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This paper presents a new wavelet interpolation Galerkin method for the numerical simulation
of MEMS devices under the effect of squeeze film damping. Both trial and weight functions are
a class of interpolating functions generated by autocorrelation of the usual compactly supported
Daubechies scaling functions. To the best of our knowledge, this is the first time that wavelets have
been used as basis functions for solving the PDEs of MEMS devices. As opposed to the previous
wavelet-based methods that are all limited in one energy domain, the MEMS devices in the paper
involve two coupled energy domains. Two typical electrically actuated micro devices with squeeze
film damping effect are examined respectively to illustrate the new wavelet interpolation Galerkin
method. Simulation results show that the results of the wavelet interpolation Galerkin method
match the experimental data better than that of the finite difference method by about 10%.

1. Introduction

Modeling and simulation of MEMS devices play an important role in the design phase for
system optimization and for the reduction of design cycles. The performances of MEMS
devices are represented by partial-differential equations (PDEs) and associated boundary
conditions. In the past two decades, there have been extensive, and successful, works focused
on solving the partial-differential equations of MEMS [1–15]. A detailed review of the works
is available in [1]. In the previous works, Galerkin method was widely used to reduce the
partial-differential equations to ordinary-differential equations (ODEs) in time and then solve
the reduced equations either numerically or analytically. The previous works differ from each
other in the choice of the basis functions.
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The basis set can be chosen arbitrarily, as long as its elements satisfy all of the boundary
conditions and are sufficiently differentiable. To enhance convergence, the basis set has to
be chosen to resemble the behavior of the device. For example, two ways have been used
to generate the basis set for the reduced-order models of MEMS devices [1]. The first way
[4, 9] uses the undamped linear model shapes of the undeflected microstructure as basis
functions. For simple structures with simple boundary conditions, the mode shapes are found
analytically. For complex structures or complex boundary conditions, the linear mode shapes
are obtained numerically using the finite element method. The second way [2] conducts
experiments or solves the PDEs using FEM or FDM to generate snapshots under a training
signal, then applies a modal analysis method (one of the variation of the proper orthogonal
decomposition method [6]) to the time series to extract the mode shapes of the device
structural elements.

In the past two decades also, a new numerical concept was introduced and is gaining
increasing popularity [16–25]. The method is based on the expansion of functions in terms of
a set of basis functions called wavelets. Indeed wavelets have many excellent properties such
as orthogonality, compact support, exact representation of polynomials to a certain degree,
and flexibility to represent functions at different levels of resolution. Indeed a complete
basis can be generated easily by a signal function through dilatation and translation. The
wavelet-based methods may be classified as wavelet-Galerkin method [19, 20], wavelet-
collocation method [21, 22], and wavelet interpolation Galerkin method [23–25]. Among
the three methods, the wavelet-Galerkin method is the most common one because of its
implementation simplicity. The method is a Galerkin scheme using scaling or wavelet
functions as the trial and weight functions. However, both scaling and wavelet functions
do not satisfy the boundary conditions. Thus the treatment of general boundary conditions
is a major difficulty for the application of the wavelet-Galerkin method, especially for the
bounded region problems, even though different efforts [19, 20] have been made. For the
wavelet-collocation method, boundary conditions can be treated in a satisfactory way [21]. In
the method, trial functions are a class of interpolating functions generated by autocorrelation
of the usual compactly supported Daubechies scaling functions. However, the method
requires the calculation of higher-order derivatives (up to the second derivatives for second-
order parabolic problems) of the wavelets. Due to the derivatives of compactly supported
wavelets being highly oscillatory, it is difficult to compute the connection coefficients by
the numerical evaluation of integral [18]. The wavelet interpolation Galerkin method is a
Galerkin scheme that both trial and weight functions are a class of interpolating functions
generated by autocorrelation of the usual compactly supported Daubechies scaling functions.
For the method, the boundary conditions [24] can be treated easily and the formulations are
derived from the weak form; thus only the first derivatives of wavelets (for second-order
parabolic problems) are required.

Wavelets have proven to be an efficient tool of analysis in many fields including the
solution of PDEs. However, few papers in MEMS area give attention to the wavelet-based
methods. This paper presents a new wavelet interpolation Galerkin method for the numerical
simulation of MEMS devices under the effect of squeeze film damping. To the best of our
knowledge, this is the first time that wavelets have been used as basis functions for solving
the PDEs of MEMS devices. As opposed to the previous wavelet-based methods that are all
limited in one energy domain, the MEMS devices in the paper involve two coupled energy
domains. The squeeze film damping effect on the dynamics of microstructures has already
been extensively studied. We stress that our intention here is not to discover new physics to
the squeeze film damping.
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The outline of this paper is as follows. Section 2 presents a brief introduction to some
major concepts and properties of wavelets. In Sections 3 and 4, two typical electrically
actuated micro devices with squeeze film damping effect are examined respectively to
illustrate the wavelet interpolation Galerkin method. Section 5 calculates the frequency
responses and the quality factors using the present method, and compares the calculated
results with those generated by experiment [26, 27], by the finite difference method, and by
other published analytical models [15, 26]. Finally, a conclusion is given in Section 6.

2. Basic Concepts of Daubechies’ Wavelets and Wavelet Interpolation

In this section, we shall give a brief introduction to the concepts and properties of Daubechies’
wavelets. More detailed discussions can be found in [16–18, 21].

2.1. Daubechies’ Orthonormal Wavelets

Daubechies [16, 17] constructed a family of orthonomal bases of compactly supported
wavelets for the space of square-integrable funcntions, L2(R). Due to the fact that they possess
several useful properties, such as orthogonality, compact support, exact representation of
polynomials to a certain degree, and ability to represent functions at different levels of
resolution, Daubechies’ wavelets have gained great interest in the numerical solutions of
PDEs [18–22].

Daubechies’ functions are easy to construct [16, 17]. For an even integer L, we have
the Daubechies’ scaling function φ(x) and wavelet ψ(x) satisfying

φ(x) =
L−1∑

i=0

p̂iφ(2x − i)

ψ(x) =
1∑

i=2−L
(−1)ip̂1−iφ(2x − i).

