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The numerical solution of magnetohydrodynamic (MHD) and rotating flow over a porous
shrinking sheet is obtained by the new approach known as spectral homotopy analysis method
(SHAM). Using a similarity transformation, the governing equations for the momentum are
reduced to a set of ordinary differential equations and are solved by the SHAM approach to
determine velocity distributions and shear stress variations for different governing parameters.
The SHAM results are analysed and validated against numerical results obtained usingMATLAB’s
built-in bvp4c routine, and good agreement is observed.

1. Introduction

The study of flow, heat, and mass transfer problems due to stretching boundary/surface
has many applications in technological processes, particularly in polymer systems involving
drawing of fibres and films or thin sheets, production of paper, linoleum, roofing shingles,
insulting material, and many other applications. In most cases, the polymer sheet is stretched
while it is extruded from the dye. The sheet is pulled through viscous liquid with a
cooling system to obtain the final product with prescribed characteristics. The moving sheet
may introduce a motion in the neighbouring fluid, or alternatively, the fluid may have an
independent forced-convection motion which is parallel to that of the sheet. Sakiadis [1]was
the first to investigate the flow due to a sheet issuing with constant speed from a slit into a
fluid at rest. Since then, many investigators have considered various aspects of this problem
and have obtained similarity solutions, and a good amount of references can be found in
papers by Crane [2], Magyari and Keller [3–5], Liao and Pop [6], Sparrow, and Abraham [7]
and Abraham and Sparrow [8], among others.
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On the other hand, the laminar incompressible boundary layer flow caused by the
stretching of a flat surface in rotating fluid has been studied by Wang [9], Rajeswari and
Nathi [10] and Nazar et al. [11]. Ariel [12] presented a noniterative numerical scheme
which computes the steady, three-dimensional flow of a viscous incompressible fluid
past a stretching sheet in single integration. Rashidi and Dinarvand [13] found a totally
analytic solution for the problem of condensation or spraying on an inclined rotating
disk.

In recent years, problems involving magnetic field have become important. Many
metallurgical processes such as drawing, annealing and thinning of copper wire involve
the cooling of continuous strips or filaments by drawing them through an ambient fluid.
By drawing these filaments in an electrically conducting fluid under the influence of an
applied magnetic field, controls the rate of cooling. Kumari and Nath [14] studied, using
the homotopy analysis method, the unsteady magnetohydrodynamic viscous fluid and heat
transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral
directions. Fang et al. [15] analytically solved the MHD flow under slip condition over a
permeable stretching surface.

The boundary layer flow and heat transfer problem over a moving surface differs from
that over a stationary surface caused by the free stream velocity due to the entrainment
of the fluid. The moving surface prevents or delays the separation of the boundary layer
from the wall by injecting momentum in the existing boundary layer. The magnetic field
and the rotation of the fluid increase the surface shear stress for primary flow, but reduce
the surface heat transfer. Takhar et al. [16] studied the nonsimilar boundary layer flow of
a viscous incompressible electrically conducting fluid over a moving surface in a rotating
fluid, in the presence of a magnetic field, Hall currents and the free stream velocity.
Vajravelu and Kumar [17] analyzed hydromagnetic flow between two horizontal plates in
a rotating system, where the lower is a stretching sheet and the upper is a porous solid
sphere.

Literature survey indicates that very little attention has been given to the shrinking
flow. Wang [18] developed unsteady shrinking sheet for a specific value of the suction
parameter. The rotating flow of an electrically fluid occurs in cosmical and geophysical fluid
dynamics. It is also important in the solar cycle and the structure of rotating magnetic stars.
Hayat et al. [19] obtained series solution of magnetohydrodynamic and the rotating flow over
a porous shrinking sheet using a homotopy analysis method. Sajid andHayat [20] considered
the MHD viscous flow due to a shrinking sheet. The study obtained series solution valid
for both two dimensional and axisymmetric shrinking sheet by using homotopy analysis
method. Yao and Chen [21] applied the homotopy analysis method to investigate analytically
the laminar incompressible viscous flow for a moving semi-infinite flat, or a flat plate
continuously shrinking into a slot in a stationary fluid with mass transfer governed by the
Blasius equation.

