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A theoretical analysis is performed to study the flow and heat transfer characteristics of
magnetohydrodynamic mixed convection flow of a micropolar fluid past a stretching surface
with slip velocity at the surface and heat generation (absorption). The transformed equations
solved numerically using the Chebyshev spectral method. Numerical results for the velocity, the
angular velocity, and the temperature for various values of different parameters are illustrated
graphically. Also, the effects of various parameters on the local skin-friction coefficient and the
local Nusselt number are given in tabular form and discussed. The results show that the mixed
convection parameter has the effect of enhancing both the velocity and the local Nusselt number
and suppressing both the local skin-friction coefficient and the temperature. It is found that
local skin-friction coefficient increases while the local Nusselt number decreases as the magnetic
parameter increases. The results show also that increasing the heat generation parameter leads to
a rise in both the velocity and the temperature and a fall in the local skin-friction coefficient and
the local Nusselt number. Furthermore, it is shown that the local skin-friction coefficient and the
local Nusselt number decrease when the slip parameter increases.

1. Introduction

Micropolar fluids are those with microstructure belonging to a class of complex fluids with
nonsymmetrical stress tensor, and usually referred to as micromorphic fluids. Physically they
represent fluids consisting of randomly oriented particles suspended in a viscous medium.
The theory of micropolar fluid was first introduced and formulated by Eringen [1]. Later
Eringen [2] generalized the theory to incorporate thermal effects in the so-called thermo-
micropolar fluid. The theory of micropolar fluids is expected to provide a mathematical
model for the non-Newtonian behavior observed in certain fluids such as liquid crystal [3, 4],
low-concentration suspension flow [5, 6], blood rheology [7–10], the presence of dust or
smoke [11, 12], and the effect of dirt in journal bearing [13–16].
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Figure 1: Coordinate system for the physical model.

On the other hand, flow of the fluids with microstructure due to a stretching surface
and by thermal buoyancy is of considerable interest in several applications such as liquid
crystal, dilute solutions of polymer fluids, and suspensions. Free and mixed convections of
a micropolar fluid over a moving surface have been studied by many authors [17–25] under
different situations.

In the above-mentioned studies, the effect of slip condition has not been taken
into consideration, while fluids such as polymer melts often exhibit wall slip. Navier [26]
proposed a slip boundary condition where the slip velocity depends linearly on the shear
stress. Since then the effects of slip velocity on the boundary layer flow of non-Newtonian
fluids have been studied by several authors [27–31]. The aim of this work is to investigate
the effect of wall slip velocity on the flow and heat transfer of a micropolar fluid over a
vertical stretching surface in the presence of heat generation (absorption) and magnetic field,
where numerical solutions are obtained using Chebyshev spectral method. In our knowledge,
this study was not investigated before despite many applications in polymer processing
technology could be expected. For example, in the extrusion of polymer sheet from a die, the
sheet is sometimes stretched. During this process, the properties of the final product depend
considerably on the rate of cooling. By drawing such sheet in an electrically conducting fluid
subjected to a magnetic field, the rate of cooling can be controlled and the final product can
be obtained with desired characteristics. Also, the polymer processing involving exothermic
chemical reaction and the working fluid heat generation effects are important. However,
polymer melts often exhibit macroscopic wall slip.

2. Formulation of the Problem

Consider a steady, two-dimensional hydromagnetic laminar convective flow of an incom-
pressible, viscous, micropolar fluid with a heat generation (absorption) on a stretching
vertical surface with a velocity uw(x). The flow is assumed to be in the x-direction, which
is taken along the vertical surface in upward direction and y-axis normal to it. A uniform
magnetic field of strength B0 is imposed along y-axis. The magnetic Reynolds number of
the flow is taken to be small enough so that the induced magnetic field is assumed to be
negligible. The gravitational acceleration g acts in the downward direction. The physical
model and coordinate system are shown in Figure 1.
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The temperature of the micropolar fluid far away from the plate is T∞, whereas the
surface temperature of the plate is maintained at Tw, where Tw(x) = T∞+ax, a > 0 is constant,
and Tw > T∞. The temperature difference between the body surface and the surrounding
micropolar fluid generates a buoyancy force, which results in an upward convective flow.
Under usual boundary layer and Boussinesq approximations, the flow and heat transfer in
the presence of heat generation (absorption) [32–35] are governed by the following equations:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

u
∂u
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∂u

∂y
=
(
ν +

k

ρ

)
∂2u

∂y2
+
k

ρ

∂N

∂y
+ gβ(T − T∞) −

σB2
0

ρ
u, (2.2)

u
∂N

∂x
+ v

∂N

∂y
=
γ0

ρj

∂2N

∂y2
− k

ρj

(
2N +

∂u

∂y

)
, (2.3)