(2.1)

The fundamental support of the scaling function φ(x) is in the interval [0, L − 1] while that
of the corresponding wavelet ψ(x) is in the interval [1 − L/2, L/2]. The parameter L will be
referred to as the degree of the scaling function φ(x). The coefficients p̂i are called the wavelet
filter coefficients. Daubenchies [16, 17] established these wavelet filter coefficients to satisfy
the following conditions:

L−1∑

i=0

p̂i = 2,

L−1∑

i=0

p̂ip̂i−m = δ0,m,

1∑

i=2−L
(−1)ip̂1−ip̂i−2m = 0 for integer,

L−1∑

i=0
(−1)iimp̂i = 0, m = 0, 1, . . . ,

L

2
− 1,

(2.2)
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where δ0,m is the Kronecker delta function. Correspondingly, the constructed scanling
function φ(x) and wavelet ψ(x) have the following properties:

∫∞

−∞
φ(x)dx = 1,

∫∞

−∞
φ(x − i)φ(x −m)dx = δi,m for integers i,m,

∫∞

−∞
φ(x)ψ(x −m)dx = 0 for integer m,

∫∞

−∞
xmψ(x)dx = 0, m = 0, 1, . . . ,

L

2
− 1.

(2.3)

Denote by L2(R) the space of square-integrable functions on the real line. Let VJ and
WJ be the subspace generated, respectively, as the L2-closure of the linear spans of φJ,i(x) =
2J/2φ(2Jx − i) and ψJ,i(x) = 2J/2ψ(2Jx − i), J, i ∈ Z. Z denotes the set of integers. Then (2.3)
implies that

VJ+1 = VJ ⊕WJ, V0 ⊂ V1 ⊂ · · ·VJ ⊂ VJ+1, VJ+1 = V0 ⊕W0 ⊕W1 ⊕ · · ·WJ, (2.4)

Equation (2.4) presents the multiresolution properties of wavlets. Any function f ∈ L2(R),
may be approximated by the multiresolution apparatus described above, by its projection
PVJ f onto the subspaceVJ

PVJ f =
∑

i∈Z
fJ,iφJ,i(x). (2.5)

2.2. Wavelet Interpolation Scaling Function

For a given Daubechies’ scaling function, its autocorrelation function θ(x) can be defined as
follows [21]:

θ(x) =
∫∞

−∞
φ(τ)φ(τ − x)dτ. (2.6)

The function satisfies the following interpolating property

θ(k) = δ0,k, k ∈ Z, (2.7)

and has a symmetric support [−(L − 1), (L − 1)]. The derivative of the function θ(k) may be
computed by differentiating the convolution product

θ(s)(k) = (−1)(s)
∫∞

−∞
φ(τ)φ(s)(τ − k)dτ. (2.8)
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Let θ(x) act as the scaling function, we have

θJ,k(x) = θ
(

2Jx − k
)
, k ∈ Z. (2.9)

For a set of dyadic grids of the type xJk ∈ R: xJk = 2−Jk, where k, J ∈ Z, the θJ,k(x) verifies the
interpolation property at the dyadic points: θJ,k(x

J
n) = δn,k. Let V x

J be the linear span of the
set {θ(2Jx − k), k ∈ Z}. It can be proved that {V x

J } forms a multiresolution analysis, where
θJ,k(x) acts as the role of scaling function (the so-called interpolation scaling function), and
the set {θ(2Jx−k), k ∈ Z} is a Riesz’s basis for V x

J . For a function f ∈ H1(R), an interpolation
operator IJ : H1(R) → V x

J can be defined [21]:

IJ
(
f
)
=
∑

k

f
J
k
θ
(

2Jx − k
)
, k ∈ Z, (2.10)

where fJk = f(xJk) = f(2−Jk). Thus, for a function f(x) defined on x ∈ [0, 1], f(x) has the
following approximation

f(x) =
2J+(L−1)∑

k=−(L−1)

fJ,kθ
(

2Jx − k
)

=
1∑

k=−(L−1)

fJ,kθ
(

2Jx − k
)
+

2J∑

k=0

fJ,kθ
(

2Jx − k
)
+

2J+L−1∑

k=2J+1

fJ,kθ
(

2Jx − k
)
.

(2.11)

In this paper, wavelet collocation scheme is applied on x ∈ [0, 1], where xJk = 2−Jk
and k = 0, 1, . . . , 2J . Therefore, instead of the values of f(x) at xJ

k
, k = −(L − 1), . . . ,−1 and

k = 2J + 1, . . . , (L − 1), we may use some values which are extrapolated from the values in
those dyadic points internal to the interval x ∈ [0, 1]. As described in [21, 22], we define

f(x) =
2J∑

k=0

fJ,kθ̂
(

2Jx − k
)
, (2.12)

where

θ̂
(

2Jx − k
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ
(
2Jx − k

)
+

−1∑

n=−(L−1)

ankθ
(
2Jx − n

)
, k = 0, 1, . . . , 2M − 1

θ
(
2Jx − k

)
, k = 2M, . . . , 2J − 2M

θ
(
2Jx − k

)
+

2J+L−1∑

n=2J+1

bnkθ
(
2Jx − n

)
, k = 2J − 2M + 1, . . . , 2J ,

(2.13)
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where the coefficients ank and bnk are defined by

ank = l1k
(
x
J
n

)
, bnk = l2k

(
x
J
n

)
, (2.14)

where l1k(x) and l2k(x) represent Lagrange interpolation polynomials, defined by

l1k(x) =
2M−1∏

i=0
i /= k

x − xJi
x
J
k
− xJi

, l2k(x) =
2J∏

i=2J−2M+1
i /= k

x − xJi
x
J
k
− xJi

. (2.15)

An analogous manner can be given for two-dimensional problem. By using tensor
products, it is then possible to define a multiresolution on the square x, y ∈ [0, 1]. The two-
dimensional scaling function is defined by ΘJ

k,k′
(x, y) =

∑2J
k=0
∑2J

k′=0 f
J
k,k′
θ̂(2Jx − k)θ̂(2Jy − k′).