Noor et al. [22] examined analytically themagnetohydrodynamic (MHD) viscous flow
due to a shrinking sheet using the Adomian decomposition method (ADM) coupled with
Padé approximants to handle the condition at infinity. Muhaimina et al. [23] studied the
effect of the thermophoresis particle deposition on nonlinear MHD mixed convective heat
and mass transfer over a porous shrinking sheet in the presence of suction.

The main objective of the present study is to find the solution for the problem of
three-dimensional rotating flow induced by shrinking sheet with suction using the recently
developed SHAM approach [24]. The problem was previously considered in [19] using the
standard homotopy analysis method and in this work we use the new SHAM approach to
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solve the same problem. The SHAM method was shown to produce more improved results
than the traditional HAM, see Motsa et al. [24]. In this work we compare the SHAM results
for velocity distributions and shear stresses at the bounding walls against results generated
using the very efficient MATLAB bvp4c in-built routine. The comparison indicates that there
is excellent agreement between the two results proving that the SHAM is at least as good
as the bvp4c and can be used in place of traditional numerical approaches such as Runge-
Kutta methods, finite differences, Keller-Box method, for solving nonlinear boundary value
problems.

2. Mathematical Formulation

We consider the steady, incompressible, three-dimensional flow of an electrically conducting
viscous fluid between two horizontal parallel plates at y = h. Both the fluid and the plates
rotate in unison with a constant angular velocity Ω = Ωj, where j is a unit vector in the y-
direction. The plate y = +h is rigid and stationary. The flow in the fluid system is caused
due to shrinking of a porous plate at y = −h. The equations governing the rotating flow are
Vajravelu and Kumar [17]:

∂u

∂x
+
∂v

∂y
= 0, (2.1)
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The boundary conditions for the problem considered here are:

u = −ax, v = −V, w = 0, at y = −h,
u = 0, v = 0, w = 0, at y = +h,

(2.5)

where u, v, and w are the velocity components in x-, y-, and z-directions, respectively, ρ is
the density, ν is the kinematic viscosity, σ is the electrical conductivity, Bo is the magnetic
induction, p∗ is the modified pressure, a > 0 is the shrinking constant and V > 0 is the suction
velocity. In order to reduce (2.1)–(2.4) into a set of convenient ordinary differential equations,
we introduce the similarity variable η and the dimensionless variable f and g as follows:

η =
y

h
, u = −axf ′(η), v = ahf

(
η
)
, w = axg

(
η
)
. (2.6)
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The continuity equation (2.1) is automatically satisfied and (2.2)–(2.4), after eliminating the
modified pressure, are characterized by the following model equations:

fiv −M2f ′′ − 2Kg ′ − R
(
f ′f ′′ − ff ′′′) = 0, (2.7)

g ′′ −M2g + 2K2f ′ − R
(
f ′g − fg ′) = 0, (2.8)

where primes indicates differentiation with respect to η. In view of equation (2.6), the
boundary equations (2.5), transform into:

f = λ, f ′ = −1, g = 0, at η = −1, (2.9)

f = 0, f ′ = 0, g = 0, at η = 1, (2.10)

in which the suction parameter λ, the viscosity parameter R, the Hartman number M, and
the rotating parameter K2 are:

λ = − V

ah
, R =

ah2

ν
, M2 =

σB2
oh

2

ρν
, K2 =

Ωh2

ν
. (2.11)

In the next section we will solve the nonlinear ordinary equation (2.7) by using the
spectral homotopy analysis method (SHAM).

3. Spectral Homotopy Analysis Method Solution

In this section, we apply the SHAM approach to solve the governing equations (2.7)–(2.10).
We begin by introducing the following transformation
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, (3.1)
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(3.2)

are the initial approximations which are chosen to satisfy the boundary conditions (2.9)–
(2.10). Equation (3.1) is substituted into the governing equations (2.7)–(2.10) with the
resulting equations written as a sum of their linear and nonlinear components as
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subject to the boundary conditions

F = 0, F ′ = 0, G = 0, at η = −1, (3.5)

F = 0, F ′ = 0, G = 0, at η = 1, (3.6)

where
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In the above definitions, the coefficient parameters are defined as

a1 = R0f0
(
η
)
, a2 = −M2 − Rf ′

0
(
η
)
, a3 = −Rf ′′

0 ,

a4 = Rf
′′′
0 , b1 = 2K2 − Rg0, b2 = Rg ′

0.
(3.13)

