
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 584863, 19 pages
doi:10.1155/2010/584863

Research Article
Stochastic Finite Element for Structural Vibration

Mo Wenhui

Mechanical Department, Hubei University of Automotive Technology, Shiyan 442002, China

Correspondence should be addressed to Mo Wenhui, hustmwh@sina.com

Received 17 December 2009; Revised 7 May 2010; Accepted 2 June 2010

Academic Editor: Carlo Cattani

Copyright q 2010 Mo Wenhui. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper proposes a new method of calculating stochastic field. It is an improvement of the
midpoint method of stochastic field. The vibration equation of a system is transformed to a static
problem by using the Newmark method and the Taylor expansion is extended for the structural
vibration analysis with uncertain factors. In order to develop computational efficiency and allow
for efficient storage, the Conjugate Gradient method (CG) is also employed. An example is given,
respectively, and calculated results are compared to validate the proposed methods.

1. Introduction

Material properties, geometry parameters, and applied loads of the structure are assumed
to be stochastic. Although the finite element method analysis of complicated structures has
become a generally widespread and accepted numerical method, regarding the given factors
as constants cannot apparently correspond to the reality of a structure. In order to enhance
computational accuracy, the influence of random factors must be considered.

Many physics parameters of material possess spatial variability, such as Young’s
modulus and Poisson’s ratio, so we should regard them as stochastic fields. Stochastic
field discretization is the problem that various stochastic finite element methods need to
resolve, but discrete form of stochastic field plays the decisive influence on the calculation
and computational accuracy of stochastic finite element. The simplest discretization is the
midpoint method (MSF) [1]. The stochastic field is described by a single random variable
replacing the value of the field at a central point of the mesh. The local average method of the
stochastic field describes the stochastic field of an element in terms of the spatial average. The
local average method of rectangle element is described by the mean, variance, and covariance
[2]. It can be extended for 3D [3]. The stochastic field of nonrectangular element is described
by the mean vector and covariance matrix using Gaussian quadrature [4]. The stochastic
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field can be described by the shape function and nodal values, and it is necessary to know
the related function [5]. Making use of the Karhunen-Loeve expansion, stochastic field is
represented by series expansion [6]. When stiffness matrices are deduced, a weighted integral
method is adopted to consider stochastic field of material parameters [7, 8]. When stochastic
field is expressed by series expansion, the optimal linear-estimation method is applied to
make the error of variance minimum [9].

The direct Monte Carlo simulation of the stochastic finite element method (DSFEM)
requires a large number of samples, which requires much calculation time [10]. Monte
Carlo simulation by applying the Neumann expansion (NSFEM) enhances computational
efficiency and saves storage in such a way that the NSFEM combined with Monte Carlo
simulation enhances the finite element model advantageously [11]. The preconditioned
Conjugate Gradient method (PCG) applied in the calculation of stochastic finite elements can
also enhance computational accuracy and efficiency [12]. According to first-order or second-
order perturbation methods, calculation formulas can be obtained [5, 11, 14–16, 18–20, 22].
The result is called the PSFEM and has been adopted by many authors.

The PSFEM is often applied in dynamic analysis of structures and the second-order
perturbation technique has been proved to be efficient [5]. Dynamic reliability of a frame
is calculated by the SFEM and response sensitivity is formulated in the context of stiffness
and mass matrix condensation [16]. When load actions are treated as stochastic processes,
vibration of the structure is resolved by the PSFEM [17]. The PSFEM is an adequate tool
for nonlinear structural dynamics. Nonlinearities due to material and geometrical effects
have also been included [18]. By forming a new dynamic shape function matrix, dynamic
analysis of the spatial frame structure is presented by the PSFEM [19]. The NSFEM is
introduced in dynamic analysis within the framework of a Monte Carlo simulation [20].
The NSFEM is applied to the dynamic response of a random structure system and results
are compared with those from the PSFEM and the DSFEM [21]. With the aid of the
PSFEM, a stochastic formulation for nonlinear dynamic analysis of a structure is presented
[22].