Let V xy

J = V x
J ⊗V

y

J be the linear span of the set {θ(2Jx−k)θ(2Jy−k′), J, k, k′ ∈ Z}; thus the set
{V xy

J } forms a multiresolution analysis and the set {θ(2Jx − k)θ(2Jy − k′), k, k′ ∈ Z} is a Riesz
basis for {V xy

J }. Therefore, for a function f(x, y) defined on x, y ∈ [0, 1], it has the following
approximation:

f
(
x, y
)
=

2J∑

k=0

2J∑

k′=0

f
J
k,k′
θ̂
(

2Jx − k
)
θ̂
(

2Jy − k′
)
. (2.16)

3. Wavelet Interpolation Galerkin Method for
a Parallel Plate Microresonator under the Effect of
Squeeze Film Damping

3.1. Governing Equations

In this section, we examine the example of a rectangular parallel plate under the effect of
squeeze film damping. As shown in Figure 1, the rectangular parallel plate is excited by
a conventional voltage. The voltage is composed of a dc component V0 and a small ac
component v(t), V0 	 v(t). The plate is rigid. The displacement of the plate under the electric
force is composed of a static component to the dc voltage, denoted by z0, and a small dynamic
component due to the ac voltage, denoted by z(t), z0 	 z(t), that is,

zE(t) = z0 + z(t). (3.1)

The equation of motion that governs the displacement of the plate is written as

mplatez̈E + kspringzE =
εAplate(V0 + v)2

2
(
g0 − zE

)2
− f(t), (3.2)

where mplate is the mass of the plate, Aplate is the are of the plate, kspring is the stiffness of the
spring, g0 is the zero-voltage air gap spacing, ε is the dielectric constant of the gap medium,
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k

x

z

V0 + ν(t)

(a) Side view of the microplate

x

z

(b) Top view of the microplate

Figure 1: A schematic drawing of an electrically actuated microplate under the effect of squeeze film
damping.

f(t) is the force acting on the plate owing to the pressure of the squeeze gas film between the
plate and the substrate.

We expand (3.2) in a Taylor series around V0 and z0 up to first order and rewrite (3.2)
as

mplatez̈ + kEz =
εAplateV0

ĝ2
0

v − f(t), (3.3)

where kE = kspring − (εAplateV
2
0 /
(
g0 − z0

)3), ĝ0 = g0 − z0. The force f(t) acting on the plate
owing to the pressure of the squeeze gas film is given by

f(t) =
∫ ly

0

∫ lx

0

(
p
(
x, y, t

)
− p0
)
dxdy, (3.4)

where lx and ly are the length and width of plate, p(x, y, t) is the absolute pressure in the gap
and p0 is the ambient pressure. The pressure p(x, y, t) is governed by the nonlinear Reynolds
equation [3]

∂

∂x

(
h3p

∂p

∂x

)
+

∂

∂y

(
h3p

∂p

∂y

)
= 12ηeff

(
h
∂p

∂t
+ p

∂h

∂t

)
, (3.5)

where h(x, t) = g0 − z0 − z(t) = ĝ0 − z(t) and ηeff is the effective viscosity of the fluid in the
gap. In this section, all edges of the rectangular plate are ideally vented; thus the pressure
boundary conditions for the case in Figure 1 are

p(x, 0, t) = p
(
x, ly, t

)
= p
(
0, y, t

)
= p
(
lx, y, t

)
= p0. (3.6)

For convenience, we introduce the nondimensional variables

X =
x

lx
, Y =

y

ly
, Z =

z

ĝ0
, P̂ =

p

p0
, T =

t

S
, H =

h

ĝ0
= 1 − Z, (3.7)
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where T is a timescale, S =
√
mplate/kE = 1/ωn, ωn is the nature frequency of the plate.

Substituting (3.7) into (3.3)–(3.6), we obtain

d2Z

dT2
+ Z = αV0v − Pnon

∫∫1

0

(
P̂ − 1

)
dX dY, (3.8)

∂

∂X

(
H3P̂

∂P̂

∂X

)
+ β2 ∂

∂Y

(
H3P̂

∂P̂

∂Y

)
=
σ

S

(
H
∂P̂

∂T
+ P̂

∂H

∂T

)
, (3.9)

where α = εAplate/kEĝ
3
0 , Pnon = p0lxly/kEĝ0, σ = 12ηeffl

2
x/ĝ

2
0p0, and β = lx/ly. The

nondimensional boundary conditions are

P̂(X, 0, T) = P̂(X, 1, T) = P̂(1, Y, T) = P̂(0, Y, T) = 1. (3.10)

As mentioned above, the microplate is under small oscillation around ĝ0 and therefore
the pressure variation from ambient in the squeeze film is also small, P̂(X,Y, T) is given by

P̂(X,Y, T) =
p

p0
= 1 + P(X,Y, T), (3.11)

where |P(X,Y, T)| 
 1. Substituting (3.11) into (3.9), and linearizing the outcome around p0

and ĝ0, we obtain

∂2P

∂X2
+ β2 ∂

2P

∂Y 2
− σ
S

∂P

∂T
= −σ

S

∂Z

∂T
. (3.12)

The boundary conditions for the case are

P(X, 0, T) = P(X, 1, T) = P(0, Y, T) = P(1, Y, T) = 0. (3.13)

For a harmonic excitation, the ac component voltage v(t) is given by

v(T) = v0e
jωTS. (3.14)

Usually, the excitation frequency ω is approximate to the natural frequency ωn. The steady-
state solution of (3.8) and (3.12) may be expressed by

Z(T) = AejωTS, (3.15)

P(X,Y, T) = A · PA(X,Y )ejωTS, (3.16)
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whereA is the complex amplitude to be determined. Substituting (3.15) and (3.16) into (3.12),
we obtain

∂2PA(X,Y )
∂X2

+ β2 ∂
2PA(X,Y )
∂Y 2

− jσωPA(X,Y ) = −jσω. (3.17)

The boundary conditions are

PA(X, 0) = PA(X, 1) = PA(0, Y ) = PA(1, Y ) = 0. (3.18)

3.2. Wavelet Interpolation Method for Squeeze Film Damping Equations

3.2.1. Construction of Basis Functions

In this subsection, the approximate solution of PA(X,Y ) is approximated by the following
form:

PA(X,Y ) ≈
2J∑

k=0

2J∑

k′=0

p
J
k,k′Θ

J
k,k′(X,Y ) =

2J∑

k=0

2J∑

k′=0

p
J
k,k′ θ̂J,k(X)θ̂J,k′(Y )

