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Wang and Yu proposed a block cipher scheme based on dynamic sequences generated by multiple
chaotic systems, which overcomes the problem of periodical degradation on random sequences
due to computational precision. Their scheme has a feature that a plaintext is encrypted by a
keystream created from several one-dimensional chaotic maps. However, this feature results in
some weaknesses of the encryption algorithm. We show three kinds of attacks in this paper,
through which one can recover the plaintext from a given ciphertext without the secret key. We
also present an improvement on their scheme, which prevents the three attacks mentioned above.
Security of the enhanced cipher is presented and analyzed, which shows that our improved scheme
is secure under the current attacks.

1. Introduction

The chaos-based encryption scheme was first proposed in 1989 [1]. Following the work, a lot
of cryptography researchers have proposed many chaos-based encryption schemes (some of
them are the improvements on the previous ones) [2–6]. Security of all these schemes relies on
the properties of chaotic systems: the sensitive dependence on initial conditions and system
parameters, pseudorandom property, nonperiodicity and topological transitivity.

There are two types of cipher schemes in the chaos-based cryptosystems: stream
ciphers and block ciphers. In the chaotic stream ciphers [2, 7–9], a pseudorandom sequence
is generated by chaotic sequence generator to encrypt the plaintext. However, the limited
computational precision degrades the pseudorandom sequence to a periodic sequence
eventually. The chaotic block ciphers adopt chaotic maps to generate parameters used in
encryption and decryption procedures. Pareek has proposed two block ciphers based on
external keys [10, 11]. But too much time consumption in computation makes them hard
to implement in the real-time telecommunication.
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Wang and Yu proposed a new block encryption scheme in [12] (the Wang-Yu scheme)
by combining these two methods of chaotic cryptography. Their scheme provides not only
good randomness but also high computational efficiency. In their scheme, several one-
dimensional chaotic maps are used to generate pseudorandom sequences with independent
and uniform distribution. Through a series of transformations, the sequences constitute a
keystream randomly distributed in the key space. The keysteam is used to encrypt the
plaintext by executing simple operations such as Exclusive-OR (XOR) and shifting repeatedly
with sufficient rounds.

Generally speaking, a secure cipher is supposed to resist the following attacks: the
chosen plaintext attacks (CPAs), the chosen ciphertext attacks (CCAs) and the known
plaintext attacks (KPAs). Unfortunately, the Wang-Yu cipher cannot resist any of the above
attacks because the keystream remains unchanged during the execution of the encryption
procedure each time. Thus, for an attacker, knowing the keystream is equivalent to knowing
the secret key.

Our Contributions

We point out the drawbacks of the Wang-Yu block cipher based on dynamic sequences
generated by multiple chaotic systems. Their scheme is vulnerable to the following three
kinds of attacks: the chosen plaintext attacks, the chosen ciphertext attacks, and the known
plaintext attacks. In order to obtain a secure block cipher from chaotic systems, we make
efforts to improve the Wang-Yu block cipher. We design a new block cipher which makes
the keystream sensitive to any change of the plaintext and the ciphertext. Therefore, our new
block cipher is able to resist the above attacks. On the other hand, our scheme preserves the
high computational efficiency of the original one.

In Section 2, some essential notations and security definitions are introduced. In
Section 3, the Wang-Yu block cipher is reviewed. In Section 4, we analyze the Wang-Yu
scheme and show three different attacks to the scheme. In Section 5, an improved block cipher
scheme is proposed. We analyze security and discuss the efficiency of the new scheme in
Section 6. Finally, we conclude the paper in Section 7.

2. Preliminaries

2.1. Notations

We use the following notations:

P : Plaintext,

Pi: ith plaintext block,

C: Ciphertext,

Ci: ith ciphertext block,

L: Number of plaintext blocks,

r: Number of transformation rounds,

c(l): Index of a chosen chaotic map,

B
(l)
i : 64-bit temporary value in encryption/decryption transformation,

S
c(l)
i : 64-bit value generated by a chaotic map in the Wang-Yu scheme,
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Si: Keystream of ith plaintext block in the Wang-Yu scheme,

SK
c(l)
i : 64-bit value generated by a chaotic map in the improved scheme,

SKi: Key stream of ith plaintext block in the improved scheme,

xj : A real number in (0, 1) indexed by j.

2.2. Definitions and Security Notions

We review the definition of chaos and security notions for block cipher as follows.

Definition 2.1 (Chaos). Chaos is aperiodic time-asymptotic behaviour in a deterministic
system which exhibits sensitive dependence on initial conditions.