An improved midpoint method of stochastic field (IMSF) is presented. The IMSF
is more accurate than the MSF. The Newmark method transforms differential equations
into linear equations. The IMSF is used and the structural vibrations for a linear system
are computed by the Taylor expansion method, the CG method, and the PCG method of
stochastic finite element (TSFEM, CG, PCG). The TSFEM, the CG, and the PCG based on
the MSF are called the MTSFEM, the MCG, and the MPCG. An example demonstrates the
superiority of the proposed methods.

2. Improved Midpoint Method of Stochastic Field

When finite element method is used, structure is divided into small elements whose number
is appropriate. In this paper, Young’s modulus is assumed to be a Gaussian process. When
element is appropriately small, Young’s modulus of an element is described by a variable. The
Young’s modulus of structure is described by a group of variables. Without loss of generality,
it is supposed that the structure is divided into elements of m nodes and n nodes. The
Young’s modulus of node within element e of m nodes is expressed by aem1, aem2, . . . , aemm.
The Young’s modulus of midpoint within element e of m nodes is expressed by aeml. The
Young’s modulus of node within element f of n nodes is expressed by afn1, afn2, . . . , afnn.
The Young’s modulus of midpoint within element f of n nodes is expressed by afnl.
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The Young’s modulus within element e is defined as

ae =
aem1 + aem2 + · · · + aemm + aeml

m + 1
. (2.1)

Its mean is

μe = μ

(
aem1 + aem2 + · · · + aemm + aeml

m + 1

)

=
μaem1 + μaem2 + · · · + μaemm + μaeml

m + 1
,

(2.2)

where the means of Young’s modulus at the first node, the second node,. . ., the mth node
of element e are expressed by μaem1, μaem2, . . . , μaemm.The mean of Young’s modulus at the
midpoint of element e is expressed by μaeml.

The Young’s modulus within element f is defined as

af =
afn1 + afn2 + · · · + afnn + afnl

n + 1
. (2.3)

Its mean is

μf = μ

(
afn1 + afn2 + · · · + afnn + afnl

n + 1

)

=
μafn1 + μafn2 + · · · + μafnn + μafnl

n + 1
,

(2.4)

where the means of Young’s modulus at the first node, the second node,. . .,the nth node
of element f are expressed by μafn1, μafn2, . . . , μafnn. The mean of Young’s modulus at the
midpoint of element f is expressed by μafnl.
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The covariance of Young’s modulus between two elements that each has m nodes is
obtained by

Cov(ae, ae′) = Cov
(
aem1 + aem2 + · · · + aemm + aeml

m + 1
,
ae′m1 + ae′m2 + · · · + ae′mm + ae′ml

m + 1

)

=
1

(m + 1)2
[Cov(aem1, ae′m1 + ae′m2 + · · · + ae′mm + ae′ml)

+Cov(aem2 + · · ·aemm + aeml, ae′m1 + ae′m2 + · · · + ae′mm + ae′ml)]

=
1

(m + 1)2
[Cov(aem1, ae′m1) + Cov(aem1, ae′m2)

+ · · · + Cov(aem1, ae′mm) + Cov(aem1, ae′ml)]

+
1

(m + 1)2
Cov(aem2 + · · · + aemm + aeml, ae′m1 + ae′m2 + · · · + ae′mm + ae′ml)

=
1

(m + 1)2

⎛
⎝ m∑

g1=1

m∑
g2=1

Cov
(
aemg1 , ae′mg2

)
⎞
⎠ +

1

(m + 1)2

⎛
⎝ m∑

g1=1

Cov
(
aemg1 , ae′ml

)
⎞
⎠

+
1

(m + 1)2

⎛
⎝ m∑

g2=1

Cov
(
aeml, ae′mg2

)
+ Cov(aeml, ae′ml)

⎞
⎠,

(2.5)

where Cov(aemg1 , ae′mg2) = the covariance of Young’s modulus between node g1(g1 =
1, 2, . . . , m) of element e and node g2 (g2 = 1, 2, . . . , m) of element e′, Cov(aemg1 , ae′ml) = the
covariance of Young’s modulus between node g1 of element e and the midpoint of element
e′, Cov(aeml, ae′mg2) = the covariance of Young’s modulus between the midpoint of element e
and node g2 of element e′, and Cov(aeml, ae′ml) = the covariance of Young’s modulus between
the midpoint of element e and the midpoint of element e′.