The SHAM approach builds on the basic ideas of the homotopy analysis method (HAM).
However, for brevity, details of the HAM are omitted in this paper. For a detailed exposition
of the HAM approach interested readers can refer to [25, 26] for a general description on
the method and to [27–46] for the application of the HAM in boundary value problems over
bounded domains. Thus, importing the ideas of the HAM approach, we construct the so-
called zero-order deformation equations as
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(3.14)

where � is the convergence controlling parameter, q ∈ [0, 1] is the embedding parameter, F̃(η)
and G̃(η) are unknown functions and F0(η) and G0(η) are initial approximations which are
obtained as solutions of the linear part of equations (3.3)–(3.6) given as
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subject to the boundary conditions

F0 = 0, F ′
0 = 0, G0 = 0, at η = −1, (3.17)

F0 = 0, F ′
0 = 0, G0 = 0, at η = 1. (3.18)

Following the HAM approach, the zero-order deformation deformation equations are
differentiated m times with respect to the embedding parameter q then divided by m! with
q = 0 being set to the resulting equations to obtain the so-called higher-order deformation
equations given by
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(3.21)

We remark that, unlike in the standard HAM approach, the higher-order deformation
equations (3.19)–(3.20) form a set of coupled ordinary differential equations (ODEs) instead
of the decoupled set of ODEs that are generated in the HAM, that is in the SHAM approach
the linear operators depend on both F and G (see (3.7) and (3.8)) whereas in the case of the
HAM the linear operator would depend on one variable at a time. The SHAM technique
also doe not depend on the rule of solution expression and the rule of ergodicity unlike
the standard HAM. We use the Chebyshev pseudospectral method (see, e.g., [47, 48]) to
solve equations (3.19)–(3.20). The unknown functions Fm(η) and Gm(η) are approximated as
truncated series of Chebyshev polynomials of the forms

Fm
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η
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)
, (3.22)
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where j = 0, 1, . . . ,N, Tk is the kth Chebyshev polynomial, and η0, η1, . . . , ηN are Gauss-
Lobatto collocation points (see [47]) defined by

ηj = cos
πj

N
, j = 0, 1, . . . ,N. (3.23)

Derivatives of the functions Fm(η) and Gm(η) at the collocation points are represented as

drFm

dηr
=

=∑
k

Dr
kjFm

(
ηj
)
,
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(
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)

(3.24)

where r is the order of differentiation and D is the Chebyshev spectral differentiation matrix
([47, 48]).

Substituting equations (3.22)–(3.24) in (3.19)–(3.20) yields
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Table 1: Comparison of the values of wall shear stresses f ′′(−1), g ′(−1) with the numerical solution for
different orders of the SHAM approximation when λ is varied with � = −1, M = 0.5, K = 0.5, and R = 0.2.

λ
f

′′
(−1) g ′(−1)

1st-order 2nd order Numerical 1st-order 2nd order Numerical
0.0 2.036755 2.036755 2.036755 −0.086956 −0.086956 −0.086956
0.5 1.290768 1.290768 1.290768 −0.204070 −0.204070 −0.204070
1.0 0.517318 0.517318 0.517318 −0.337831 −0.337831 −0.337831
1.5 −0.285247 −0.285247 −0.285247 −0.490317 −0.490317 −0.490317
2.0 −1.118646 −1.118646 −1.118646 −0.663878 −0.663879 −0.663879
2.5 −1.984669 −1.984669 −1.984669 −0.861178 −0.861182 −0.861182
3.0 −2.885172 −2.885172 −2.885172 −1.085248 −1.085259 −1.085259
3.5 −3.822080 −3.822080 −3.822080 −1.339543 −1.339572 −1.339572
4.0 −4.797383 −4.797383 −4.797383 −1.628018 −1.628084 −1.628084

Table 2: Comparison of the values of wall shear stresses f ′′(−1), g ′(−1) with the numerical solution for
different orders of the SHAM approximation when M is varied with � = −1, λ = 0.5, K = 0.5, and R = 0.5.