This definition contains three main elements.

(1) Aperiodic time-asymptotic behaviour: this implies the existence of phase-space
trajectories which do not settle down to fixed points or periodic orbits. For practical
reasons, we insist that these trajectories are not too rare. We also require the
trajectories to be bounded, that is, they should not go off to infinity.

(2) Deterministic: this implies that the equations of motion of the system possess no
random inputs. In other words, the irregular behaviour of the system arises from
nonlinear dynamics and not from noisy driving forces.

(3) Sensitive dependence on initial conditions: this implies that nearby trajectories in
phase-space separate exponentially fast in time; that is, the system has a positive
Lyapunov exponent.

Definition 2.2 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is one-way if f(·) can
be computed by a polynomial time algorithm, but for every randomized polynomial time
algorithmA,

Pr
[
f
(
A
(
f(x)

))
= f(x)

]
<

1
p(n)

, (2.1)

for every polynomial p(n) and sufficiently large n, assuming that x is chosen from the
uniform distribution on {0, 1}n.

Definition 2.3 (Block cipher). A symmetric key block cipher consists of two PPT algorithms
(Ek(·), Dk(·)) with the following properties: for any random k∈R{0, 1}κ, the encryption
algorithm on input m ∈ {0, 1}n and k, outputs a ciphertext c = Ek(m); the decryption
algorithm on input c and k, outputs a plaintext m if c = Ek(m). For any k∈R{0, 1}κ and
m ∈ {0, 1}n, correctness requires the following to be hold:

m = Dk(Ek(m)). (2.2)

Definition 2.4 (One-way CPA). Let Ek(·) be a block cipher. If any adversary A (any PPT
algorithm) that is allowed to obtain the ciphertext of any message, cannot extract the plaintext
from a challenge ciphertext, we say that Ek(·) is one-way under the chosen plaintext attacks.
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Definition 2.5 (One-way CCA). Let Ek(·) be a block cipher. If any adversary A (any PPT
algorithm) that is allowed to obtain the plaintext of any ciphertext (except for the challenge
ciphertext), cannot extract the plaintext from a challenge ciphertext, we say that Ek(·) is one-
way under the chosen ciphertext attacks.

Definition 2.6 (One-way KPA). Let Ek(·) be a block cipher. If any adversary A (any PPT
algorithm) that is given a set of random plaintexts and corresponding ciphertexts (except
for the challenge ciphertext), cannot extract the plaintext from a challenge ciphertext. We say
that Ek(·) is one-way under the known plaintext attacks.

3. Review of the Wang-Yu Block Cipher

3.1. Algorithm Description

In this section, we briefly review the block cipher proposed by Wang and Yu [12]. In
their scheme, plaintext blocks are converted into ciphertext blocks after several round
transformations with XOR and shift operations. A number of 64-bit binary strings as the
keystreams are generated in such transformations.

Let us see how the keystream is generated. There are two tables in the Wang-Yu
scheme. One table consists of four one-dimensional chaotic maps. The other called chaotic
map set (CMS) includes initial values between 0 and 1, which are produced through a
random number generator from a given secret key. At the beginning, one map is randomly
chosen from the first table. An initial value is also chosen from the CMS table by certain
rules. The chosen map is then iterated with the initial value for 64 times. Each time the
map generates a new real number. If the new number is bigger than 0.5, we get 1 for the
corresponding digit. Otherwise, we get 0. Eventually, we get a 64-bit binary string after 64
iterations.

3.2. Procedure in Detail

The Wang-Yu scheme is described as follows.

(i) Encryption of Pi ∈ {0, 1}64: Ci = Ek(Pi).

(1) Initialization: B(0)
i = Pi; l = 1; d = 1; r∈R{0, 1}∗; CMS table← k.

Here, k∈R{0, 1}64 is the secret key of the block cipher.

(2) c(l)∈R[0, 3],
x0 ← value of cth column, dth row in the CMS table.

(3) For j = 1 to 64:

(a) if c(l) = 0: xj = μxj−1(1 − xj−1);
(b) if c(l) = 1: xj = μ sin(πxj−1);
(c) if c(l) = 2: xj = μ cos(π |xj−1 − 0.5|);
(d) if c(l) = 3: xj = 1 − μ|xj−1 − 0.5|.
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(4) For j = 1 to 64:

sj =

⎧
⎨

⎩

1, xj � x,

0, xj < x,
(3.1)

where x = 0.5. The keystream is Sc(l)i = s1s2 · · · s64.
(5) Encryption transformation:

B
(2l−1)
i = B(2l−2)

i ⊕ Sc(l)i ,

B
(2l)
i = B(2l−1)

i � 16 bits.
(3.2)

(6) If l = r, go to step (7);
else l ← l + 1; d ← d + 1; goto step (2).