The covariance of Young’s modulus between two elements is given in Appendix A.
Using covariance matrix, the correlation of Young’s modulus between any two

elements is given by

Caa =

⎛
⎜⎜⎜⎝

Cov(a1, a1) Cov(a1, a2) · · · Cov(a1, aN)
Cov(a2, a1) Cov(a2, a2) · · · Cov(a2, aN)

...
...

...
Cov(aN, a1) Cov(aN, a2) · · · Cov(aN, aN)

⎞
⎟⎟⎟⎠. (2.6)

A Gaussian vector
⇀
a= [a1, a2, . . . , aN]T is generated

⇀
a = LZ. (2.7)
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Z = [Z1, Z2, . . . , ZN]T consists of N Gaussian random variables with mean zero and unit
standard deviation. The Cholesky matrix L can be obtained through a decomposition of the
covariance matrix; therefore,

μ
[
ZZT

]
= I,

LLT = Caa.

(2.8)

I is the identity matrix. The generation of vector
⇀
a must satisfy the covariance matrix

μ

[
⇀
a

⇀
a
T
]
= μ
[
LZ(LZ)T

]

= Lμ
[
ZZT

]
LT = Caa.

(2.9)

Once the decomposition has been completed, different samples of vector
⇀
a can be

acquired easily by (2.7). Thus, it is possible that Monte Carlo simulation resolves problem of
stochastic finite element.

3. Dynamic Analysis of Finite Element

For a linear system, the dynamic equilibrium equation is given by

[M]
{
δ̈
}
+ [C]

{
δ̇
}
+ [K]{δ} = {F}, (3.1)

where {δ̈}, {δ̇}, {δ} are the acceleration, velocity, and displacement vectors. [M], [K], and
[C] are the global mass, stiffness, and damping matrices obtained by assembling the element
variables in global coordinate system.

By using the Newmark method, (3.1) becomes

{δt+Δt} =
[
K̃
]−1{

F̃t+Δt

}
, (3.2)

where {δt+Δt}[K̃] and {F̃t+Δt} indicate the displacement vector, stiffness matrix and load
vector at time t + Δt. [K̃] and {F̃t+Δt} are given in Appendix B.

4. Dynamic Analysis of Structure Based on CG

Equation (3.2) can be rewritten as

[
K̃
]
{δt+�t} =

{
F̃t+�t

}
. (4.1)

Using (2.7), (2.8), and (2.9), N1 samples of vector
⇀
a are produced. N1 matrices [K̃] and N1

(4.1) are generated. For linear vibrations, (4.1) is a system of linear equations. The CG is
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an adequate method for solving large systems of linear equations. It can be accomplished as
follows.

first, select appropriate solution as initial values

{δt+Δt}(0) =
(
δ(0)

(t+Δt)1 , δ
(0)

(t+Δt)2 , . . . , δ
(0)

(t+Δt)N1

)T
; (4.2)

calculate the first residual vector

r(0) =
{
F̃t+Δt

}
−
[
K̃
]
{δt+Δt}(0) (4.3)

and vector

p(0) =
[
K̃
]T
r(0) (4.4)

where [K̃]
T
is the transposed matrix;

for ĩ = 0, 1, 2, . . . , n2 − 1, iterate step by step as follows:

αĩ =

([
K̃
]
p(̃i), r (̃i)

)
([

K̃
]
p(̃i),
[
K̃
]
p(̃i)
) =

(
p(̃i),
[
K̃
]T
r (̃i)
)

([
K̃
]
p(̃i),
[
K̃
]
p(̃i)
)

=

([
K̃
]T
r (̃i),
[
K̃
]T
r (̃i)
)

([
K̃
]
p(̃i),
[
K̃
]
p(̃i)
) ,

{δt+�t}(̃i+1) = {δt+�t}(̃i) + αĩp
(̃i),

r (̃i+1) = r (̃i) − αĩ

[
K̃
]
p(̃i),

βĩ+1 =

([
K̃
]T
r (̃i+1),

[
K̃
]T
r (̃i+1)

)
([

K̃
]T
r (̃i),
[
K̃
]T
r (̃i)
) ,

p(̃i+1) =
[
K̃
]T
r (̃i+1) + βĩ+1p

(̃i).