=
2J∑

k=0

2J∑

k′=0

p
J
k,k′ θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)
, k, k′ ∈ Z,

(3.19)

where the unknowns pJ
k,k′

are the values of PA(X,Y ) at the dyadic points X = k2−J , and

Y = k′2−J . The unknowns pJk,k′ are complex.
For the application of Galerkin method, (3.19) should be able to satisfy the boundary

conditions. Substituting (3.19) into (3.18), leads to

2J∑

k′=0

p
J
0,k′ θ̂(0)θ̂

(
2JY − k′

)
= 0 =⇒ p

J
0,k′ = 0, for k′ = 0, 1, 2, . . . 2J ,

2J∑

k′=0

p
J

2J ,k′θ̂(0)θ̂
(

2JY − k′
)
= 0 =⇒ p

J

2J ,k′ = 0, for k′ = 0, 1, 2, . . . 2J ,

2J−1∑

k=1

p
J
k,0θ̂
(

2JX − k
)
θ̂(0) = 0 =⇒ p

J
k,0 = 0, for k = 1, 2, . . . ,

(
2J − 1

)
,

2J−1∑

k=1

p
J

k,2J θ̂
(

2JX − k
)
θ̂(0) = 0 =⇒ p

J

k,2J = 0, for k = 1, 2, . . . ,
(
2J − 1

)
.

(3.20)

Thus (3.19) is rewritten as

PA(X,Y ) =
2J−1∑

k=1

2J−1∑

k′=1

p
J
k,k′

ΘJ
k,k′(X,Y ) =

2J−1∑

k=1

2J−1∑

k′=1

p
J
k,k′
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)
. (3.21)
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3.2.2. Discretion of the Boundary Value Problem

The weak form functional of (3.17) is

W(PA) =
∫∫

Ω

{
1
2

[(
∂PA
∂X

)2

+ β2
(
∂PA
∂Y

)2

+ jσωP 2
A

]
− jσωPA

}
dX dY. (3.22)

From the necessary conditions for the determination of the minimum W , we obtain

δW(PA) =
∫∫

Ω

[
∂δPA
∂X

∂PA
∂X

+ β2 ∂δPA
∂Y

∂PA
∂Y

+ jσωδPAPA − jσωδPA
]

dX dY = 0. (3.23)

Substituting (3.19) into (3.23), leads to

2J−1∑

k=1

2J−1∑

k′=1

⎧
⎨

⎩

∫∫

Ω

⎡

⎣∂Θ
J
m,n

∂X

∂ΘJ
k,k′

∂X
+ β2 ∂Θ

J
m,n

∂Y

∂ΘJ
k,k′

∂Y
+ jσωΘJ

m,nΘ
J
k,k′

⎤

⎦dXdY

⎫
⎬

⎭p
J
k,k′

= jσω
∫∫

Ω
ΘJ
m,ndX dY, for m,n = 1, 2, . . . ,

(
2J − 1

)
.

(3.24)

This is a
(
2J − 1

)2 ×
(
2J − 1

)2 linear system

Θp = jσωE, (3.25)

where p =
[
p
J
1,1 p

J
1,2 · · · p

J

1,2J−1 p
J
2,1 p

J
2,2 · · · p

J

2J−1,2J−1

]T
is an

(
2J − 1

)2 × 1 unknown coefficients’

vector, E =
[∫∫

ΩΘ
J
1,1dXdY

∫∫
ΩΘ

J
1,2dX dY · · ·

∫∫
ΩΘ

J

2J−1,2J−1dX dY
]T

is a
(
2J − 1

)2 × 1 matrix,

and Θ is a
(
2J − 1

)2 ×
(
2J − 1

)2 matrix. The entries in Θ are of the form

Θ̂
(
i, j
)
= Θ̂
([

(m − 1)
(

2J − 1
)
+ n
]
,
[
(k − 1)

(
2J − 1

)
+ k′
])

=
∫∫

Ω

[
∂θ̂
(
2JX −m

)

∂X
θ̂
(

2JY − n
)∂θ̂
(
2JX − k

)

∂X
θ̂
(

2JY − k′
)

+ β2θ̂
(

2JX −m
)∂θ̂
(
2JY − n

)

∂Y
θ̂
(

2JX − k
)∂θ̂
(
2JY − k′

)

∂Y

+jσωθ̂
(

2JX −m
)
θ̂
(

2JY − n
)
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)]

dX dY.

(3.26)
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3.2.3. Squeeze Film Damping of the Parallel Plate

The numerical solution of (3.25) can be written as

p = jσωΘ−1E. (3.27)

The elements of p can be expressed as

p
J
k,k′

= pJ,R
k,k′

+ jpJ,I
k,k′

for m,n = 1, 2, . . . ,
(

2J − 1
)
, (3.28)

where pJ,R
k,k′

and p
J,I
k,k′

are the real and imaginary parts of pJ
k,k′

, respectively. Using (3.21) and
(3.28), the force acting on the plate owing to the pressure of the squeeze gas film can be
rewritten as

Pnon

∫∫1

0

(
P̂ − 1

)
dX dY

= AejωTS · Pnon

2J−1∑

k=1

2J−1∑

k′=1

(
p
J,R
k,k′

+ jpJ,I
k,k′

)∫∫1

0
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)

dX dY

= Ka · Z(T) + Ca ·
dZ(T)

dT
,

(3.29)

where

Ka = Pnon

2J−1∑

k=1

2J−1∑

k′=1

p
J,R
k,k′

∫∫1

0
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)

dX dY,

Ca =
Pnon

ωS

2J−1∑

k=1

2J−1∑

k′=1

p
J,I
k,k′

∫∫1

0
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)

dX dY

(3.30)

Ka · Z(T) and Ca · (dZ(T)/dT) are the spring and damping components of the force.
Substituting (3.29), (3.14) and (3.15) into (3.8), we obtain

d2Z

dT2
+ Ca ·

dZ
dT

+ (Ka + 1)Z(T) = αV0v(T),

Z(T) = AejωTS =
aV0v0

Ka + 1
· 1

1 − (ω2(S2/(Ka + 1))) +
(
jω(CaS/(Ka + 1))

)ejωTS,
(3.31)

where S =
√
mplate/kE = 1/ωn. The quality factor and the damped natural frequency are

expressed as

Qsqueeze =
1
2ξ

=

√
Ka + 1
Ca

, ωsqueeze = ωn

√
Ka + 1. (3.32)
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Figure 2: A schematic drawing of a torsion microplate under the effect of squeeze film damping.