(7) Ci = B
(2l)
i .

Here, the operation “x � y” represents a cyclic left shift of x by y bits.

(ii) Decryption of Ci ∈ {0, 1}64: Pi = Dk(Ci).

Parameter and keystream generations here are the same as those in the encryption.
The only difference is that the equations in step (5) should be replaced by

B
(2l−1)
i = B(2l)

i � 16 bits,

B
(2l−2)
i = B(2l−1)

i ⊕ Sc(l)i .
(3.3)

Here, the operation “x � y” represents a cyclic right shift of x by y bits.

3.3. Weaknesses of the Scheme

A keystream Si = (Sc(1)i , S
c(2)
i , . . . , S

c(r)
i ) in the Wang-Yu scheme is generated by a certain secret

key k. Then it is used to encrypt the plaintext according to the following rule:

Ci = ESi(Pi), for i = 1, . . . , L. (3.4)

Decryption of a ciphertext block Ci can be accomplished by calculating the corresponding
keystream Si if the key is given and doing the reverse operations of encryption ESi(·).
However, the block cipher is not secure because some problems occur in their keystream
generation and the encryption algorithm. Exactly, if we know the keystream Si, we can
recover the plaintext of a given ciphertext without the secret key.

In the next section we will show how to recover the keystream under the chosen
plaintext attack, the chosen ciphertext attack and the known plaintext attack, respectively.
We note that knowing the keystream Si generated by a certain secret key is equivalent to
knowing the key indeed [3].
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4. Cryptanalysis of the Wang-Yu Block Cipher

With the help of the keystream Si, we can recover the plaintext from a given ciphertext.
Therefore, the following attacks focus on recovering the keystream Si. Suppose that we have
a challenge ciphertext C composed by Ci (i = 1, 2, . . . , L) to “decrypt” without the secret key.
We shall calculate the keystream Si by launching one of the attacks described later.

The encryption transformation can be described as follows:

B
(0)
i = Pi,

B
(1)
i = B(0)

i ⊕ S
c(1)
i ,

B
(2)
i = B(1)

i � 16 bits,

B
(3)
i = B(2)

i ⊕ S
c(2)
i ,

B
(4)
i = B(3)

i � 16 bits,

...

B
(2r−1)
i = B(2r−2)

i ⊕ Sc(r)i ,

B
(2r)
i = B(2r−1)

i � 16 bits,

B
(2r)
i = Ci.

(4.1)

For simplicity, the encryption procedure is described as follows:

Ci = ESi(Pi) = (Pi � 16 bits)r ⊕ Si, for i = 1, . . . , L, (4.2)

where Si = ((((Sc(1)i � 16 bits)⊕Sc(2)i ) � 16 bits) · · · ⊕Sc(r)i ) � 16 bits. The operation (f)r

represents that the action of f is repeated r times.
Since the keystream does not change for every plaintext blocks, we can get it from a

given plaintext block and a corresponding ciphertext block. Then we can use it to recover the
plaintexts from other ciphertexts. A plaintext block Pi can be recovered by using the known
keystream Si and a given ciphertext block Ci as follows:

Pi = DSi(Ci) =
((

Si ⊕ Ci

)
� 16 bits

)r
, for i = 1, . . . , L. (4.3)

Then, we can recover the plaintexts without the secret key. The following explains how to
recover the plaintexts under three different attacks.
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Chosen plaintext

M =
n⋃

i=1

Mi = 000 · · ·

with the same size of C

Encryption machinery

Ciphertext of M

D =
n⋃

i=1

Di

Keystream

S =
n⋃

i=1

Si =
n⋃

i=1

Di

Ciphertext

C =
n⋃

i=1

Ci

� 16bits Repeat r times

The plaintext

P =
n⋃

i=1

Pi

Figure 1: Flowchart of chosen plaintext attacks.

4.1. How to Recover the Plaintext under CPA

Suppose that we have obtained temporary access to the encryption machine. Given index i
and a special plaintext block Mi, where Mi = (000 · · · 0)64(the ciphertext block also consists
of 64 bits), we can obtain the ciphertext block Di of the plaintext block Mi = (000 · · · 0)64 from
the encryption machine.