(4.5)

This process stops only if rn2 is small enough.
Vectors {δt+Δt}1, {δt+Δt}2, . . . , {δt+Δt}N1

are solutions of N1 (4.1).
The mean of {δt+Δt} is given by

μ{δt+Δt} =
{δt+Δt}1 + {δt+Δt}2 + · · · + {δt+Δt}N1

N1
. (4.6)
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The variance of {δt+Δt} is given by

Var{δt+Δt} =
1

N1 − 1

N1∑
i=1

({δt+Δt}i − μ{δt+Δt}
)2
. (4.7)

Similarly, the mean and variance of vector {δt+i1Δt} can be solved at time t+ i1Δt step by step.
At time t′ = t + i2Δt (i2 = 1, 2, . . . , n1), the stress for element d is given by

{σ} = [D][B]
{
δd
t′

}
, (4.8)

where [D] = the material response matrix of element d, [B] = the gradient matrix of element
d and {δt′d} = the element d nodal displacement vector at time t′.

Substituting N1 samples of vector
⇀
a into (4.8), vectors {σ}1, {σ}2, . . . , {σ}N1

can be
obtained.

The mean of {σ} is given by

μ{σ} =
{σ}1 + {σ}2 + · · · + {σ}N1

N1
. (4.9)

The variance of {σ} is given by

Var{σ} =
1

N1 − 1

N1∑
i=1

({σ}i − μ{σ})2. (4.10)

The CG belongs to methods of iteration that converge quickly. For practical purposes, PCG is
applied to accelerate convergence.

5. Dynamic Analysis of Structure Based on the TSFEM

Young’s modulus of the structure is given as function of N random variables a1, a2, . . . , aN .
The partial derivative of (4.1) with respect to ai is given by

∂{δt+�t}
∂ai

=
[
K̃
]−1
⎛
⎜⎝∂
{
F̃t+�t

}
∂ai

−
∂
[
K̃
]

∂ai
{δt+�t}

⎞
⎟⎠, (5.1)
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where

∂
{
F̃t+Δt

}
∂ai

=
∂{Ft+Δt}

∂ai
+
∂[M]
∂ai

(
b0{δt} + b2

{
δ̇t
}
+ b3
{
δ̈t
})

+ [M]

(
b0

∂{δt}
∂ai

+ b2
∂
{
δ̇t
}

∂ai
+ b3

∂
{
δ̈t
}

∂ai

)

+
∂[C]
∂ai

(
b1{δt} + b4

{
δ̇t
}
+ b5
{
δ̈t
})

+ [C]

(
b1

∂{δt}
∂ai

+ b4
∂
{
δ̇t
}

∂ai
+ b5

∂
{
δ̈t
}

∂ai

)
.

(5.2)

After ∂{δt}/∂ai = q0, ∂{δ̇t}/∂ai = q̇0, and ∂{δ̈t}/∂ai = q̈0 are given, (5.2) can be calculated.
The partial derivative of (5.1) with respect to aj is given by

∂2{δt+Δt}
∂ai∂aj

=
[
K̃
]−1
⎛
⎜⎝∂2

{
F̃t+Δt

}
∂ai∂aj

−
∂
[
K̃
]

∂ai

∂{δt+Δt}
∂aj

−
∂
[
K̃
]

∂aj

∂{δt+Δt}
∂ai

−
∂2
[
K̃
]

∂ai∂aj
{δt+Δt}

⎞
⎟⎠, (5.3)

where

∂2
{
F̃t+Δt

}
∂ai∂aj

=
∂2{Ft+Δt}
∂ai∂aj

+
∂2[M]
∂ai∂aj

(
b0{δt} + b2

{
δ̇t
}
+ b3
{
δ̈t
})

+
∂[M]
∂ai

(
b0

∂{δt}
∂aj

+ b2
∂
{
δ̇t
}

∂aj
+ b3

∂
{
δ̈t
}

∂aj

)