M
f ′′(−1) g ′(−1)

1st-order 2nd order Numerical 1st-order 2nd order Numerical
0.0 1.214539 1.214539 1.214539 −0.226272 −0.226273 −0.226273
0.5 1.271125 1.271125 1.271125 −0.213930 −0.213930 −0.213930
1.0 1.431238 1.431237 1.431237 −0.186192 −0.186200 −0.186200
1.5 1.671689 1.671687 1.671687 −0.156767 −0.156789 −0.156789
2.0 1.966684 1.966678 1.966678 −0.131647 −0.131681 −0.131681
2.5 2.295272 2.295262 2.295262 −0.111685 −0.111723 −0.111723
3.0 2.643325 2.643310 2.643310 −0.096121 −0.096157 −0.096157
3.5 3.002340 3.002322 3.002322 −0.083955 −0.083986 −0.083986
4.0 3.367516 3.367496 3.367496 −0.074329 −0.074355 −0.074355

In the above definitions the superscript T denotes transpose, and ai,bi denotes diagonal
matrices, I is an identity matrix of size (N + 1) × (N + 1). The boundary conditions (3.25)
and (3.27) are imposed on equation (3.24) are the resulting equation is solved for Fm and
Gm iteratively using F0(η) and G0(η), which are obtained as solutions of (3.15)–(3.18), as a
starting point.

4. Results and Discussion

In this section we give the SHAM results for the four main parameters affecting the flow.
We remark that, all the SHAM results presented in this work were obtained using N = 50
collocation points. Tables 1–4 give a comparison of the SHAM results for f

′′
(−1), f ′′

(1), g ′(−1)
and g ′(1) at different orders of approximation against the numerical results. The numerical
results are obtained using the MATLAB routine bvp4c. Table 1 shows that full convergence
of the SHAM is achieved by as early as the second-order, substantiating the claim that SHAM
is a very powerful technique. We observe that convergence is achieved at second-order of
approximation for all parameter values or combinations of these parameters as depicted in
all these tables. We observe in Table 1 that the suction parameter λ significantly affects the
shear stress exerted by the shrinking sheet at η = −1. Increasing the values of λ causes much
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Figure 1: Influence of the suction parameter λ on f(η), f ′(η) and g(η), when � = −1. Numerical solution
(solid line) is compared against the SHAM 1st-order approximation (diamonds).

reductions in the shear stress at η = −1 as shown by both values of f
′′
(−1) and g ′(−1). This is

because blowing gives rise to a thicker velocity boundary layer, thereby causing a decrease
in the velocity gradient at the surface.

From Table 2, it is observed that the Hartman number tends to greatly increase the
local skin friction at the shrinking sheet (η = −1). This is because the increase in the magnetic
field strength leads to a thinner velocity boundary layer, thereby causing an increase in the
velocity gradient at the wall. In Table 3 we observe the influence of the rotation parameter K
on the shear stress f

′′
(−1) and g ′(−1). We observe that both f ′′(−1) and g ′(−1) decrease as the

values of K increase. In Table 4 we observe that f ′′(−1) decreases by increasing R and g ′(−1)
increases as R increases.

Figures 1–4 have been plotted to depict the influence of suction parameter λ, the
Hartman number M, rotation parameter K and viscosity parameter R. On these figures, we
also give comparisons between the numerical results and the second-order SHAM solutions
and excellent agreement between the two sets of results was always achieved. In Figure 1, we
have the effects of varying the values of suction parameter λ on f, f ′ and g. From Figure 1
it is found that f increases as λ increases and f has maximum values at the lower end of
the plate (shrinking sheet). It is clearly depicted in Figure 1 that f ′ decreases when values of
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Figure 2: Influence of K on f(η), f ′(η) and g(η), when � = −1. Numerical solution (lines) is compared
against the SHAM 1st-order approximation (open circles).

Table 3: Comparison of the values of wall shear stresses f ′′(−1), g ′(−1) with the numerical solution for
different orders of the SHAM approximation when K is varied with � = −1, λ = 0.5, R = 0.2, and M = 0.5.