4. Wavelet Interpolation Galerkin Method for a Torsion
Microplate under the Effect of Squeeze Film Damping

A similar analysis as the one given for the parallel plate microresonator can be given for a
torsion microplate.

4.1. Governing Equations

In this section, we examine the example of a rectangular torsion microplate under the effect
of squeeze film damping. As shown in Figure 2, the microplate is suspended by two torsion
microbeams. lx, ly and hδ are the length, width and thickness of the plate. There are two
pairs of electrodes between the microplate and the substrate. The locations of the two pairs
of electrodes are symmetrical. x1 and x2 are the positions of the two pairs of electrodes. The
thickness of the electrodes is neglected. On each pair of the electrodes, an equal dc voltage V0

and an equal ac voltage v(t) with opposite potential were applied. The rotation angle of the
plate is composed of a static component to the dc voltage, denoted by γ0, and a small dynamic
component due to the ac voltage, denoted by γ(t). In this case, γ0 = 0; thus the equation of the
plate around V0 and γ0 can be written as

Jγ̈ + kT−Eγ = −
(
x2

2 − x
2
1

)
εlyV0

g2
0

v +
∫ lx/2

−lx/2

∫ l

0

(
p
(
x, y, t

)
− p0
)
xdy dx, (4.1)

where kT−E = [kT − 2εlyV 2
0 ((x

3
2 − x3

1)/3g3
0)] and kT is the stiffness of the two torsion

microbeams. The pressure p(x, y, t) is governed by (3.5), where h(x, t) = g0 + xγ(t). The
pressure boundary conditions for the case in Figure 2 are

p(x, 0, t) = p
(
x, ly, t

)
= p
(
− lx

2
, y, t

)
= p
(
lx
2
, y, t

)
= p0. (4.2)
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For convenience, we introduce the nondimensional variables

X =
x

lx
+

1
2
, X1 =

x1

lx
+

1
2
, X2 =

x2

lx
+

1
2
, Y =

y

ly
, ϑ =

γ

γmax
, γmax =

2g0

lx
,

P̂ =
p

p0
, T =

t

S
, H =

h

g0
= 1 + 2

(
X − 1

2

)
ϑ,

(4.3)

where S =
√
J/(kT−E) = 1/ωn, ωn is the nature frequency of the plate. Substituting (4.3) into

(4.1), (3.5) and (4.2), we obtain

ϑ̈ + ϑ = −αV0v + Pnon

∫∫1

0

(
P̂(X,Y, T) − 1

)(
X − 1

2

)
dX dY, (4.4)

∂

∂X

(
H3P̂

∂P̂

∂X

)
+ β2 ∂

∂Y

(
H3P̂

∂P̂

∂Y

)
=
σ

S

(
H
∂P̂

∂T
+ P̂

∂H

∂T

)
, (4.5)

where α = (x2
2−x

2
1)εly/kT−Eg

2
0γmax, Pnon = p0l

2
xly/kT−eγmax, σ = 12ηl2x/g

2
0p0, and β = lx/ly. The

nondimensional boundary conditions are

P̂(X, 0, T) = P̂(X, 1, T) = P̂(0, Y, T) = P̂(1, Y, T) = 1. (4.6)

As mentioned above, the microplate is under small torsion oscillation around γ0 = 0
and therefore the pressure variation from ambient in the squeeze film is also small, P̂(X,Y, T)
is given by

P̂(X,Y, T) =
p

p0
= 1 + P(X,Y, T), (4.7)

where |P(X,Y, T)| 
 1. Substituting (4.7) into (4.5), and linearizing the outcome around p0

and γ0, we obtain

∂2P

∂X2
+ β2 ∂

2P

∂Y 2
− σ
S

∂P

∂T
=

2σ
S

(
X − 1

2

)
∂ϑ

∂T
. (4.8)

The boundary conditions for the case are

P(X, 0, T) = P(X, 1, T) = P(0, Y, T) = P(1, Y, T) = 0. (4.9)

For a harmonic excitation, the ac component voltage v(T) is given by

v(T) = v0e
jωTS. (4.10)
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Correspondingly, the steady-state solution of (4.4) and (4.8) may be expressed by

ϑ(T) = AejωTS,

P(X,Y, T) = A · PA(X,Y )ejωTS,
(4.11)

where A is the complex amplitude to be determined. Substituting (4.11) into (4.8), we obtain

∂2PA(X,Y )
∂X2

+ β2 ∂
2PA(X,Y )
∂Y 2

− jσωPA(X,Y ) = j2σω
(
X − 1

2

)
. (4.12)

The boundary conditions are

PA(X, 0) = PA(X, 1) = PA(0, Y ) = PA(1, Y ) = 0. (4.13)

4.2. Wavelet Interpolation Method for Squeeze Film Damping Equations

In this section, the approximate solution of PA(X,Y ) can be approximated by (3.21). The weak
form functional of (4.12) is

W(PA) =
∫∫

Ω

{
1
2

[(
∂PA
∂X

)2

+ β2
(
∂PA
∂Y

)2

+ jσωP 2
A

]
+ j2σω

(
X − 1

2

)
PA

}
dX dY. (4.14)

From the necessary conditions for the determination of the minimum W , we obtain

δW(PA) =
∫∫

Ω

[
∂δPA
∂X

∂PA
∂X

+ β2 ∂δPA
∂Y

∂PA
∂Y

+ jσωδPAPA + j2σω
(
X − 1

2

)
δPA

]
dX dY = 0.

(4.15)

Substituting (3.21) into (4.15), leads to

2J−1∑

k=1

2J−1∑

k′=1

⎧
⎨

⎩

∫∫

Ω

⎡

⎣∂Θ
J
m,n

∂X

∂ΘJ
k,k′

∂X
+ β2 ∂Θ

J
m,n

∂Y

∂ΘJ
k,k′

∂Y
+ jσωΘJ

m,nΘ
J
k,k′

⎤

⎦dX dY

⎫
⎬

⎭p
J
k,k′

= −j2σω
∫∫

Ω

(
X − 1

2

)
ΘJ
m,ndX dY, for m,n = 1, 2, . . . ,

(
2J − 1

)
.

