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Autonomous road following is one of the major goals in intelligent vehicle applications. The
development of an autonomous road following embedded system for intelligent vehicles is the
focus of this paper. A fuzzy logic controller (FLC) is designed for vision-based autonomous road
following. The stability analysis of this control system is addressed. Lyapunov’s direct method
is utilized to formulate a class of control laws that guarantee the convergence of the steering
error. Certain requirements for the control laws are presented for designers to choose a suitable
rule base for the fuzzy controller in order to make the system stable. Stability of the proposed
fuzzy controller is guaranteed theoretically and also demonstrated by simulation studies and
experiments. Simulations using the model of the four degree of freedom nonholonomic robotic
vehicle are conducted to investigate the performance of the fuzzy controller. The proposed fuzzy
controller can achieve the desired steering angle and make the robotic vehicle follow the road
successfully. Experiments show that the developed intelligent vehicle is able to follow a mocked
road autonomously.

1. Introduction

Intelligent transportation systems (ITSs) are an emerging global phenomenon benefiting
public and private sectors alike. ITSs and intelligent vehicles can relieve congestion,
improve safety, and enhance productivity. The field of intelligent vehicles is rapidly growing
worldwide. Technologies involved with intelligent vehicles include sensing and control
technologies, communications, and computer informatics. Intelligent vehicles offer the
potential to significantly enhance safety and operational efficiency. As one component of
ITSs, intelligent vehicles use sensing and intelligent algorithms to understand the vehicle’s
immediate environment, either assisting the driver or fully controlling the vehicle [1].
Intelligent vehicles function at the control layer to enable the driver vehicle subsystem to
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operate more effectively. Intelligent vehicles can help drivers in various ways: (1) collision
warning—to advise or warn the driver; (2) driver assistance—to partially control the vehicle
as an emergency intervention to avoid a collision; (3) automated driving—to fully control the
vehicle. Vehicles that can navigate autonomously in everyday traffic will become a reality in a
few decades. In this paper, we will focus on the development of embedded systems to realize
automated road following for intelligent vehicles.

A lot of highway accidents are caused by deviation from the road. Autonomous road
following is one of the major research topics in the area of intelligent vehicles. Because
of its potential in preventing accidents caused by human fatigue and performing tasks in
environments unreachable by human beings, a lot of road following methods for intelligent
vehicles have been proposed in the recent decades. Intelligent vehicles are robotic systems
that perceive the driving environment to assist the driver in safe vehicle operation by
providing driving assistance or full control of the vehicle. With the proposed research, we will
be able to develop an autonomous control system that can be used on cars to assist driving
or take the control of driving in order to avoid fatal accidents. Furthermore, the developed
intelligent vehicles can be used to perform tasks in an environment that is unreachable by
human beings.

Generally speaking, autonomous road following requires two major steps: road
feature extraction, and speed/steering control of the vehicles. The success of autonomous
road following requires the ability to continuously detect and extract useful road features, to
analyze road features, and to perform steering and speed control based on road conditions.

Computer-vision-based road feature extraction has been applied in intelligent vehicles
for road following widely because of its advantages in low-power consumption, compact
size, availability as a commercial product, cost effectiveness, and robustness [2]. Numerous
image processing and feature extraction methods can be found in [3–7].

Control algorithms should be considered as an important issue in road following to
ensure safe and smooth rides. Although a lot of researches have been done on this topic, most
of them are based on traditional control theories such as PID [2] and nonlinear controllers [8].
The kinematic behavior of autonomous road following is typically nonlinear. Therefore linear
models usually fail to describe these systems efficiently. However, it is difficult to analyze
nonlinear mathematical models for autonomous road following schemes. Other methods
such as neural networks [9, 10] and reinforcement learning (RL) [11] approaches have
also been used in road following, but these approaches require learning procedures which
consume extra computation time.