+
∂[M]
∂aj

(
b0

∂{δt}
∂ai

+ b2
∂
{
δ̇t
}

∂ai
+ b3

∂
{
δ̈t
}

∂ai

)

+ [M]

(
b0

∂2{δt}
∂ai∂aj

+ b2
∂2
{
δ̇t
}

∂ai∂aj
+ b3

∂2
{
δ̈t
}

∂ai∂aj

)

+
∂2[C]
∂ai∂aj

(
b1{δt} + b4

{
δ̇t
}
+ b5
{
δ̈t
})

+
∂[C]
∂ai

(
b1

∂{δt}
∂aj

+ b4
∂
{
δ̇t
}

∂aj
+ b5

∂
{
δ̈t
}

∂aj

)

+
∂[C]
∂aj

(
b1

∂{δt}
∂ai

+ b4
∂
{
δ̇t
}

∂ai
+ b5

∂
{
δ̈t
}

∂ai

)

+ [C]

(
b1

∂2{δt}
∂ai∂aj

+ b4
∂2
{
δ̇t
}

∂ai∂aj
+ b5

∂2
{
δ̈t
}

∂ai∂aj

)
.

(5.4)
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Table 1: Comparison of error.

The mean of vertical
displacement at node

505

The variance of
vertical displacement

at node 505

The mean of horizontal
stress at node 5

The variance of
horizontal stress at

node 5
PCG 2.95% 3.42% 4.31% 5.07%
CG 3.11% 3.84% 4.57% 5.24%
TSFEM 5.12% 6.01% 6.28% 7.17%
MPCG 7.14% 7.02% 8.67% 9.94%
MCG 7.23% 7.63% 8.82% 10.17%
MTSFEM 12.76% 13.27% 14.47% 16.53%

Figure 1: A cantilever beam.

After ∂{δt}/∂aj = q1, ∂{δ̇t}/∂aj = q̇1, ∂{δ̈t}/∂aj = q̈1, ∂2{δt}/∂ai∂aj = r0, and ∂2{δ̇t}/
∂ai∂aj = ṙ0, ∂2{δ̈t}/∂ai∂aj = r̈0 are given, (5.4) can be calculated.

The displacement is expanded at the mean value point a = (a1, a2, . . . , ai, . . . , an1)
T by

means of a Taylor series. the mean of δt+�t is obtained as

μ{δt+Δt} ≈ {δt+Δt}|a=a +
1
2

N∑
i=1

N∑
j=1

∂2{δt+Δt}
∂ai∂aj

∣∣∣∣∣
a=a

Cov
(
ai, aj

)
, (5.5)

where μ{δt+Δt} expresses mean value δt+Δt and Cov(ai, aj) is the covariance between ai and
aj .

The variance of δt+�t is given by

Var{δt+Δt} ≈
N∑
i=1

N∑
j=1

∂{δt+Δt}
∂ai

∣∣∣∣
a=a

· ∂{δt+Δt}
∂aj

∣∣∣∣∣
a=a

· Cov(ai, aj

)
. (5.6)

The velocity vector {δ̇t+�t} and the acceleration vector {δ̈t+�t} are given in Appendix B. The
partial derivative of δ̈t+�t with respect to ai is given by

∂
{
δ̈t+Δt

}
∂ai

= b0

(
∂{δt+Δt}

∂ai
− ∂{δt}

∂ai

)
− b2

∂
{
δ̇t
}

∂ai
− b3

∂
{
δ̈t
}

∂ai
. (5.7)
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Figure 2: The mean of vertical displacement at node 505.
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Figure 3: The variance of vertical displacement at node 505.
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Figure 4: The mean of horizontal stress at node 5.
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Figure 5: The variance of horizontal stress at node 5.

Table 2: Comparison of CPU time.

DSFEM PCG CG TSFEM MPCG MCG MTSFEM
CPU time 4h 32m 47 s 1 h 15m 43 s 1 h 47m 36 s 10 h 45m 34 s 1 h 7m 23 s 1 h 36m 31 s 4 h 12m 17 s
h: hour; m: minute; s: second.
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Figure 8: The mean of horizontal stress at node 5 for larger covariances.