(4.16)

This is a
(
2J − 1

)2 ×
(
2J − 1

)2 linear system

Θp = −jσωE, (4.17)

where p=
[
p
J
1,1 p

J
1,2 · · · p

J

1,2J−1 p
J
2,1 p

J
2,2 · · · p

J

2J−1,2J−1

]T
is an

(
2J − 1

)2 × 1 unknown coefficients’

matrix, E=2
[∫∫

Ω(X−1/2)ΘJ
1,1dX dY

∫∫
Ω(X−1/2)ΘJ

1,2dX dY · · ·
∫∫

Ω(X−(1/2))ΘJ

2J−1,2J−1dXdY
]T
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is a
(
2J − 1

)2 × 1 matrix, and Θ is a
(
2J − 1

)2 ×
(
2J − 1

)2 matrix. The entries in Θ are of the
form

Θ̂
(
i, j
)
= Θ̂
([

(m − 1)
(

2J − 1
)
+ n
]
,
[
(k − 1)

(
2J − 1

)
+ k′
])

=
∫∫

Ω

[
∂θ̂
(
2JX −m

)

∂X
θ̂
(

2JY − n
)∂θ̂
(
2JX − k

)

∂X
θ̂
(

2JY − k′
)

+ β2θ̂
(

2JX −m
)∂θ̂
(
2JY − n

)

∂Y
θ̂
(

2JX − k
)∂θ̂
(
2JY − k′

)

∂Y

+jσωθ̂
(

2JX −m
)
θ̂
(

2JY − n
)
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)]

dX dY.

(4.18)

4.2.1. Squeeze Film Damping of the Torsion Plate

The numerical solution of (4.17) can be written as

p = −jσωΘ−1E. (4.19)

The elements of p can be expressed as

p
J
k,k′ = −p

J,R
k,k′ − jp

J,I
k,k′ for m,n = 1, 2, . . . ,

(
2J − 1

)
, (4.20)

where pJ,R
k,k′

and p
J,I
k,k′

are the real and imaginary parts of pJ
k,k′

, respectively. Using (4.20) and
(4.4), the force acting on the plate owing to the pressure of the squeeze gas film can be
rewritten as

Pnon

∫∫1

0

(
P̂ − 1

)(
X − 1

2

)
dX dY = −Ka · ϑ(T) − Ca ·

dϑ(T)
dT

, (4.21)

where Ka · ϑ(T) and Ca · (dϑ(T)/dT) are the spring and damping components of the force

Ka = Pnon

2J−1∑

k=1

2J−1∑

k′=1

p
J,R
k,k′

∫∫1

0
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)(

X − 1
2

)
dX dY

Ca =
Pnon

ωS

2J−1∑

k=1

2J−1∑

k′=1

p
J,I
k,k′

∫∫1

0
θ̂
(

2JX − k
)
θ̂
(

2JY − k′
)(

X − 1
2

)
dX dY

(4.22)
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Table 1: The parameters of the accelerometer presented by Veijola et al. [26].

Parameters Values
Mass mplate 4.9 × 10−6 kg
Spring constant kspring 212.1 N/m
Gap spacing g0 3.95μm
Length of the moving masss lx 2 960μm
Width of the moving masss ly 1 780μm
Ambient pressure p0 11 Pa
Bias voltage V0 9 V
Effective viscosity ηeff 10.2 × 10−9 N·s·m−2

Substituting (4.21) into (4.4), leads to

d2ϑ

dT2
+ Ca ·

dϑ

dT
+ (Ka + 1)ϑ = αV0v(T),

ϑ(T) = AejωTS =
aV0v0

Ka + 1
· 1

1 − (ω2(S2/(Ka + 1))) +
(
jω(CaS/(Ka + 1))

)ejωTS.
(4.23)

The quality factor and the damped natural frequency are given in(3.32)

5. Comparisons with Experiments

Veijola et al. [26] conducted experiments to measure the frequency response of an
accelerometer under the effect of squeeze film damping. Minikes et al. [27] measured
the quality factors of two torsion rectangular mirrors at low pressure. In this section, the
experimental results presented by Veijola et al. [26] and Minikes et al. [27] were used to
verify the wavelet interpolation Galerkin method.

5.1. Comparisons with the Experimental Results of Veijola et al. [26]

In [26], Veijola et al. simulated the frequency response of an accelerometer with a spring-
mass- damper model with a parallel-plate electrostatic force. The damping coefficient was
estimated by the Blech model [28]. The spring constants and the gas pressures were estimated
by curve fitting the experimental measurements. They compared their simulations with
experimental data and found good agreement. The parameters for the accelerometer are listed
in Table 1.

In this subsection, we use the wavelet interpolation Galerkin method to predict the
frequency response of the accelerometer. Various numerical tests have been conducted by
changing the degree of the Daubechies wavelet L and the number J of the scale. Better
accuracy can be achieved by increasing L and J . The higher L is, the smoother the scaling
function becomes. The price for the high smoothness is that its supporting domain gets larger.
The higher J is, the more accurate the solution becomes. The number of differential equations
and the CPU time increase significantly as J increases. In this work, only the solutions for
L = 6 and J = 4 are presented, as the results for higher resolutions are indistinguishable from
the exact solution.
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For comparison purpose, we give the frequency responses of the accelerometer
calculated by Blech’s model [28] and the finite difference method, respectively. Blech [28]
expanded the air film pressure into an assumed double sine series and derived an analytical
expression for the spring and damping forces. In this subsection, the number of terms for the
double sine series is taken as (5, 5), which shows good convergence. For the finite difference
method, we use the following approximate formulae for a node (i, j) on the microplate:

∂PA
∂X

∣∣∣∣
i,j

=
PA
(
i + 1, j

)
− PA

(
i − 1, j

)

2ΔX
,

∂PA
∂Y

∣∣∣∣
i,j

=
PA
(
i, j + 1

)
− PA

(
i, j − 1

)

2ΔY
,

∂2PA
∂X2

∣∣∣∣∣
i,j

=
PA
(
i + 1, j

)
− 2PA

(
i, j
)
+ PA

(
i − 1, j

)

Δ2
X

,

∂2PA
∂Y 2

∣∣∣∣∣
i,j

=
PA
(
i, j + 1

)
− 2PA

(
i, j
)
+ PA

(
i, j − 1

)

Δ2
Y

.