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρcp

∂2T

∂y2
+
Q0

ρcp
(T − T∞), (2.4)

subject to the boundary conditions:

u = uw(x) = cx + α∗
[(
μ + k

)∂u
∂y

+ kN
]
,

v = 0, N = −m0
∂u

∂y
, T = Tw(x), at y = 0,

u −→ 0, N → 0, T → T∞, asy −→ ∞,

(2.5)

where u and v are the velocity components in the x and y directions, respectively. T is the
fluid temperature, N is the component of the microrotation vector normal to the x-y plane, ρ
is the density, j is the microinertia density, μ is the dynamic viscosity, k is the gyro-viscosity
(or vortex viscosity), β is the thermal expansion coefficient, σ is the electrical conductivity, cp
is the specific heat at constant pressure, κ is the thermal conductivity, c is a positive constant
of proportionality, α∗ is the slip coefficient, x measures the distance from the leading edge
along the surface of the plate, and γ0 is the spin-gradient viscosity.

We follow the recent work of the authors [36, 37] by assuming that γ0 is given by

γ0 =
(
μ +

k

2

)
j = μ

(
1 +

K

2

)
j. (2.6)

This equation gives a relation between the coefficient of viscosity and microinertia,
where K = k/μ(> 0) is the material parameter, j = ν/c,

√
j is the reference length, and

m0 (0 ≤ m0 ≤ 1) is the boundary parameter. When the boundary parameter m0 = 0, we obtain
N = 0 which is the no-spin condition, that is, the microelements in a concentrated particle
flow close to the wall are not able to rotate (as stipulated by Jena and Mathur [38]). The case
m0 = 1/2 represents the weak concentration of microelements. The case corresponding to
m0 = 1 is used for the modelling of turbulent boundary layer flow (see Peddieson and Mcnitt
[39]).
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We introduce the following dimensionless variables:

η =
(
c

ν

)1/2

y, N = cx
(
c

ν

)1/2

g
(
η
)
,

u = cxf ′(η), v = −(cv)1/2f,

θ
(
η
)
=

T − T∞
Tw − T∞

.

(2.7)

Through (2.7), the continuity (2.1) is automatically satisfied and (2.2)–(2.4) will give then

(1 +K)f ′′′ + ff ′′ − f ′2 +Kg ′ −Mf ′ + λθ = 0, (2.8)
(

1 +
K

2

)
g ′′ + fg ′ − f ′g −K

(
2g + f ′′) = 0, (2.9)

1
Pr
θ′′ + fθ′ − f ′θ + γθ = 0. (2.10)

The transformed boundary conditions are then given by

f ′ = 1 + α[1 +K(1 −m0)]f ′′,

f = 0, g = −m0f
′′, θ = 1, at η = 0,

f ′ → 0, g → 0, θ → 0, as η → ∞,

(2.11)

where primes denote differentiation with respect to η, M = σB2
0/cρ is the magnetic

parameter, λ = gβa/c2(≥ 0) is the buoyancy parameter, α = α∗μ
√
c/ν is the slip parameter,

Pr = μcp/κ is the Prandtl number, and γ = Q0/ρccp is the heat generation (> 0) or absorption
(< 0) parameter.

The physical quantities of interest are the local skin-friction coefficient Cfx and the
local Nusselt number Nux , which are defined, respectively, as,

Cfx =
2τw
ρ(cx)2

,

Nux =
xqw

κ(Tw − T∞)
,

(2.12)

where the wall shear stress τw and the heat transfer from the plate qw are defined by

τw = −
[
(μ + k)

∂u

∂y
+ kN

]
y=0

,

qw = −
[
κ
∂T

∂y

]
y=0

.

(2.13)
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Using (2.7), we get

1
2
CfxRe1/2

x = −(1 +K(1 −m0))f ′′(0),

NuxRe−1/2
x = −θ′(0),

(2.14)

where Rex = (cx2/ν) is the local Reynolds number.