Table 3: Comparison of error for larger covariances.

The mean of vertical
displacement at node

505

The variance of
vertical displacement

at node 505

The mean of horizontal
stress at node 5

The variance of
horizontal stress at

node 5
PCG 9.27% 12.15% 11.43% 14.16%
CG 9.53% 12.37% 11.67% 14.41%
TSFEM 43.19% 64.28% 56.42% 76.39%
MPCG 31.42% 45.13% 47.16% 63.17%
MCG 31.75% 45.41% 47.43% 63.42%
MTSFEM 94.27% 125.74% 125.41% 162.43%

The partial derivative of δ̇t+�t with respect to ai is given by

∂
{
δ̇t+�t

}
∂ai

=
∂
{
δ̇t
}

∂ai
+ b6

∂
{
δ̈t
}

∂ai
+ b7

∂
{
δ̈t+�t

}
∂ai

. (5.8)

The partial derivative of (5.7) with respect to aj is given by

∂2
{
δ̈t+Δt

}
∂ai∂aj

= b0

(
∂2{δt+Δt}
∂ai∂aj

− ∂2{δt}
∂ai∂aj

)
− b2

∂2
{
δ̇t
}

∂ai∂aj
− b3

∂2
{
δ̈t
}

∂ai∂aj
. (5.9)
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Figure 9: The variance of horizontal stress at node 5 for larger covariances.

The partial derivative of (5.8) with respect to aj is given by

∂2
{
δ̇t+�t

}
∂ai∂aj

=
∂2
{
δ̇t
}

∂ai∂aj
+ b6

∂2
{
δ̈t
}

∂ai∂aj
+ b7

∂2
{
δ̈t+�t

}
∂ai∂aj

. (5.10)

Equations (5.7), (5.8), (5.9) and (5.10), must be calculated for the following iteration.
Then, the mean and variance of displacement are obtained at time t + i1Δt (i1 =

2, 3, . . . , n1) step by step.
The partial derivative of (4.8) with respect to ai is given by

∂{σ}
∂ai

=
∂[D]
∂ai

[B]
{
δd
t′

}
+ [D]

∂[B]
∂ai

{
δd
t′

}
+ [D][B]

∂
{
δd
t′

}
∂ai

. (5.11)

The partial derivative of (5.11)with respect to aj is given by

∂2{σ}
∂ai∂aj

=
∂2[D]
∂ai∂aj

[B]
{
δd
t′

}
+
∂[D]
∂ai

∂[B]
∂aj

{
δd
t′

}
+
∂[D]
∂ai

[B]
∂
{
δd
t′

}
∂aj

+
∂[D]
∂aj

∂[B]
∂ai

{
δd
t′

}
+ [D]

∂2[B]
∂ai∂aj

{
δd
t′

}
+ [D]

∂[B]
∂ai

∂
{
δd
t′

}
∂aj

+
∂[D]
∂aj

[B]
∂
{
δd
t′

}
∂ai

+ [D]
∂[B]
∂aj

∂
{
δd
t′

}
∂ai

+ [D][B]
∂2
{
δd
t′

}
∂ai∂aj

.

(5.12)
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The stress is expanded at mean value point a = (a1, a2, . . . , ai, . . . , an1)
T by means of a Taylor

series. By taking the expectation operator for two sides of the above (4.8), the mean of stress
is obtained as

μ{σ} ≈ {σ}|a=a+
1
2

N∑
i=1

N∑
j=1

∂2{σ}
∂ai∂aj

∣∣∣∣∣
a=a

Cov
(
ai, aj

)
, (5.13)

where μ{σ} expresses the mean of σ and Cov(ai, aj) is the covariance between ai and aj .
The variance of σ is given by

Var{σ} ≈
N∑
i=1

N∑
j=1

∂{σ}
∂ai

∣∣∣∣
a=a

· ∂{σ}
∂aj

∣∣∣∣∣
a=a

· Cov(ai, aj

)
. (5.14)

