ ≤ ε, s = 1, . . . , S,

(5.32)
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Table 3: The values of the objective functionals and corresponding values of the membership functions.

I1(u)/μ1(I1(u)) I2(u)/μ2(I2(u)) I3(u)/μ3(I3(u)) I4(u)/μ4(I4(u))
Continuous
control

2.4550 ×
105/0.3478

−1.3592 ×
107/0.7513 −37.5238/0.8979 −3.4147 ×

10−16/0.4379
Piecewise
constant
control

3.0929 ×
105/0.5022

−2.5882 ×
107/0.4837 −138.3152/0.6236 −3.7261 ×

10−16/0.3867

uP = 0.7, uR =
9 × 10−10

M1 =
5.1496 × 105/1

M2 =
−2.1679 × 106/1

m3 =
−367.5000/0

m4 =
−6.0750 × 10−16/0

uP = 0, uR = 0 m1 =
1.0181 × 105/0

m2 =
−4.8101 × 107/0 M3 = 0/1 M4 = 0/1

where the measure v has the form

v =
K+4∑
j=1

α∗j δ
(
yj

)
, (5.33)

and the coefficients α∗j , j = 1, . . . , K + 4, are the same as optimal measure (5.30), and yj ∈ ΩN , j =
1, . . . , K + 4.

Proof. We rename the functions fis, ϕ
g

j s, ψ
n
k s, and ϑss sequentially as hj , j = 1, 2, . . . , K + 5.

Then, for j = 1, . . . , K + 5,

∣∣(μ∗ − v)hj∣∣ =
∣∣∣∣∣
K+4∑
i=1

α∗i
[
hj

(
z∗i

) − hj(yi)]
∣∣∣∣∣ ≤

(
K+4∑
i=1

α∗i

)
max
i,j

∣∣hj(z∗i ) − hj(yi)∣∣. (5.34)

The functions hj , j = 1, 2, . . . , K + 5, are continues. Therefore, maxi,j |hj(z∗i ) − hj(yi)| can be
made less than ε/

∑K+4
j=1 α∗j by choosing yi, i = 1, 2, . . . , K + 4, sufficiently near z∗i .

For constructing a suitable set ΩN , J is divided to S subintervals as follows:

Js = [t0 + (s − 1)Δ, t0 + sΔ], s = 1, 2, . . . , S, (5.35)

where Δ = (tf − t0)/S. Moreover, the intervals Ai (i = 1, . . . , 6) and Uj (j = 1, 2) are divided,
respectively, into ni and sj subintervals. So, the set Ω is divided intoN = Sn1n2n3n4n5n6s1s2
cells. One point is chosen from each cell. In this way, we will have a grid of points, which are
numbered sequentially as yj = (tj , ξ1j , . . . , ξ6j , uPj , uRj ), j = 1, . . . ,N.

The desired numbers mi and Mi in definition of the membership functions
μi(Ii(u)), i = 1, 2, 3, 4 can be set

mi = min
u∈U

∫ tf

t0

fi(t, ξ, u)dt, Mi = max
u∈U

∫ tf

t0

fi(t, ξ, u)dt. (5.36)
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Remark 5.9. With respect to this fact that the maximum level of healthy cells is attained
with full HAART, we have M1 = I1(b1, b2). Similarly, the other numbers mi and Mi can be
calculated without explicitly solving auxiliary optimal control problems. The values of these
variables are shown in Table 3.

Therefore, according to (5.33) the NLP problem (5.31) is converted to the following LP
problem:

maximize
λ,αj≥0

λ +
N∑
j=1

αjf0
(
yj

)

subject to mi ≤
N∑
j=1

αjfi
(
yj

) − λ(Mi −mi) i = 1, 2, 3, 4,

N∑
j=1

αjϕ
g

i

(
yj

)
= Δϕi, i = 1, . . . , K1,

N∑
j=1

αjψ
n
k

(
yj

)
= 0, k = 1, . . . , K2, n = 1, . . . , 6,

N∑
j=1

αjϑs
(
yj

)
= aϑs , s = 1, . . . , S.

(5.37)

Here, we discuss suitable total functions ϕi, i = 1, . . . , K1, ψk, k = 1, . . . , K2, and
ϑs, s = 1, . . . , S. The functions ϕis can be taken to be monomials of t and the components
of the vector ξ as follows:

tiξj , i ∈ {0, 1, 2, . . .}, j ∈ {1, . . . , 6}. (5.38)

In addition, we choose some functions with compact support in the following form [46]:

ψ2r−1(t) = sin

(
2πr(t − t0)
tf − t0

)
, ψ2r(t) = 1 − cos

(
2πr(t − t0)
tf − t0

)
, r = 1, 2, . . . . (5.39)

Finally, the following functions are considered that are dependent on t only:

ϑs(t) =

⎧⎨
⎩
1 t ∈ Js,
0 otherwise,

(5.40)

where Js, s = 1, . . . , S, are given by (5.35). These functions are used to construct the
approximate piecewise constant controls [46]. Of course, we need only to construct the
control function u(·), since ξ(·) can be obtained by solving the ODEs (2.1)–(2.6). By using
simplex method, a nonzero optimal solution α∗i1 , α

∗
i2
, . . . , α∗ik , i1 < i2 < · · · < ik, of the LP

problem (5.37) can be found where k cannot exceed the number of constraints, that is,
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Figure 2: Continuous solutions withw1 = 1 andw2 = 0.1 and different weightsw3 andw4, on control cost:
w3 = 25000 and w4 = 2 × 1021 (the x shape), w3 = 24000 and w4 = 1.5 × 1021 (the dashed dotted line),
w3 = 19000 and w4 = 1021 (the solid line), w3 = 21000 and w4 = 1021 (the dotted line), w3 = 18000 and
w4 = 8 × 1020 (the dashed line).

k ≤ K + 4. Setting α∗i0 = t0, a piecewise constant control function u(·) approximating the
optimal solution is constructed based on these nonzero coefficients as follows [46]:

u(t) =

⎧⎪⎪⎨
⎪⎪⎩

(
uPij , uRij

)
t ∈

[
j−1∑
h=0

α∗ih ,
j∑

h=0

α∗ih

)

0 otherwise

, j = 1, 2, . . . , k, (5.41)

where uPij and uRij are, respectively, the 8th and the 9th components of grid point yij .

6. Numerical Results

In this section we show the response of the HIV model to the continuous, STI and piecewise
constant controls presented in Sections 4 and 5.

6.1. Continuous Solutions

As we discussed in Section 4.1, in the case of continuous solutions the optimality systems,
is a two-point boundary value problem because of the forward-in-time nature of the state
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Figure 3: Convergence of the gradient method.

system (2.1)–(2.6) with the initial conditions and the backward-in-time nature of the adjoint
system (4.4) with the terminal conditions. We consider a gradient method for the solution of
the optimal control problem. The algorithm proceeds as follows.

(i) Choose an initial guess of control.

(ii) Solve the state system forward in time with initial conditions using an initial guess
of control.

(iii) Solve the adjoint system backward in time with terminal conditions.

(iv) Update the controls in each iteration using the optimality conditions (4.12) and
(4.13).

(v) Continue the iterations until convergence is achieved.

For further discussion of the gradient method, we refer the interested reader to [40].
We use the parameters for solving the optimality system from Table 1. Antiretroviral therapy
is initiated at t0, the time at which the CD4+ T-cell count falls below 350 cells/μL, and
treatment was simulated for 750 days. Furthermore, control variables uP and uR are bounded
by a1 = 0, b1 = 0.7, a2 = 0, and b2 = 9 × 10−10, and the following initial condition is used (see
[7]):

x(0)=103 cellsμL−1, v(0) = 104 copiesmL−1, y(0) = 0 cellsμL−1, w(0)=10−3 cellsmL−1,

z(0) = 10−7 cellsμL−1, r(0) = 2 × 10−7 mL copies−1 day−1.
(6.1)

We ran simulations with five different values of weight factor w. The corresponding control
functions are presented in Figure 2. As we increase w3 and w4, thereby increasing the cost
of therapy, the control functions are decreasing. In Figure 8, we plot only the response of the
HIV model to the obtained control function corresponding to weights w1 = 1, w2 = 0.1,
w3 = 21000, and w4 = 1021 for brevity. Since the magnitude of CD4+ T cell, and virus
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Figure 4: STI solution with w1 = 1, w2 = 0.1, w3 = 2000, and w4 = 105.
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Figure 5: STI solution with w1 = 1, w2 = 0.1, w3 = 1800, and w4 = 5 × 105.

population is much larger than the magnitude of the cost of the drugs treatment in the
objective functional I(u), these differences in magnitudes are balanced by this choice of w.
Moreover, the performance of the gradient method with this choice of w is shown in Figure 3.
The number of required iterations to achieve the convergence is 307. Note that in Figure 3,
‖ · ‖ denotes the infinity norm, and x(i) denotes the state x(t) in the ith iteration.

6.2. MPC-Based STI Solutions

We implement therapy protocols based on the MPC algorithm (4.29) described in Section 4.
All computations are carried out byMATLAB.We choose a sampling time of five days,Δ = 5.
Consequently, we do not worry about creating an explicit discretization of our differential
equation; we simply use a numerical simulator to approximate our discretization. Moreover,
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Figure 6: STI solution with w1 = 1, w2 = 0.1, w3 = 1500 and w4 = 5 × 105.
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Figure 7: The piecewise constant control pair u∗P and u∗R.

we chose horizon length N = 8. In particular, a finite horizon and a finite control space
mean that we have, for each horizon, a finite number of possible control sequences. We
implement MPC by using the Simulated Annealing (SA) metaheuristic combined with the
Steepest Descent Explorer [47] for searching this space.