Human drivers can drive a car smoothly with their driving expertise rather than
knowledge on control theories. This fact leads us to the fuzzy logic solution. Fuzzy logic
control is known to be an organized method to emulate human expertise in dealing with
imprecise data. It attempts to apply a human-like way of thinking in the application areas
and allows intermediate values to be defined with linguistic terms besides conventional
evaluations. It has been proven to be an effective and active method in solving control
problems during the past decades. Fuzzy logic is a logic much closer to human thinking
than traditional logic. It is a precise logic of imprecision and approximate reasoning. Fuzzy
logic controllers provide a means of converting a linguistic control strategy based on expert
knowledge into an automatic control strategy [12]. In areas where conventional control
methods have difficulties because of the lack of precise quantitative data regarding the system
inputs and outputs, fuzzy logic controllers can process imprecise data and make rational
decisions by emulating human thinking and decision making capabilities. Fuzzy logic control
has been applied for intelligent vehicles in many areas such as car parking and vehicle
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guidance. Various applications of fuzzy logic control in the field of intelligent vehicles can
be found in [13–17].

Safety and reliability are of great importance for intelligent vehicles especially if the
vehicles are used for transportation. Therefore, before applying any dynamical systems
to intelligent vehicles, the stability of these dynamical systems should be studied to
make sure they are stable. Several well-known methods could be used to analyze the
stability of a system, such as the Routh-Hurwitz stability criterion, the Lyapunov stability
criterion, the Nyquist criterion, finding poles directly, the root locus method, or the
Jury stability test for discrete-time control systems. Lyapunov stability theory is probably
the most used tool for stability analysis. A dynamic system is Lyapunov stable if all
solutions of the system which start near an equilibrium point remain near the point for
all time. However, it is difficult to find the suitable Lyapunov functions. There is no
general method to construct a Lyapunov function. Trial-and-error or mathematical/physical
methods are often used. Some useful approaches for finding Lyapunov functions are Sum
of Squares Decomposition [18, 19], convex search for storage functions [20], and variable
gradient method [21]. However, these methods do not always lead to a desired Lyapunov
function.

In this paper, we will design an autonomous road following embedded system
for multiple intelligent vehicles. An intelligent vehicle which is capable of moving
between two lines on the road will be designed. A fuzzy logic controller (FLC) will be
developed to control the steering wheel of the vehicle for autonomous road following.
An FLC on a nonlinear system requires less computational power compared to traditional
nonlinear system applications. The resources required for building the embedded system
will be significantly reduced. Lyapunov’s direct method will be used to analyze the
stability of the control system. The “variable gradient” approach proposed in [21] will
be used to construct the Lyapunov function of this system. This control system will be
implemented on a vision-based intelligent vehicle which is able to perform road following
autonomously.

The rest of the paper is organized as follows. The kinematic model of the
vehicle is studied in Section 2. Section 3 presents the design of the FLC. Section 4
provides the proof of the stability using Lyapunov’s direct method. Experimental setup
for the vision-based intelligent vehicle is described in Section 5. Section 6 discusses
the simulation and experimental results. The last section of this paper concludes the
research.

2. Kinematic Model of the Car

The road following problem of the intelligent vehicle with kinematic constraints in the
two-dimensional workspace is studied. A nonholonomic constraint for a robotic vehicle
is a nonintegrable equation involving the configuration parameters and their derivatives
(velocity parameters) [22]. Such a constraint does not reduce the dimension of the space
of configurations attainable by the robot but reduces the dimension of the space of possible
motions at any given configuration. Considering the robotic vehicle modeled as Figure 1,
the rear wheels are aligned with the vehicle while the front wheels are allowed to pivot
about the axes. In a sufficiently large empty space, a robotic vehicle can be driven to any
position with any orientation, hence the robot’s configuration space has four dimensions,
two for translation, one for rotation and one for the steering angle. Let (x, y, φ, θ) denote the
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Figure 1: Kinematic model of the car.

configuration of the robot, parameterized by the location of the front wheels. The kinematic
model of the robotic vehicle can be represented as

ẋ = u3 cos θ,

ẏ = u3 sin θ,

θ̇ =
u3

l
tanφ,

(2.1)

where u3 corresponds to the forward velocity of the vehicle and the angle of the vehicle body
with respect to the horizontal line is θ, the steering angle with respect to the vehicle body is φ,
(x, y) is the location of the center point of the front wheels, l is the length between the front
and the rear wheels.