6. Numerical Example

Figure 1 shows a cantilever beam. The length is 1m, the width is 0.2m, and the height is
0.05m. The load subjected to the cantilever beam is 100sin(100t)N. Its material is the concrete.
It is divided into 400 rectangle elements that have 505 nodes and 400 midpoints. Young’s
modulus is regarded as a stochastic process. For numerical calculation, the means of Young’s
modulus at each node and the midpoint within an element are c1(1.0 + θ1x

′
i/L). Horizontal

coordinates of each node and the midpoint within an element are x′
i. The covariance of

Young’s modulus between any two nodes, between two midpoints and between each node
and each midpoint are c2(1.0 + θ2xi/l). c1, c2, θ1, θ2, l, L are constants. The distances between
any two nodes, between two midpoints, and between each node and each midpoint are
xi. Figure 2 shows the mean of vertical displacement at node 505. the DSFEM simulates
100 samples. It is common knowledge that The DSFEM approaches the accurate solution
gradually with the increase of the number of simulations. The DSFEM uses the Cholesky
decomposition to solve linear equations and provides the reference solution. Figure 3 shows
the variance of vertical displacement at node 505. Figure 4 shows the mean of horizontal
stress at node 5. Figure 5 shows the variance of horizontal stress at node 5. Table 1 shows
results obtained from the PCG, the CG, the TSFEM, the MPCG, the MCG and the MTSFEM
compare with those of the DSFEM within six seconds. The PCG adopts the preconditioned
Conjugate Gradient method to solve linear equations. The errors of the PCG, the CG and the
TSFEM are smaller than those of theMPCG, theMCG, and theMTSFEM. Themaximum error
is obtained by the MTSFEM.The minimum error is produced by the PCG.Table 2 compares
the CPU times of the above-mentionedmethodswhen the cantilever beam has vibrated for six
seconds.The PCG requires the least amount of CPU time. The MTSFEM requires the greatest
amount of CPU time.

In order to test accuracy and computational efficiency of the above-mentioned
methods, larger covariances of Young’s modulus are selected. Figure 6 shows the mean of
vertical displacement at node 505. Figure 7 shows the variance of vertical displacement at
node 505. Figure 8 shows the mean of horizontal stress at node 5. Figure 9 shows the variance
of horizontal stress at node 5.Table 3 indicates the errors of the above-mentioned methods
compare to results of the DSFEM. The results produced by the PCG and the CG are close
to those produced by the DSFEM. The TSFEM and the MTSFEM cannot achieve satisfactory
results.
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7. Conclusion

In this paper, improved midpoint method has the advantage of high accuracy. It can be
conveniently applied to DSFEM, PSFEM, NSFEM, and CG. The mechanical vibration in
a linear system is investigated by using the Taylor expansion. When Young’s modulus is
assumed to be a stochastic process, different samples of random variables are simulated. The
combination of the CG method and Monte Carlo method makes this an effective method
for analyzing a large vibration problem with the characteristics of high accuracy and quick
convergence.

Appendices

A. Covariance of Young’s Modulus between Two Elements

The covariance of Young’s modulus between one element containing m nodes and another
element containing n nodes is obtained by

Cov
(
ae, af

)
= Cov

(
aem1 + aem2 + · · · + aemm + aeml

m + 1
,
afn1 + afn2 + · · · + afnn + afnl

m + 1

)

=
1

(m + 1)(n + 1)
[
Cov

(
aem1, afn1 + afn2 + · · ·afnn + afnl

)

+Cov
(
aem2 + · · · + aemm + aeml, afn1 + afn2 + · · ·afnn + afnl

)]

=
1

(m + 1)(n + 1)
[
Cov

(
aem1, afn1

)
+ Cov

(
aem1, afn2

)

+ · · · + Cov
(
aem1, afnn

)
+ Cov

(
aem1, afnl

)]

+
1

(m + 1)(n + 1)
Cov

(
aem2 + · · · + aemm + aeml, afn1 + afn2 + · · · + afnn + afnl

)

=
1

(m + 1)(n + 1)

⎛
⎝ m∑

g1=1

n∑
g3=1

Cov
(
aemg1 , afng3

)
⎞
⎠

+
1

(m + 1)(n + 1)