3. Method of Solution

The domain of the governing boundary layer equations (2.8)–(2.10) is the unbounded region
[0,∞). However, for all practical reasons, this could be replaced by the interval 0 ≤ η ≤ η∞,
where η∞ is some large number to be specified for computational convenience. Using the
following algebraic mapping:

χ = 2
η

η∞
− 1, (3.1)

the unbounded region [0,∞) is finally mapped onto the finite domain [−1, 1], and the
problem expressed by (2.8)–(2.10) is transformed into
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(3.2)

The transformed boundary conditions are given by

f(−1) = 0, f ′(−1) =
(η∞

2

)
+
(

2
η∞

)
α(1 +K(1 −m0))f ′′(−1), f ′(1) = 0,

g(−1) = −m0

(
2
η∞

)2

f ′′(−1), g(1) = 0,

θ(−1) = 1, θ(1) = 0.

(3.3)

Our technique is accomplished by starting with a Chebyshev approximation for the
highest order derivatives, f ′′′, g ′′, and θ′′ and generating approximations to the lower-order
derivatives f ′′, f ′, f , g ′, g, θ′, and θ as follows.
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Setting f ′′′ = φ(χ), g ′′ = ψ(χ) and θ′′ = ζ(χ), then by integration we obtain
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From the boundary condition (3.3), we obtain
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Therefore, we can give approximations to (3.4) as follows:
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for all i = 0(1)N, where
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ij = bij −
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where
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ij =
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χi − χj

)
bij , i = 0(1)N, (3.8)

and bij are the elements of the matrix B, as given in [40, 41].
By using (3.6), one can transform (3.2) to the following system of nonlinear equations

in the highest derivatives:
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(3.9)

This system is solved using Newton’s iteration.
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Table 1: Comparison of (1/2) Cfx Re1/2
x for various values of m0 and K with M = 0, α = 0, and λ = 0.

m0 0 1/2
K Nazar et al. [42] Present work Nazar et al. [42] Present work
0 −1.0000 −1.00001 −1.0000 −1.00001
1 −1.3679 −1.36799 −1.2247 −1.22482
2 −1.6213 −1.62150 −1.4142 −1.41440
4 −2.0042 −2.00452 −1.7321 −1.73291

0

0.2
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0.8

1

f ′

2 4 6 8 10
η

λ = 0.5, m0 = 0.5, Pr = 0.72
K = 1.2, α = 0.1, γ = 0.3

M = 2, 1.5, 1, 0.5 ,0

Figure 2: Velocity profiles for various values of M.

4. Results and Discussion

To verify the proper treatment of the problem, our numerical results have been compared
for local skin-friction coefficient (1/2)CfxRe1/2

x taking M = 0 and λ = 0 in (2.8) with those
obtained by Nazar et al. [42] for various values of K and m0. The results of this comparison
are given in Table 1. Table 2 shows the comparison of our numerical results obtained for
−θ′(0) taking γ = 0, K = 0, and m0 = 0 (with constant wall temperatures) in (2.10) with
those reported by Ishak [43], Grubka and Bobba [44], Ali [45] and Chen [46] for various
values of Pr. The results show a good agreement.

To study the behavior of the velocity, the angular velocity, and the temperature
profiles, curves are drawn in Figures 2–19. The effect of various parameters, namely, the
magnetic parameter M, the material parameter K, the slip parameter α, the buoyancy
parameter λ, the heat generation (absorption) parameter γ , and the Prandtl number Pr have
been studied over these profiles.

Figures 2–4 illustrate the variation of the velocity f ′, the angular velocity g, and the
temperature θ profiles with the magnetic parameter M. Figure 2 depicts the variation of
f ′ with M. It is observed that f ′ decreases with the increase in M along the surface. This
indicates that the fluid velocity is reduced by increasing the magnetic field and confines the
fact that application of a magnetic field to an electrically conducting fluid produces a drag-
like force which causes reduction in the fluid velocity. The profile of the angular velocity g
with the variation of M is shown in Figure 3. It is clear from this figure that g increases with
an increase in M near the surface and the reverse is true away from the surface. Figure 4
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Table 2: Comparison of −θ′(0) for various values of Pr with γ = K = λ =M = 0, α = 0, and m0 = 0.5.