Since the turn radius of the robot is quite large compared with the radius of the wheels,
referring to Figure 1, we have the following relations:

S1 =
(
R − w

2
cosφ

)
φ,

Sm = Rφ,

S2 =
(
R +

w

2
cosφ

)
φ,

(2.2)

where S1 and S2 give the displacement (distance traveled) of the front left and front right
wheel, respectively, R is the turn radius of the center point of the front wheels, w is the
distance between wheels (from center-to-center along the length between the two font wheels
or two back wheels), and φ is the angle of the turn in radians. Sm is the displacement at the
center point of the front wheels. Once we have established the simple geometry for the robotic
vehicle system, it is easy to develop algorithms for controlling the robot’s steering angle φ,
thus controlling the robot’s orientation θ. As the robot is considered as having a rigid body, to
develop a forward kinematic equation for the steering system, we start by specifying a frame
of reference in which an arbitrarily chosen point is treated as stationary. All other points in
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the system are treated as moving relative to the reference point. Here we treat the center point
of the front wheels as the origin of the simulated robot’s frame of reference.

For the robotic vehicle that we are modeling, the turn angle of the front wheels has a
range of [−π/6, π/6], that is, −π/6 ≤ φ ≤ π/6. By adjusting the steering angle φ, we can
control the velocity of both the front wheels

Ṡ1 = φ̇
(
R − w

2
cosφ

)
+
w

2
φφ̇ sinφ,

Ṡ2 = φ̇
(
R +

w

2
cosφ

)
− w

2
φφ̇ sinφ,

(2.3)

so that

u2 − u1 = φ̇w
(
cosφ − φ sinφ

)
, (2.4)

where u1 and u2 correspond to the forward velocity of the front left wheel and the front right
wheel, respectively.

The real-time path of the vehicle can be obtained by integrating (2.1). The angle of the
vehicle body with respect to the horizontal line at time (t+Δt) could be derived first. If φ̇ /= 0,
that is, u2 /=u1, the angle of the vehicle body with respect to the horizontal line at time (t+Δt)
is given as

θ(t + Δt) = θ(t) +
u3

l

∫ t+Δt

t

tanφdt

= θ(t) +
u3

lφ̇

(
− ln

∣∣cosφ
∣∣)∣∣t+Δt

t

= θ(t) +
u3

lφ̇

(
− ln

∣∣cosφ(t + Δt)
∣∣ + ln

∣∣cosφ(t)
∣∣),

(2.5)

and if φ̇ = 0, that is, u2 = u1, the angle of the vehicle body at time (t + Δt) is given as

θ(t + Δt) = θ(t) +
u3

l
tanφΔt. (2.6)

Next the position of the vehicle at time (t + Δt) could be derived. If θ̇ /= 0, that is, φ/= 0,
the position of the moving vehicle at time (t + Δt) is given as

x(t + Δt) = x(t) +
u3

θ̇
(sin θ(t + Δt) − sin θ(t)),

y(t + Δt) = y(t) − u3

θ̇
(cos θ(t + Δt) − cos θ(t)),

(2.7)
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Figure 2: Structure of the FLC.

and if θ̇ = 0, that is, φ = 0, the position of the vehicle at time (t + Δt) is given as

x(t + Δt) = x(t) + u3 cos θΔt,

y(t + Δt) = y(t) + u3 sin θΔt.
(2.8)

3. Design of the FLC

In this section, the general structure of the proposed FLC is presented first. Then based
on simulation and experiments, the FLC is designed to perform the road following task.
The developed FLC not only enhances performance for road following but also saves
computational resources.