So, the keystream Si can be generated from Mi and Di:

Si = Di ⊕ (Mi � 16 bits)r = Di, for i = 1, 2, . . . , L. (4.4)

The recovered plaintext block can be obtained using the keystream Si and the
ciphertext block Ci as follows:

Pi =
(
(Si ⊕ Ci)� 16 bits

)r
, for i = 1, 2, . . . , L. (4.5)

The flowchart of this attack is given in Figure 1, and Figure 2 shows the simulation
results of the chosen plaintext attack on a ciphered image of size 256 × 256.
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(a) (b) (c) (d)

Figure 2: Results of the CPA: (a) the original image P ; (b) ciphered image C of P ; (c) ciphered image of M
= 0000; (d) recovered image.

4.2. How to Recover the Plaintext under CCA

Assume that we have obtained temporary access to the decryption machine. Given index
i and a special ciphertext block Di, where Di = (000 · · · 0)64(the challenge ciphertext block
also consists of 64 bits), we can obtain the plaintext block Mi of the ciphertext block Di =
(000 · · · 0)64 from the decryption machine. The keystream Si can be generated from Mi and
Di by

Si = Di ⊕ (Mi � 16 bits)r = (Mi � 16 bits)r , for i = 1, 2, . . . , L. (4.6)

The recovered plaintext block can be obtained by using the keystream Si and the
ciphertext block Ci as follows:

Pi =
(
(Si ⊕ Ci)� 16 bits

)r
, for i = 1, 2, . . . , L. (4.7)

The flowchart of this attack is given in Figure 3. Simulation results of a chosen
ciphertext attack on a ciphered image of size 512 × 512 are given in Figure 4.

4.3. How to Recover the Plaintext under KPA

The knowledge of one plaintext block and its corresponding ciphertext block with the same
length leads to potential damage of privacy for the cryptosystems. We know that given a
plaintext blockMi and its corresponding ciphertext blockDi, the keystream can be computed
as follows:

Si = (Mi � 16 bits)r ⊕Di, for i = 1, 2, . . . , L. (4.8)

The recovered plaintext block can be obtained by using the keystream Si and the
ciphertext block Ci as follows:

Pi =
(
(Si ⊕ Ci)� 16 bits

)r
, for i = 1, 2, . . . , L. (4.9)
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Chosen ciphertext

D =
n⋃

i=1

Di = 000 · · ·

Encryption machinery

Plaintext of D :

M =
n⋃

i=1

Mi

� 16bits

Keystream

S =
n⋃

i=1

Si

Ciphertext

C =
n⋃

i=1

Ci

� 16bits Repeat r times

The plaintext

P =
n⋃

i=1

Pi

Repeat r times

Figure 3: Flowchart of chosen ciphertext attacks.

(a) (b) (c) (d)

Figure 4: Results of the CCA: (a) the original image P ; (b) ciphered image C of P ; (c) plain image of the
ciphered image D = 0000; (d) recovered image.

The flowchart of this attack is given in Figure 5 and Figure 6 shows a recovered
Lena image from the ciphertext by the known plaintext attack using a known pair of
plaintext/ciphertext of Jet.

Therefore, we can draw the following conclusion from the above three attacks.

Theorem 4.1. The Wang-Yu block cipher is not secure (i.e., not one-way) under any of the following
attacks: the chosen plaintext attacks, the chosen ciphertext attacks and the known plaintext attacks.
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One couple of plaintext/
ciphertext

M =
n⋃

i=1

Mi and D =
n⋃

i=1

Di

Keystream

S =
n⋃

i=1

Si =
n⋃

i=1

((Mi � 16bits)r
⊕
Di)

Ciphertext

C =
n⋃

i=1

Ci

� 16bits Repeat r times

The plaintext

P =
n⋃

i=1

Pi

Figure 5: Flowchart of known plaintext attacks.

(a) (b) (c) (d)

(e)

Figure 6: Results of the KPA: (a) the original image P ; (b) ciphered image C of P ; (c) plain image M; (d)
ciphered image D of M; (e) recovered image from C.

5. Improvement

The ciphertext is independent from the keystream, which makes the encryption algorithm
presented in [12] vulnerable to the above attacks. To enable the block cipher to be secure
against the above attacks, a reasonable solution is shown. Actually, the ciphertext is sensitive
to the change of the keystream and the plaintext in our improvement, which results in a
cipher with enhanced security. In this section, we present the modification as follows.
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(i) Encryption of Pi ∈ {0, 1}64: Ci = Ek(Pi).

(1) Initialization: B(0)
i = Pi; l = 1; r∈R{0, 1}∗; CMS table← k; P0 = 1; C0 = 1.