(5.1)

In this subsection, we assume that ΔX = ΔY = 1/2J = 1/26; thus the element size of the finite
difference method is equal to the wavelet interpolation Galerkin method. Substituting (5.1)
into (3.17), we obtain

PA
(
i + 1, j

)
+ PA

(
i − 1, j

)
+ β2PA

(
i, j + 1

)
+ β2PA

(
i, j − 1

)

Δ2
X

−
(

2 + 2β2

Δ2
X

+ jσω

)
PA
(
i, j
)
= −jσω.

(5.2)

Figure 3 shows the comparisons of the frequency response obtained by different
methods. As expected, the wavelet interpolation Galerkin method, Blech’s model and
the finite difference method give almost same results. The three results agree well with
the experimental results [26] except for one data at resonance peak of the amplitude
frequency response. The reason for this discrepancy is that the damping coefficient is
slightly underestimated by the three methods, respectively. Table 2 shows the Comparison
of the damping obtained by different methods. In the experiment [26], the squeeze film
damping is dominant. Obviously, the accuracy of the finite difference method is less than
the wavelet interpolation Galerkin method and Blech’s model. The wavelet interpolation
Galerkin method and the Blech model give almost identical results. Figure 4 shows the real
part and the imaginary part of the air film pressure calculated by the wavelet interpolation
Galerkin method.

5.2. Comparisons with the Experimental Results of Minikes et al. [27]

Minikes et al. [27] measured the quality factors of two rectangular torsion mirrors at low
pressure and plotted the curves of the quality factors as a function of air pressure in the
range from 10−2 torr to 102 torr. The structure of the two torsion mirrors is identical with
the structure shown in Figure 2. The two torsion mirrors have similar dimensions in terms
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Figure 3: Comparisons of the frequency response obtained by the wavelet Galerkin method, the Blech
model and the experimental data of Veijola et al. [26].
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Figure 4: The air film pressure distribution calculated by the wavelet interpolation Galerkin method.

Table 2: A Comparison of the damping ratios obtained by different methods with the experimental data
[26].

Methods Damping ratio Peak value (dB)
Experimental data [26] 0.0239 18.3
Blech’s model (error) 0.0159 (33.5%) 21.7
The wavelet interpolation Galerkin method (error) 0.0155 (35.1%) 21.9
The finite difference method (error) 0.0136 (43.1%) 23.2

of surface area and inertial moment, but have different gaps between the mirror and the
actuation electrodes. The parameters for the two torsion mirrors are listed in Table 3.

In Table 3, the values of the two torsional natural frequencies are measured under
the dc bias voltage. Based on the two torsional natural frequencies and two moments of
inertia, we determined the torsional stiffness kT−E. The extracted torsional stiffness kT−E
for mirror 1 and mirror 2 are 2.461 × 10−6 and 2.362 × 10−6 N·m/rad, respectively. Now
we use the wavelet interpolation Galerkin method to predict the quality factors of the two
torsion mirrors. Various numerical tests have been conducted by changing the degree of the
Daubechies wavelet L and the number J of the scale. Only the solutions for L = 6 and J = 4 are
presented, as the results for higher resolutions are indistinguishable from the exact solution.

For comparison purpose, we give the quality factors calculated by Pan’s model [15]
and the finite difference method, respectively. Pan et al. [15] expanded the air film pressure
into an assumed double sine series and derived an analytical expression for the spring and
damping torques. In this work, the number of terms for the double sine series is taken as
(6, 5), which shows good convergence. For the finite difference method, we use (5.1) and
(4.12) for a node (i, j) on the mirror; thus obtain

PA
(
i + 1, j

)
+ PA

(
i − 1, j

)
+ β2PA

(
i, j + 1

)
+ β2PA

(
i, j − 1

)

Δ2
X

−
(

2 + 2β2

Δ2
X

+ jσω

)
PA
(
i, j
)

= j2σω
(
Xi −

1
2

)
.

(5.3)
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Table 3: The parameters of two torsion mirrors [27].

Mirror 1 Mirror 2
Width of the mirror ly 500μm 500μm
Length of the mirror lx 500μm 500μm
Thickness of the mirror hδ 30μm 30μm
Density of the mirror ρ 2300 kg/m3 2300 kg/m3

Gap spacing g0 28μm 13μm
Torsional natural frequency fn 13092.56 Hz 12824.87 Hz

Table 4: A comparison of quality factors obtained by Pan’s model, the wavelet interpolation Galerkin
method and the finite difference method for mirror 1.

p0 (torr) Pan’s model

The wavelet
interpolation

Galerkin method
(error)

The finite difference
method (error)

0.08 5.784 × 104 5.987 × 104 (3.5%) 6.586 × 104 (13.9%)
0.10 4.483 × 104 4.627 × 104 (3.2%) 5.160 × 104 (15.1%)
0.50 7.070 × 103 7.330 × 103 (3.7%) 8.006 × 103 (13.2%)
1 3.306 × 103 3.388 × 103 (2.5%) 3.694 × 103 (11.7%)
3 1.061 × 103 1.080 × 103 (1.8%) 1.173 × 103 (10.6%)
6 5.680 × 102 5.895 × 102 (3.8%) 6.526 × 102 (14.9%)
10 3.979 × 102 4.052 × 102 (1.8%) 4.454 × 102 (11.9%)
30 2.451 × 102 2.505 × 102 (2.2%) 2.721 × 102 (11.0%)
60 2.074 × 102 2.160 × 102 (4.1%) 2.327 × 102 (12.2%)
100 1.994 × 102 2.035 × 102 (2.1%) 2.240 × 102 (12.3%)
760 1.850 × 102 1.896 × 102 (2.5%) 2.109 × 102 (14.0%)

In this subsection, we assume that ΔX = ΔY = 1/2J = 1/26; thus the finite difference method
yields the same grids as the wavelet interpolation Galerkin method.