3.1. The Structure of the FLC

Figure 2 shows the structure of the proposed FLC which has four layers: input processing
layer, fuzzification layer, decision-making layer, and defuzzification layer. These layers form
an FLC following the Mamdani model. There are M inputs and N outputs for the FLC. Each
rule in the system has the following form:

Rule k: IF x1 is S(k)
1 AND . . . AND xm is S(k)

m . . . AND xM is S(k)
M , THEN y1 is R(k)

1

AND . . . yn is R(k)
n . . . AND yN is R(k)

N (k = 1, 2, . . . , K),

where xm is the mth input, m = 1, 2, . . . ,M, yn is the nth output, n = 1, 2, . . . ,N, S(k)
m is the

fuzzy linguistic sets for input xm,R(k)
n is the fuzzy rule sets for output ym, andK is the number

of rules in the rule base. The design of each layer is presented as follows.
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Input Processing Layer

The inputs of the FCL are crisp values. The input vector can be presented as

[
x1 x2 · · · xM

]
. (3.1)

Each input is adjusted by a weight factor. Then the input vector can be presented as

[
w1x1 w2x2 · · · wMxM

]
, (3.2)

where w1, w2, . . . , wm are weight factors.

Fuzzification Layer

It converts the weighted crisp inputs to fuzzy variables. This layer has three nodes for each
input: one node defines the fuzzy membership functions (MFs) for the input; the other two
nodes represent the two triggered MFs for the input. Triangle MFs are used for fuzzy sets
except for the leftmost and the rightmost fuzzy set. The leftmost and rightmost MFs are
trapezoidal. Without loss of generosity, MFs for different fuzzy sets can have different triangle
or trapezoidal shapes. We constrain the maximum overlapping degree of two MFs to 50%.
Therefore the maximum number of triggered MFs is 2 and these two MFs must be adjacent.
An example of the MFs with five fuzzy sets is shown in Figure 3. We define MF(1) and MF(2)

as the first and second triggered MF, and μ
(1)
m and μ

(2)
m as the membership value of the first

and second triggered MF of the input xm, respectively, then μ(1)
m and μ

(2)
m can be calculated as

μ
(1)
m = 1, μ

(2)
m = 0, xm ≤ Cl,

μ
(1)
m = 0, μ

(2)
m = 1, xm ≥ Cr,

μ
(1)
m = max

(
0, 1 − wmxm − C(1)

m

b
(1)
m

)
,

μ
(2)
m = max

(
0, 1 − C

(2)
m −wmxm

b
(2)
m

)
, C

(1)
m ≤ xm ≤ C(2)

m ,

(3.3)
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where C(1)
m and C

(2)
m are the centers of the two triggered MFs and C

(1)
m < C

(2)
m , Cl and Cr are the

leftmost and the rightmost limits, respectively, b(1)m is the width of the right-half base of MF(1),
and b

(2)
m is the width of the left half base of MF(2). If one of the membership values is zero, the

MF with respect to this membership value is not triggered, then there is only one triggered
MF. The outputs of this layer are membership values of triggered MFs for all inputs.

Decision-Making Layer

For every output, each node in this layer selects a fuzzy control rule from the rule base
of this output and obtains the antecedent value of this rule based on triggered input MFs.
Each output has one rule base, which means in the case of N outputs there are N different
rule bases in total. For each output, rules are selected according to the predefined rule base
corresponding to this output. Thus, each node in this layer selects N rules from N different
rule bases. Each control rule is selected based on a combination of MFs. Each of these MFs is
one of the triggered MFs of an input. For example, if there are three inputs, two of which have
two triggered MFs while the other input has only one triggered MF, the number of selected
rules for each output is 4 (2 × 2 × 1). The antecedent value of the selected rule k is computed
usingAND fuzzy logic. Therefore, “min” operation is considered for composition of the FLC:

F(k) = min
(
μ1, μ2, . . . , μm, . . . , μM

)
, (3.4)

where μm is one of the triggered input MFs (either μ(1)
m or μ(2)

m ) of xm, k = 1, 2, . . . , K∗, and K∗

is the number of selected rules.