Pr Grubka and Bobba [44] Ali [45] Chen [46] Ishak [43] Present work
0.72 0.4631 0.4617 0.46315 0.4631 0.46315
1.0 0.5820 0.5801 0.58199 0.5820 0.58201
3.0 1.1652 1.1599 1.16523 1.1652 1.16507
10 2.3080 2.2960 2.30796 2.3080 2.29645
100 7.7657 — 7.76536 7.7657 7.76782

0
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0.3

0.4

0.5

g

2 4 6 8 10
η

λ = 0.5, m0 = 0.5, Pr = 0.72
K = 1.2, α = 0.1, γ = 0.3

M = 0, 0.5, 1, 1.5 ,2

Figure 3: Angular velocity profiles for various values of M.
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θ
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η

λ = 0.5, m0 = 0.5, Pr = 0.72
K = 1.2, α = 0.1, γ = 0.3

M = 0, 0.5, 1, 1.5 , 2

Figure 4: Temperature profiles for various values of M.

shows the resulting temperature profile θ for various values of M. It is noted that an increase
of M leads to an increase of θ.

Figure 5 illustrates the effects of the material parameter K on f ′. It can be seen from
this figure that the velocity decreases as the material parameter K rises near the surface and
the opposite is true away from it. Also, it is noticed that the material parameter has no effect
on the boundary layer thickness. The effect of K on g is shown in Figure 6. It is observed that
initially g decreases by increasing K near the surface and the reverse is true away from the
surface. Figure 7 demonstrates the variation of θ with K. From this figure it is clear that θ
decreases with an increase in K.
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Figures 8, 9, and 10 depict the effect of the slip parameter on f ′, g, and θ, respectively.
It is seen that f ′ and g decrease as α increases, near the surface and they increase at larger
distance from the surface, while θ increases as α increases in the boundary layer region.

It was observed from Figure 11 that the velocity increases for large values of λ while
the boundary layer thickness is the same for all values of λ. Figure 12 depicts the effects of λ
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Figure 10: Temperature profiles for various values of α.

on g. The angular velocity g is a decreasing function of λ near the surface and the reverse is
true at larger distance from the surface. Figure 13 shows the variations of λ on θ. It is found
that θ decreases with an increase in λ.

Figure 14 shows the effect of the heat generation parameter (γ > 0) or the heat
absorption parameter (γ < 0) on f ′. It is observed that f ′ increases as the heat generation
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parameter (γ > 0) increases, but the effect of the absolute value of heat absorption parameter
(γ < 0) is the opposite. The effect of the heat generation parameter (γ > 0) or the heat
absorption parameter (γ < 0) on g within the boundary layer region is observed in Figure 15.
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It is apparent from this figure that g increases as the heat generation parameter (γ > 0)
decreases, while g increases as the absolute value of heat absorption parameter (γ < 0)
increases near the surface and the reverse is true away from the surface. Figure 16 displays the
effect of the heat generation parameter (γ > 0) or the heat absorption parameter (γ < 0) on θ.



Mathematical Problems in Engineering 15

0

0.2

0.4

0.6

0.8

1

f ′

2 4 6 8 10
η

λ = 0.5, m0 = 0.5, α = 0.1
K = 1.2, M = 0.5, γ = 0.3

Pr = 2, 1, 0.72, 0.4
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Figure 18: Angular velocity profiles for various values ofPr.

It is shown that as the heat generation parameter (γ > 0) increases, the thermal boundary
layer thickness increases. For the case of the absolute value of the heat absorption parameter
(γ < 0), one sees that the thermal boundary layer thickness decreases as γ increases.

The effect of the Prandtl number Pr on the velocity, the angular velocity, and the
temperature profiles is illustrated in Figures 17, 18, and 19. From these figures, it can be seen
that f ′ decrease with increasing Pr, while g increases as the Prandtl number Pr increases
near the surface and the reverse is true away from the surface. The temperature θ of the
fluid decreases with an increase of the Prandtel number Pr as shown in Figure 19. This is in
agreement with the fact that the thermal boundary layer thickness decreases with increasing
Pr. Figure 20 presented the local skin-friction coefficient and the local Nusselt number for
different values of λ andK keeping all other parameters fixed. It is noticed that asK increases,
the local skin-friction coefficient as well as the local Nusselt number increase considerably
for a fixed value of λ. Also, it is observed that for a fixed value of K the local skin-friction
coefficient decreases, while the local Nusselt number increases as λ increases. The variation
of the local skin-friction coefficient and the local Nusselt number with λ for various of Pr
when all other parameters fixed are shown in Figure 21. It is found that both the local skin-
friction coefficient and the local Nusselt number increase with increasing Pr for a fixed value
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Figure 20: (a) Local skin Friction coefficient as a function of λ for various values of K when Pr = 0.72,
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Table 3: Values of −f ′′(0), −g(0), and −θ′(0) for various values of M, λ, α, and γ with m0 = 1/2, K = 1.2,
and Pr = 0.72.