Tables 4 and 5 show the comparisons of quality factors obtained by the wavelet
interpolation Galerkin method, the finite difference method and Pan’s model for the mirror
1 and 2, respectively. As shown in Tables 4 and 5, the qualify factors obtained by the wavelet
interpolation Galerkin method are almost 1% ∼4% higher than Pan’s model. However the
qualify factors obtained by the finite difference method are almost 10% ∼15% higher than
Pan’s model. The result of the wavelet interpolation Galerkin method matches the result of
Pan’s model better than that of the finite difference method.

Figure 5 shows the comparisons of quality factors obtained by different methods. As
expected, the wavelet interpolation Galerkin method, the finite difference method and Pan’s
model give almost same results. Above p0 = 10 torr, the viscous damping is dominant, the
three methods give results in good agreement with the experimental results [27]. Below p0

= 10 torr, the accuracy of the three methods decreases as the pressure decreases. The main
reason for this trend are as follows. The three methods are based on Reynolds equation,
which is derived from the Navier-Stokes equations and the continuity equation. The main
assumption is that the gas in the gap can be treated as a continuum. Below p0 = 10 torr, the
Knudsen number Kn > 0.1, the gas in the gap cannot be treated as a continuum. Thus the
three methods fail to give a good prediction. Below p0 = 0.1 torr, the influence of squeeze film
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Figure 5: Comparison of the quality factors obtained by the wavelet Galerkin method, the Pan model and
the experimental data of Minikes et al. [27].

damping begins to vanish and the qualify factors reaches a plateau that is dominated by the
intrinsic damping.

Tables 6 and 7 list the comparisons of quality factors between p = 10 and 760 torr for
mirrors 1 and 2, respectively. Obviously, the accuracy of the finite difference method is less
than the wavelet interpolation Galerkin method and Pan’s model. Figure 6 shows the real
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(a) The real part of mirror 1
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(b) The imaginary part of mirror 1
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(c) The real part of mirror 2
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(d) The imaginary part of mirror 2

Figure 6: The air film pressure distribution calculated by the wavelet interpolation Galerkin method at p0
= 1 torr.

Table 5: A comparison of quality factors obtained by Pan’s model, the wavelet interpolation Galerkin
method and the finite difference method for mirror 2.

p0 (torr) Pan’s model

The wavelet
interpolation

Galerkin method
(error)

The finite difference
method (error)

0.08 1.645 × 104 1.679 × 104 (2.1%) 1.847 × 104 (12.3%)
0.10 1.268 × 104 1.297 × 104 (2.3%) 1.458 × 104 (15.0%)
0.50 2.135 × 103 2.208 × 103 (3.4%) 2.352 × 103 (10.2%)
1 8.919 × 102 9.195 × 102 (3.1%) 1.010 × 103 (13.2%)
3 2.681 × 102 2.712 × 102 (1.2%) 3.012 × 102 (12.3%)
6 1.282 × 102 1.318 × 102 (2.8%) 1.463 × 102 (14.1%)
10 8.004 × 101 8.118 × 101 (1.4%) 9.092 × 101 (13.6%)
30 3.461 × 101 3.599 × 101 (4.0%) 3.959 × 101 (14.4%)
60 2.574 × 101 2.628 × 101 (2.1%) 2.970 × 101 (15.4%)
100 2.255 × 101 2.278 × 101 (1.0%) 2.593 × 101 (15.0%)
760 1.820 × 101 1.900 × 101 (4.4%) 2.055 × 101 (12.9%)
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Table 6: A comparison of quality factors between p0 = 10 and 760 torr for mirror 1.

p0 (torr) Experiment data [27] Pan’s model (error)

The wavelet
interpolation

Galerkin
method
(error)

The finite
difference
method
(error)

10 345 398 (15.4%) 405 (17.4%) 445 (29.0%)
20 275 289 (5.1%) 301 (9.4%) 311 (13.1%)
40 229 236 (3.1%) 241 (5.2%) 252 (10.0%)
760 179 185 (3.4%) 190 (6.1%) 211 (17.9%)

Table 7: A comparison of quality factors between p0 = 10 and 760 torr for mirror 2.

p0 (torr) Expertiment data [27] Pan’s model (error)

The wavelet
interpolation

Galerkin
method
(error)

The finite
difference
method
(error)

10 66 80.0 (21.2%) 81.2 (23.0%) 90.9 (37.7%)
20 40 48.8 (22.0%) 50.1 (25.3%) 54.0 (35.0%)
40 27 30.1 (11.5%) 31.0 (14.8%) 33.5 (24.1%)
760 18 18.2 (1.1%) 19.0 (5.6%) 20.6 (14.4%)

part and the imaginary part of the air film pressure calculated by the wavelet interpolation
Galerkin method at p0 = 1 torr. The air film pressure looks similar to the results calculated by
Pan’s model.

6. Summary and Conclusions

A new wavelet interpolation Galerkin method has been developed for the numerical
simulation of MEMS devices under the effect of squeeze film damping. The air film pressure
are expressed as a linear combination of a class of interpolating functions generated by
autocorrelation of the usual compactly supported Daubechies scaling functions. To the best
of our knowledge, this is the first time that wavelets have been used as basis functions for
solving the PDEs of MEMS devices. As opposed to the previous wavelet-based methods that
are all limited in one energy domain, the MEMS devices in the paper involve two coupled
energy domains. Two typical electrically actuated micro devices with squeeze film damping
effect are examined respectively to illustrate the wavelet interpolation Galerkin method. The
method is validated by comparing its results with available theoretical and experimental
results. The accuracy of the method is higher than the finite difference method.

In this paper, the wavelet interpolation Galerkin method is not suitable to solve
problems defined on nonrectangular domains, since higher-dimensional wavelets are
constructed by employing the tensor product of the one-dimensional wavelets and so their
application is restricted to rectangular domains. In this paper, both trial and weight functions
are a class of interpolating functions generated by autocorrelation of the first-generation
wavelets. Future area of research is based on the second-generation wavelets [29]. The main
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advantage of the second-generation wavelets is that the wavelets are constructed in the
spatial domain and can be custom designed for complex domains. This work is currently
under way.
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