Defuzzification Layer

This layer converts fuzzy values to crisp values and send them out as control outputs of the
FLC. Each node in this layer performs defuzzification for an output. Triangles are used for
the output MFs. Figure 4 shows an example of MFs for an output with three fuzzy sets. The
center of gravity (COG) algorithm is used to compute output crisp values. Let C(k)

n be the
center of the kth triangle. The output yn can be computed as

yn =
∑

k C
(k)
n

∫
F
(k)
n dt

∑
k

∫
F
(k)
n dt

, (3.5)
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ėD
+
−

τ θ

Figure 5: Block diagram of the specified FLC.

where F(k)
n is the antecedent value of the kth selected fuzzy rule for yn. As all the output MFs

are triangles,
∫
F
(k)
n dt can be obtained by computing the area of the trapezoid under the line

f = F(k)
n . Thus, (3.5) can be modified as

yn =

∑
k C

(k)
n b

(k)
n

(
F
(k)
n −

(
F
(k)
n

)2
/2

)

∑
k b

(k)
n

(
F
(k)
n −

(
F
(k)
n

)2
/2

) (3.6)

where b(k)n is the base length of the kth output MF. Equation (3.6) simplifies the defuzzification
calculation by replacing derivatives with the computation of trapezoid areas.

3.2. The Developed FLC for Road following

A block diagram of the specified FLC for the road following task is shown in Figure 5. The
desired orientation of the center line of the car should be aligned with the road centroid. The
error is the angle between the desired orientation of the center line and the actual center line
of the car. The error is represented by e = θd − θ. To reduce the error to zero, the steering
angle should be equal to φ. φ is determined by the FLC. The error and the change-in-error are
calculated and fed into the FLC. The FLC is designed to output control signals corresponding
to the control torque to the front steering motor to control the front wheels’ steering angle φ.

The fuzzification procedure maps the crisp input values to the linguistic fuzzy terms
with the membership values between 0 and 1. In this study, we use five MFs for both error e =
θd − θ and change-in-error ė = θ̇d − θ̇ because five MFs can balance between the performance
and the complexity of the FLC. The isosceles triangle membership function (MF) is used
except for the leftmost and the rightmost input MF which are trapezoidal. Each MF has a
50% overlapping with its neighboring MFs. Figure 6 illustrates the input MFs for e and ė,
respectively. Note that the scale for the X coordinate can be changed easily in the program.

The inference engine is responsible for decision making in the control system using
approximate reasoning. The fuzzy control rules are designed based on expert knowledge
and testing. Furthermore, the control rules also meet the stability requirements derived from
Lyapunov’s direct method. Table 1 represents abstract knowledge that an expert uses to
control the steering angle given information about the error and its derivative. For example, if
e is positive large “PL” and is increasing rapidly (ė is positive large), then the vehicle should
turn left sharply, that is, φ should be left large (LL). The rule base stores rules which define
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Table 1: Fuzzy rule base.

ėφ
PL PS ZO NS NL

eφ

PL RL RL RL RS MD
PS RL RL RS MD LS
ZO RL RS MD LS LL
NS RS MD LS LL LL
NL MD LS LL LL LL

Note: PL: Positive Large; PS: Positive Small; ZO: Zero; NS: Negative Small; NL: Negative Large; RL: Right Large (turn right
sharply); RS: Right Small (turn right gently); MD: Middle (no turn); LL: Left Large (turn left sharply); LS: Left Small (turn
left gently).

the relation between the inputs and the output. Based on the membership functions of the
error and the change in error, twenty-five fuzzy rules are obtained.

Figure 7 shows output MFs. All MFs for the output are isosceles triangles with 50%
overlap between two neighboring MFs.

The defuzzification procedure maps the fuzzy output from the inference mechanism
to a crisp signal. We use the COG defuzzification method to combine the recommendations
represented by the implied fuzzy sets from all the rules. The crisp value is computed
according to (3.6).