M λ α γ −f ′′(0) −g(0) −θ′(0)
0 0.5 0.1 0.3 0.504574 0.169694 0.715432
0.5 0.5 0.1 0.3 0.638351 0.238366 0.637005
1 0.5 0.1 0.3 0.747640 0.295908 0.560481
1.5 0.5 0.1 0.3 0.840622 0.345823 0.484358
2 0.5 0.1 0.3 0.921943 0.390125 0.408426
0.5 0.1 0.1 0.3 0.754938 0.296486 0.497523
0.5 0.5 0.1 0.3 0.638351 0.238366 0.637005
0.5 1 0.1 0.3 0.507318 0.168166 0.707658
0.5 1.5 0.1 0.3 0.387608 0.099562 0.755669
0.5 2 0.1 0.3 0.275305 0.032101 0.793617
0.5 0.5 0 0.3 0.775613 0.308053 0.685894
0.5 0.5 0.5 0.3 0.380863 0.118681 0.534004
0.5 0.5 1 0.3 0.255840 0.066494 0.477392
0.5 0.5 3 0.3 0.111754 0.011758 0.405266
0.5 0.5 5 0.3 0.071653 0.002299 0.383641
0.5 0.5 0.1 −0.6 0.680866 0.250162 1.069730
0.5 0.5 0.1 −0.3 0.672210 0.247389 0.953975
0.5 0.5 0.1 −0.1 0.664555 0.245108 0.865909
0.5 0.5 0.1 0 0.659817 0.243775 0.817112
0.5 0.5 0.1 0.1 0.654173 0.242260 0.763916
0.5 0.5 0.1 0.3 0.638351 0.238366 0.637005
0.5 0.5 0.1 0.6 0.591894 0.227559 0.339497

of λ. For a fixed Pr, the local skin-friction coefficient decreases, while the local Nusselt number
increases as λ increases.

The local skin-friction coefficient in terms of −f ′′(0) and the local Nusselt number in
terms of −θ′(0) for various values of M, λ, α, and γ are tabulated in Table 3. It is obvious
from this table that local skin-friction coefficient increases with the increase of the magnetic
parameter M and the absolute values of the heat absorption parameter (γ < 0) while
it decreased as the slip parameter α, the buoyancy parameter λ, and the heat generation
parameter (γ > 0) increase. The local Nusselt number increases with the increase of the
buoyancy parameter λ. It is found that an increase in the magnetic parameter M and the slip
parameter α leads to a decrease in the local Nusselt number. Also, the local Nusselt number
decreases with the increase of the heat generation parameter (γ > 0), while it increased with
the increase of the absolute value of the heat absorption parameter (γ < 0).

5. Conclusions

In the present work, the effects of heat generation (absorption) and a transverse magnetic
field on the flow and heat transfer of a micropolar fluid over a vertical stretching surface with
surface slip have been studied. The governing fundamental equations are transformed to a
system of nonlinear ordinary differential equations which is solved numerically. The velocity,
the angular velocity, and the temperature fields as well as the local skin-friction coefficient
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and the local Nusselt number are presented for various values of the parameters governing
the problem.

From the numerical results, we can observe that, the velocity decreases with increasing
the magnetic parameter, and the absolute value of the heat absorption parameter, while it
increases with increasing the buoyancy parameter, the heat generation parameter, and the
Prandtl number. Also, it is found that near the surface the velocity decreases as the slip
parameter and the material parameter increase, while the reverse happens as one moves
away from the surface. The angular velocity decreases with increasing the material parameter,
the slip parameter, the buoyancy parameter, and the heat generation parameter, while it
increases with increasing the magnetic parameter, the absolute value of the heat absorption
parameter, and the Prandtl number near the surface and the reverse is true away from the
surface. In addition the temperature distribution increases with increasing the slip parameter,
the heat generation parameter, and the magnetic parameter, but it decreases with increasing
the Prandtl number, the buoyancy parameter, the material parameter, and the absolute value
of the heat absorption parameter. Moreover, the local skin-friction coefficient increases with
increasing the magnetic parameter and the absolute value of the heat absorption parameter,
while the local skin-friction decreases with increasing the buoyancy parameter, the slip
parameter, and the heat generation parameter. Finally, the local Nusselt number increases
with increasing the buoyancy parameter, and the absolute value of the heat absorption
parameter, and decreases with increasing the magnetic parameter, the slip parameter, and
the heat generation parameter.
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