K
f ′′(−1) g ′(−1)

2nd order 4th order Numerical 2nd order 4th order Numerical
0.0 1.290778 1.290778 1.290778 −0.000000 −0.000000 −0.000000
0.5 1.290768 1.290768 1.290768 −0.204070 −0.204070 −0.204070
1.0 1.289629 1.289629 1.289629 −0.808721 −0.808721 −0.808721
1.5 1.267876 1.267876 1.267876 −1.758288 −1.758288 −1.758288
2.0 1.138135 1.138137 1.138137 −2.939868 −2.939865 −2.939865
2.5 0.783860 0.783869 0.783869 −4.302754 −4.302744 −4.302744
3.0 0.176755 0.176771 0.176771 −5.885655 −5.885639 −5.885639
3.5 −0.664164 −0.664146 −0.664146 −7.721068 −7.721051 −7.721051
4.0 −1.740066 −1.740049 −1.740049 −9.812337 −9.812322 −9.812322
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Figure 3: Influence of M on f(η), f ′(η) and g(η), when � = −1. Numerical solution (lines) is compared
against the SHAM 1st-order approximation (open circles).

Table 4: Comparison of the values of wall shear stresses f ′′(−1), g ′(−1) with the numerical solution for
different orders of the SHAM approximation when R is varied with � = −0.98, λ = 0.5, K = 0.2, and
M = 0.5.

R
f ′′(−1) g ′(−1)

2nd order 4th order Numerical 2nd order 4th order Numerical
0.0 1.303332 1.303332 1.303332 −0.197931 −0.197931 −0.197931
0.2 1.290768 1.290768 1.290768 −0.204070 −0.204070 −0.204070
0.4 1.277782 1.277782 1.277782 −0.210552 −0.210552 −0.210552
0.6 1.264354 1.264354 1.264354 −0.217406 −0.217406 −0.217406
0.8 1.250463 1.250463 1.250463 −0.224665 −0.224665 −0.224665
1.0 1.236085 1.236085 1.236085 −0.232365 −0.232365 −0.232365
2.0 1.155958 1.155958 1.155958 −0.279118 −0.279118 −0.279118
3.0 1.059078 1.059078 1.059078 −0.346195 −0.346202 −0.346202
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Figure 4: Influence of R on f(η), f ′(η) and g(η), when � = −1. Numerical solution (lines) is compared
against the SHAM 1st-order approximation (open circles).

the suction parameter increase. It is also observed that for small values of λ, f ′ has large values
near the center of the channel. Figure 1 also elucidates the effects of λ on g. We observe that
g decreases as λ increases and the decrease is more pronounced at the center of the channel
as compared to near the plates.

In Figure 2 we depict the effects of the rotation parameter K on f, f ′ and g. We
observe in this figure that near the shrinking plate, the rotation parameter has no effect on f .
However, as we move towards the center of the channel f increases as K increases. Figure 2
indicates that f ′ increases near the shrinking sheet and also that the boundary layer thickness
decreases near this sheet. As we approach the nonpermeable plate, we observe that f ′ is now
a decreasing function of K. In this figure we observe that f ′ is not a monotonous function of
K. We also have the effects of K on g depicted in Figure 2. We clearly see that g decreases as
K increases.

Figure 3 depicts the effects of M on f, f ′, and g. We observe in this figure that f
is an increasing function of the Hartman number M. It is observed in Figure 3 that f ′

initially increases but then decreases after the center of the channel as values of M increase.
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The Hartman number M significantly reduces the values of g. We observe in this Figure 3
that g has quite opposite behaviour when compared with the suction parameter λ.

Lastly, in Figure 4 we show the effects of viscosity parameter R on f, f ′ and g. We
observe that viscosity reduces the velocity f and increases the boundary layer thickness. The
minimum values of f are observed near the center of the channel. It is noted in Figure 4 that
increasing the values of R initially decreases f ′ but increases it after the channel center. It can
also be observed in Figure 4 that R significantly affects g. As R increases, g values are greatly
reduced attaining their minimum values near the shrinking sheet.

5. Conclusion

The three-dimensional rotating flow in a channel generated by a shrinking sheet is studied.
The spectral-homotopy analysis method is used to solve the nonlinear system of ordinary
differential equations. The variations of the four main parameters on the velocity (f, f ′, g)
andwall shear stress (f ′′(−1), −g ′(−1)) are discussed through graphs and tables, respectively.
The following observations have been made.

(i) The SHAM rapidly converges to the numerical results generated by MATLAB
bvp4c routine.

(ii) The velocity f increases for λ,M, and K but decreases for R.

(iii) The velocity f ′ decreases for increasing values of λ but is not amonotonous function
of K, M, and R.

(iv) The velocity g decreases for increasing values of λ, K and R but increases for
increasing values of M.
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