4. Stability Analysis Using Lyapunov’s Direct Method

The autonomous road following system can be represented as

e = θ − θd = x1,

ė = θ̇ − θ̇d = x2,
(4.1)
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where θd is the desired angle, and θ is the actual angle. From (2.1), we know that we need
to design the FLC to control the steering wheel so that θ can approach θd. The output of the
fuzzy controller Φ(·) is a function of x1 and x2 that can be represented by Φ(x1, x2). On the
intelligent vehicle, the control signal Φ(x1, x2) is used to steer the front wheels. We assume
that the low-level tracking controller can output the motor torque to steer the front wheels
accordingly. Recall (2.1), we have

ẋ1 = x2 = θ̇ − θ̇d =
u3

l
tanφ − θ̇d,

ẋ2 = θ̈ − θ̈d =
u3

l

1
cos2φ

φ̇ − θ̈d.
(4.2)

Assume that at the equilibrium point e = 0 and ė = 0, so that the equilibrium is
preserved. The main shortcoming of Lyapunov theory is the difficulty associated with the
construction of Lyapunov functions [21]. To overcome this problem, we use the “variable
gradient” approach proposed in [21] to construct the Lyapunov function. The essence of this
method is to assume the gradient of the unknown Lyapunov function V (·) is known up to
some adjustable parameters. Then finding V (·) becomes integrating the assumed gradient.

The system can be represented as

ẋ = f(x) =
[
ẋ1 ẋ2

]T
=
[
x2 ẋ2

]T
. (4.3)

We proceed to find a suitable Lyapunov function for this system as follows.

Step 1. Assume that ∇V (x) = g(x) has the form

g(x) =
[
h1

1x1 + h2
1x2 h1

2x1 + h2
2x2

]
. (4.4)

Step 2. Impose the symmetry conditions

∂2V

∂xixj
=

∂2V

∂xjxi
, (4.5)
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or equivalently,

∂gi
∂xj

=
∂gj

∂xi
. (4.6)

In our case, the symmetry condition is

∂g1

∂x2
= x1

∂h1
1

∂x2
+ h2

1 + x2
∂h2

1

∂x2
,

∂g2

∂x1
= h1

2 + x1
∂h1

2

∂x1
+ x2

∂h2
2

∂x1
.

(4.7)

To simplify the solution, we assume that gi’s are constant. Then we have

∂h1
1

∂x2
=
∂h2

1

∂x2
=
∂h1

2

∂x1
=
∂h2

2

∂x1
= 0,

∂g1

∂x2
=
∂g2

∂x1
⇐⇒ h2

1 = h1
2 = k

=⇒ g(x) =
[
h1

1x1 + kx2 kx1 + h2
2x2

]
.

(4.8)

If we choose k = 0, we have

g(x) =
[
g1 g2

]
=
[
h1

1x1 h2
2x2

]
. (4.9)

Step 3. Find V̇ :

V̇ (x) = ∇V · f(x)

= g(x) · f(x)

=
[
h1

1x1 h2
2x2

][x2

ẋ2

]

= h1
1x1x2 + h2

2x2ẋ2.

(4.10)

Step 4. Find V from ∇V by integration:

V (x) =
∫x1

0
g1(s1, 0)ds1 +

∫x2

0
g2(x1, s2)ds2

=
∫x1

0
h1

1s1ds1 +
∫x2

0
h2

2s2ds2

=
1
2
h1

1x
2
1 +

1
2
h2

2x
2
2.

(4.11)
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Therefore, we have

V (x) =
1
2
h1

1x
2
1 +

1
2
h2

2x
2
2, (4.12)

V̇ (x) = h1
1x1x2 + h2

2x2ẋ2. (4.13)

Step 5. Find h1
1 and h2

2 that make V > 0. From (4.12), V (x) > 0 only if h1
1, h

2
2 > 0. Let h1

1 = h2
2 =

1, then we have

V̇ (x) = x1x2 + x2ẋ2 =
(
θ̇ − θ̇d

)(
θ + θ̈ − θd − θ̈d

)
. (4.14)

Based on the “variable gradient” approach, we can derive the following Lyapunov
function:

V (x) =
1
2
x2

1 +
1
2
x2

2, (4.15)

where V : B(ε) → R for some ε > 0, where B(ε) = {x ∈ R2 : |x| < ε} is a ball centered at the
origin with a radius of ε and | · | is a norm on R2. Then the gradient of the Lyapunov function
is

∇V (x(t)) = [ x1 x2], (4.16)

V̇ = [ x1 x2]

[
x2

ẋ2

]

= x2(x1 + ẋ2)

=
(
θ̇ − θ̇d

)(
θ + θ̈ − θd − θ̈d

)

=
(u3

l
tanφ − θ̇d

)(
θ − θd +

u3

l

1
cos2φ

φ̇ − θ̈d
)
.