⎛
⎝ m∑

g1=1

Cov
(
aemg1 , afnl

)
⎞
⎠

+
1

(m + 1)(n + 1)

⎛
⎝ n∑

g3=1

Cov
(
aeml, afng3

)
⎞
⎠

+
1

(m + 1)(n + 1)
Cov

(
aeml, afnl

)
,

(A.1)

where Cov(aemg1 , afng3) = the covariance of Young’s modulus between node g1 (g1 =
1, 2, . . . , m) of element e and node g3 (g3 = 1, 2, . . . , n) of element f , Cov(aemg1 , afnl) = the
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covariance of Young’s modulus between node g1 of element e and the midpoint of element
f , Cov(aeml, afng3) = the covariance of Young’s modulus between the midpoint of element e
and node g3 of element f , and Cov(aeml, afnl) = the covariance of Young’s modulus between
the midpoint of element e and the midpoint of element f .

The covariance of Young’s modulus between two elements that each has n nodes is
given by

Cov
(
af , af ′

)
=

1

(n + 1)2

⎛
⎝ n∑

g3=1

n∑
g4=1

Cov
(
afng3 , af ′ng4

)
⎞
⎠

+
1

(n + 1)2

⎛
⎝ n∑

g3=1

Cov
(
afng3 , af ′nl

)
⎞
⎠

+
1

(n + 1)2

⎛
⎝ n∑

g4=1

Cov
(
afnl, af ′ng4

)
+ Cov

(
afnl, af ′nl

)
⎞
⎠,

(A.2)

where Cov(afng3 , af ′ng4) = the covariance of Young’s modulus between node g3 (g3 =
1, 2, . . . , n) of element f and node g4 (g4 = 1, 2, . . . , n) of element f ′, Cov(afng3 , af ′nl) = the
covariance of Young’s modulus between node g3 of element f and the midpoint of element
f ′, Cov(afnl, af ′ng4) = the covariance of Young’s modulus between the midpoint of element f
and node g4 of element f ′, and Cov(afnl, af ′nl) = the covariance of Young’s modulus between
the midpoint of element f and the midpoint of element f ′.

B. Newmark Method

For ease of programming, the comprehensive calculation steps of the Newmark method are
as follows.

In the initial calculation the matrices [K], [M], and [C] are formed. The initial values
{δt}, {δ̇t}, {δ̈t} are given. After selecting step Δt and parameters γ, β, the following relevant
parameters are calculated:

γ ≥ 0.50, β ≥ 0.25
(
0.5 + γ

)2
,

b0 =
1

β(Δt)2
, b1 =

γ

βΔt
, b2 =

1
βΔt

,

b3 =
1
2β

− 1, b4 =
γ

β
− 1, b5 =

Δt

2

(
γ

β
− 2
)
,

b6 = Δt
(
1 − γ

)
, b7 = γΔt.

(B.1)

The stiffness matrix is defined as

[
K̃
]
= [K] + b0[M] + b1[C]. (B.2)

The stiffness matrix inversion [K̃]
−1

is solved.
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Calculation of each step time At time t+ � t, the load vector is defined as

{
F̃t+Δt

}
= {Ft+Δt} + [M]

(
b0{δt} + b2

{
δ̇t
}
+ b3
{
δ̈t
})

+ [C]
(
b1{δt} + b4

{
δ̇t
}
+ b5
{
δ̈t
})

.

(B.3)

At time t + Δt, the displacement vector is given by

{δt+Δt} =
[
K̃
]−1{

F̃t+Δt

}
. (B.4)

At time t + Δt, the velocity vector and acceleration vector are obtained as

{
δ̈t+�t

}
= b0({δt+Δt} − {δt}) − b2

{
δ̇t
} − b3

{
δ̈t
}
,

{
δ̇t+�t

}
=
{
δ̇t
}
+ b6
{
δ̈t
}
+ b7
{
δ̈t+�t

}
.

(B.5)

Vectors {δt+i1Δt}, {δ̇t+i1�t}, and {δ̈t+i1�t} are solved at time t + i1Δt (i1 = 2, 3, . . . , n1) step by
step.
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