We ran simulations with three different values of weight factor w. The corresponding
control functions are plotted in Figures 4, 5, and 6. In Figure 8, we present only the response
of the HIV model to the STI solution corresponding to weights w1 = 1, w2 = 0.1, w3 = 1800,
and w4 = 5 × 105 for brevity.

6.3. Piecewise Constant Solutions

In our implementation, we choose K1 = 12 number of functions from the set C′(B) as

tiξj , i ∈ {0, 1, }, j ∈ {1, . . . , 6}. (6.2)
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Figure 8: Dynamic behavior of the state variables versus time in the presence of continues controls (the
dashed line), piecewise constant controls (the solid line), STI controls (the dotted line), with no treatment
(uP = uR ≡ 0) (the × shape), and with fully efficacious treatment (uP ≡ 0.7, uR ≡ 9 × 10−10) (the dashed
dotted line).
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Furthermore, we set K2 = 2 and S = 6. By using controllability on the dynamical control
system, the considered ranges for states and controls and the corresponding number of
partitions in the construction of the set ΩN are summarized in Table 2. Note that the selected
values from the set U1 in the construction of yjs are 0, 0.4, and 0.7. These values indicate off,
moderate, and strong PI-therapy, respectively. Similarly, the corresponding values for RTI
control are 0, 5 × 10−10, and 9 × 10−10 [7]. The desired values formis andMis are summarized
in Table 3. Implementing the corresponding LPmodel (5.37), we achieve λ∗ = 0.3902, which is
close to the obtained number from Table 3, that is, λ = mini=1,...,4{μi(Ii(u))} = 0.3867. Figure 7
shows the resulting piecewise constant control pair.We solved theHIVmodel (2.1)–(2.6)with
no treatment (uP = uR ≡ 0) and with fully efficacious treatment (uP ≡ 0.7, uR ≡ 9 × 10−10).
The numerical results for these two cases as well as the response of the systems to piecewise
constant control, STI control, and continuous control are shown in Figure 8 for comparison.
Except for STI solution, which is derived by considering linear cost functionals, the values
of the objective functionals as well as corresponding values of the membership functions for
other cases are given in Table 3.

From Figures 8(a) and 8(b), we see drop in the number of CD4+ T cells, and a rise in
viral load following the initial infection until about the third month. After this time, CD4+
T cells start recovering and virus starts decreasing due to the immune response, but can
never eradicate virus completely. Then CD4+ T cells level decreases and viral load increases
due to destruction of immune system in absence of treatment. Figures 8(b) and 8(c) show
a clear correlation between the CTLe and virus population. As the virus increases upon
initial infection, CTLe increases in order to decrease the virus. Once this is accomplished,
virus decreases. Then virus grows back slowly, and this triggers an increase in the CTLe
population. CTLe further increases in an attempt to keep the virus at constant levels but
lose the battle because of virus-induced impairment of CD4+ T cell function, in absence of
treatment. Memory CTL responses depend on the presence of CD4+ T cell help. Figures 8(a)
and 8(b) show that, in presence of treatment, the virus is controlled to very low levels and
CD4+ T cells are maintained above the critical levels. Therefore, immune response expands
for relatively long time successfully. Furthermore, these Figures indicate inverse coloration
between viral load and CD4+ T cells level. From Figures 8(c) and 8(d) interestingly, a decrease
in CTLs occur in response to therapy can be observed. The extent of the decrease is directly
correlated with the increase in treatment effectiveness which is consistent with experimental
findings [48]. From Figure 8(a), we conclude that in the presence of treatment, the level of
CD4+ T cells decreases very slowly as compared with untreated patient. Moreover, this figure
shows that the average CD4+ T cells concentration with piecewise constant control is higher
than continuous control. Interestingly, from Figure 8(d) we see that the intensity of immune
response in the presence of continuous control is more than full treated patient until about the
42th month, and the intensity of immune response with piecewise constant control is higher
than other controls after about the 31th month.

7. Conclusion

In this paper, a six-dimensional HIV model is considered, and a multi-objective optimal
control problem is proposed to design therapy protocols to treat the HIV infection. The
model permits drug therapy (RTIs and PIs) as controllers. We derived continuous treatment
strategies by solving the corresponding optimality systems with the gradient method. In
addition, structured treatment interruption (STI) protocols are found by using ideas from
model predictive control. The results of simulations show that the proposed MPC-based
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method can effectively be applied to find STI-type solutions. In particular, a novel idea based
on fuzzy aggregation and measure theory is proposed to find a compromise Pareto optimal
solution, and numerical results confirmed the effectiveness of this approach. The method is
not iterative and it does not need any initial guess of the solution and it can be utilized to
solve multi-objective optimal control problems.
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