(4.17)

We would like V̇ ≤ 0, to prove stability, that is, to show that the fuzzy controller can achieve
and maintain the desired θd. In (4.17), u3/l > 0, cos2φ > 0. We assume that θ̇d is bounded,
and θ̈d = 0. On the RC car, the steering angle −30◦ ≤ φ ≤ 30◦.

We can always design the FLC, Φ(x1, x2), to adjust φ and φ̇ to achieve the following
conditions:

u3

l

1
cos2φ

φ̇ ≥ θd − θ if
u3

l
tanφ − θ̇d > 0

u3

l

1
cos2φ

φ̇ ≤ θd − θ if
u3

l
tanφ − θ̇d < 0.

(4.18)

Therefore, V̇ ≤ 0 can always be achieved and hence the stability holds.
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Figure 8: The steering mechanism of the RC car.

5. Experimental Setup

In this section, the hardware setup of the prototype vehicle for autonomous road following is
presented. A fully automated robotic system is designed to control a motor vehicle using an
on board camera. The hardware system includes a camera associated with a frame grabber.
The camera is then connected to a Microchip PIC controller which controls the vehicle motion.
This system utilizes the camera with a frame-grabber and a built-in processor to grab pictures
of the road and to find the center of the road. Then it calculates the deviation between the
center of the car and the center of the road, and sends the result to an FLC. The FLC decides
how to turn the vehicle and sends out control signals to control the steering wheel. This
is implemented in a way that the vehicle can remain between two lines while simulating
highway motion.

5.1. The Remote Control Car

The Audi S4 radio control (RC) car platform is chosen because it offers a fully functional
steering and drive system. The control signal for the steering and drive system is generated
by the microcontroller which emulates the car’s control signals. The speed and steering of
the car are controlled by varying the pulse-width modulation (PWM) signals. The steering
mechanism of the RC car is shown in Figure 8.

5.2. The Mocked Road

The lane used in this project is the space between two lines as shown in Figure 8. To illustrate
the control process, we use a red line and a yellow line. The distance between these two lines
is constant.

5.3. Computer Vision

The CMUCam3 camera is chosen for the project. The camera uses a built in microcontroller
and a frame grabber to allow postprocessing on each captured image. As the two lines which



Mathematical Problems in Engineering 15

0 10 20 30 40 50 60 70 80 90
−30

−20

−10

0

10

20

30

40

y
(m

)

x (m)

Space trajectory of the mobile robot (solid blue) and
center line of the road (dashed red)

Figure 9: Following a road in Cartesian space.
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Figure 10: Error eφ and change-in-error ėφ.

mark the road are in different colors from the rest of the road, using a multiple color tracking
algorithm, we are able to track each line individually. The minimum and maximum RGB
values for each line color are set in the camera code. Pixels within the RGB value range are
regarded as a part of the line. A filter is applied to filter out noise. The camera finds the
location and the width of each colored line in terms of pixels and calculates the centroid of
each colored line. The centroid of two colored lines is then used to calculate the position
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Actual trajectory

Figure 12: The road following result using the proposed method.

error which is sent to the microcontroller. Since the vehicle is supposed to remain in the
center of the two colored lines, error can be calculated if the centroid is not at the center
of the image. The camera is programmed using a variation of the C language. The error is
calculated according to one of the states described in Table 2. Centroids in the table refer to
the x coordinate of the image only. In the table, Cr represents the centroid of the red line,
Cy represents the centroid of the yellow line, Cw represents the centroid of the image, C
represents the centroid of the two lines, respectively.

5.4. Microcontroller

The PIC18F4431 microcontroller is used to interface with the camera and the car’s existing
circuitry. It receives the incoming position error from the RS-232 port located on the
CMUCam3 board. The microcontroller then uses the error to calculate the appropriate
steering signal, using the proposed FLC written in C language. The steering signal is then
output to the RC car’s circuit.
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Figure 14: The simulated trajectory and the desired trajectory.