Here, k∈R{0, 1}64 is the secret key of the block cipher.
(2) c(l)∈R[0, 3],

d = (Pi−1 ⊕ Ci−1) mod 128,
x0 ← value of cth column, dth row in the CMS table.

(3) For j = 1 to 64:

(a) if c(l) = 0: xj = μxj−1(1 − xj−1);
(b) if c(l) = 1: xj = μ sin(πxj−1);
(c) if c(l) = 2: xj = μ cos(π |xj−1 − 0.5|);
(d) if c(l) = 3: xj = 1 − μ|xj−1 − 0.5|.

(4) For j = 1 to 64:

sj =

⎧
⎨

⎩

1, xj � x,

0, xj < x,
(5.1)

where x = 0.5. The keystream is SKc(l)
i = s1s2 · · · s64.

(5) Encryption transformation:

B
(2l−1)
i = B(2l−2)

i ⊕ SKc(l)
i ,

B
(2l)
i = B(2l−1)

i � 16 bits.
(5.2)

(6) If l = r, goto step (7);
else l ← l + 1; d ← d + 1; goto step (2).

(7) Ci = B
(2l)
i .

(ii) Decryption of Ci ∈ {0, 1}64: Pi = Dk(Ci)

Parameter and keystream generations here are the same as those in the encryption.
The only difference is that the equations in step (5) should be replaced by

B
(2l−1)
i = B(2l)

i � 16 bits,

B
(2l−2)
i = B(2l−1)

i ⊕ SKc(l)
i .

(5.3)

6. Security and Efficiency of the Improved Scheme

The block cipher algorithm in [12] is not secure since its keystream is reused each time,
which makes the keystream easy to recover. Our proposed version of the scheme is
designed in a PCBC (Propagating Cipher Block Chaining) mode [13]. Through this mode,
an attacker cannot discover the relationship among the keystream, the plaintext and the
ciphertext. In order to show that our improved cipher is secure, we consider the three
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kinds of attacks described previously to recover the keystream in our scheme. As a result,
we find that the chosen plaintext attacks, the chosen ciphertext attacks and the known
plaintext attacks all fail if the encryption algorithm and the decryption algorithm follow our
proposal.

Moreover, the described attacks are harmless for the enhanced scheme. We assume
that SKi is the keystream used in the encryption of ith block. The keystream SKi is computed
as follows:

SKi = Hk(Pi−1, Ci−1), for i = 1, 2, . . . , L. (6.1)

Here, Pi−1 and Ci−1 are the plaintext block and the ciphertext block with index i − 1,
respectively; Hk() is a one-way function from chaotic map iterations. Obviously, even if an
attacker knows Pi−1 and Ci−1, he cannot get SKi without the secret key.

Meanwhile, the above attacks cannot break our scheme since breaking the cipher is
equivalent to knowing SKi. However, knowing SKi is impossible in our proposal. Thus, the
algorithm is secure against the chosen plaintext attacks, the chosen ciphertext attacks and the
known plaintext attacks.

In our scheme, one XOR and one MOD operations are added in the encryption of
a plaintext block. The overload of the improved scheme does not influence the efficiency,
compared with the Wang-Yu scheme. But our improved scheme achieves a high level of
security.

The simulation for the proposed scheme is implemented in Matlab 7.0. Performance
is measured on a 2.0 GHz Pentium Dual-Core with 1 GB RAM running Windows XP. The
simulation results show that the average running speed of the Wang-Yu cipher and that of
our improved cipher are 20.46 MB/s and 19.54 MB/s, respectively.

7. Conclusions

In this paper, three kinds of attacks are presented to break a recently proposed block cipher
based on multiple chaotic systems. We show that the reuse of the keystream during the
encryption iteration makes the Wang-Yu scheme insecure against the chosen plaintext attacks,
the chosen ciphertext attacks and the known plaintext attacks. To enhance the security, we
introduce a new method by updating the keystream in a way sensitive to the plaintext and
the ciphertext.

Chaotic system is distinguished by its ergodicity and sensitivity to initial conditions
and system parameters. These attributes allow the chaotic time series to be a promising
alternative to the conventional cryptographic algorithms and image processing [14–21].
Fractal time series is distributed in a more random pattern than chaos time series does, due
to the nondeterministic characteristic. Fractal time series differs from the conventional time
series in the statistic properties [22–24]. Many open problems exist in this research area such
as stationarity test problem [25], power spectrum problem [26, 27] and bound problem [28].
We are looking for possible ways to apply fractal time series to stochastic number simulation
in cryptographic research.
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