6. Simulation Studies and Experiment Results

In order to verify the performance of the proposed FLC and the system, simulations and
experiments have been conducted.

Simulations have been done to test the performance of the fuzzy controller. The results
show that the intelligent vehicle is able to follow the road with a speed of 13 m/s. Figure 9
shows the tracking performance of the robotic vehicle in the Cartesian space. The road has
two sharp curves and the robot starts from (0, 1) which is off the center of the road. The robot
is capable of following the road. It can respond to sudden changes on the road by changing
its steering angle accordingly.

Figure 10 shows the steering error and the change-in-error. Figure 11 shows the output
of the fuzzy controller. It can be seen that the fuzzy controller can output smooth control
signals to sudden changes in e and ė to make the system stable.

Experiments have been performed to verify the fuzzy logic controller design. In our
experiments, we use a mocked road with two lines to guide the navigation of the robot. The
actual trajectory of the robot is marked on the road using white powder dropping from a
container attached to the rear end of the robot. Figure 12 shows the robot performing the
autonomous road following task on the mocked road with curves. The robot moves at a speed
of 0.9 m/s. In the figure, the line in the center of the road is the trajectory marked by the
powder.

In our experiments, all data, such as errors and mean square errors, are calculated
based on four trials. Sample points on the actual trajectories are recorded and compared with
the desired trajectory which is the center line of the road. One sample point is taken for
every inch along the road. Figure 13 shows the desired trajectory and the actual trajectory
we have recorded during the experiment. In the figure, the dashed line represents the desired
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Figure 15: Error and change in error in the experiment.

Table 2: Error calculation table.

Red centroid Yellow centroid Error
Cr! = 0 Cy! = 0 Error = C − Cw
Cr! = 0 Cy = 0 Error = 176 − Cr
Cr = 0 Cy! = 0 Error = 0 − Cy

trajectory while the dotted line represents the actual trajectory. The maximum absolute error
between the center line of the road and the actual trajectory of the intelligent vehicle is 1.55
inches. The root mean square error is 0.73 inches which is relatively small compared with the
width of the road which is 8 inches.

As a comparison, we also obtained simulation results for the vehicle moving at
0.9 m/s. Figure 14 shows the tracking performance of the vehicle. The desired trajectory is
the one used in the experiment. It can be seen that experiment results in Figure 13 match the
simulation results in Figure 14 very well. The maximum error in the experiment results is a
little larger. This is because in the real world, the camera takes some time to process the raw
data in order to obtain the error while in simulation the error is calculated instantaneously.

The error and change in error for both the experiment and the simulation are plotted
in Figures 15 and 16. From the figures, it can be seen that the error is larger when there is
a curve in the desired trajectory. This is because the desired trajectory is changing while the
actual trajectory is deviated from the desired trajectory. The designed fuzzy controller adjusts
to the changes and controls the vehicle to follow the trajectory successfully. It is also noted
that in the experiment results, the change in error is filtered thus it is smoother than the
simulated change in error.
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Figure 16: Error and change in error in the simulation.

7. Conclusion

In this paper, an intelligent robotic vehicle which is capable of performing autonomous
road following is successfully developed. A vision system installed on the vehicle is used
to detect a curved road. An FLC is developed to control the steering wheel of the robotic
vehicle according to the deviation from the rods. The deviation of the vehicle from the road
is regarded as the error. The error and the change-in-error are used as the input of the
FLC. Based on human driving experience and experiments, the FLC makes decision on the
steering angle accordingly. An analysis and design of fuzzy control laws for steering control
of the nonholonomic robotic vehicle are presented. Lyapunov’s direct method is used to
guarantee the convergence of the steering error. Simulations using the four degree of freedom
nonholonomic robotic vehicle model are also conducted to investigate the performance and
stability of the fuzzy controller. Experiments demonstrate that the vehicle with the proposed
fuzzy controller can automatically follow the curved road.
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