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An explicit Runge-Kutta-Nyström method is developed for solving second-order differential
equations of the form q′′ = f(t, q) where the solutions are oscillatory. The method has
zero-dissipation with minimal phase-lag at a cost of three-function evaluations per step of
integration. Numerical comparisons with RKN3HS, RKN3V, RKN4G, and RKN4C methods show
the preciseness and effectiveness of the method developed.

1. Introduction

This paper deals with numerical method for second-order ODEs, in which the derivative does
not appear explicitly,

q′′ = f
(
t, q
)
, q(t0) = q0, q′(t0) = q′0, (1.1)

for which it is known in advance that their solutions are oscillating. Such problems often arise
in different areas of engineering and applied sciences such as celestial mechanics, quantum
mechanics, elastodynamics, theoretical physics, chemistry, and electronics (see, e.g., [1–3]).

For ODEs of type (1.1), it is preferable to use a direct numerical method, instead
of reducing it into first-order system. One such method is Runge-Kutta-Nyström (RKN)
method. Oscillatory problems (1.1) are usually considered as difficult to handle. Many
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methods with constant coefficients have already been derived for solving (1.1), see [2, 4–
6]. Explicit RKN methods which relate to dispersion (or phase-lag) and dissipation (or
amplification error) was first introduced by van der Houwen and Sommeijer [6], these
properties are useful when dealing with periodic problems rather than just minimizing the
truncation error of the methods. The objective of the study here is to construct RKN method
with zero-dissipation and minimal phase-lag to ensure that the problem will be integrated
as precisely as possible and the approximate solutions remain in phase especially for the
harmonic oscillatory problem. To our knowledge, method of algebraic order greater than
three with zero-dissipation and minimal phase-lag has not been done yet so far. Therefore,
this motivates us to start the investigation with method of algebraic order three with zero-
dissipation and minimal phase-lag.

When solving (1.1) numerically, attention has to be given to the algebraic order of
the method used, since this is the main criterion for achieving high accuracy for long-range
integration. Therefore, it is desirable to have a lower stage RKN method with maximal order.
This will reduced the computational cost. Moreover, if it is initially known that the solution of
(1.1) is periodic in nature then it is essential to consider phase-lag and dissipation. These are
actually two types of truncation errors beside the truncation error due to the algebraic order.
The first is the angle between the true and the approximate solutions, while the second is the
distance from a standard cyclic solution. Essentially, the method derived should ideally have
the properties of zero dissipation, minimal phase-lag and small truncation error coefficients.
In this paper, we developed an efficient a zero-dissipative explicit RKN method with minimal
phase-lag in constant time step mode.

2. General Theory

An explicit Runge-Kutta-Nyström (RKN) method for the numerical integration of the initial
value problem (IVP) is given by

qn+1 = qn + hq′n + h
2
m∑

i=1

bif(tn + cih,Qi),

q′n+1 = q′n + h
m∑

i=1

b′if(tn + cih,Qi),

(2.1)

where

Qi = qn + cihq′i + h
2
i−1∑

j=1

aijf
(
tn + cjh,Qj

)
. (2.2)

The RKN parameters aij , bj , b′j , and cj are assumed to be real and m is the number of
stages of the method. Introduce the m-dimensional vectors c, b, and b′ and m × m matrix
A, where c = [c1, c2, . . . , cm]

T , b = [b1, b2, . . . , bm]
T , b′ = [b′1, b

′
2, . . . , b

′
m]

T , and A = [aij],
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respectively. An explicit of RKN methods of order r can be expressed in Butcher notation
by the table of coefficients

c A

bT

b′T
. (2.3)

Now, the phase-lag analysis of the method (2.1) is investigated using the homoge-
neous test equation (see [6])

q′′ = (iλ)2q(t), i =
√
−1. (2.4)

By applying the general method (2.1) to the test equation (2.4) we obtain the following
recursive relation:

[
qn+1

hq′n+1

]
= D
[
qn
hq′n

]
, D =

[
A
(
z2) B

(
z2)

A′
(
z2) B′

(
z2)
]
, z = λh, (2.5)

where A,A′, B, and B′ are polynomials in z2, completely determined by the parameters of the
method (2.1). The characteristic equation for (2.5) is given by

ξ2 − tr
(
D
(
z2
))
ξ + det

(
D
(
z2
))

= 0. (2.6)

The exact solution of (2.4) is given by

q(tn) = σ1
[
exp(iλ)

]n + σ2
[
exp(−iλ)

]n
, (2.7)

where σ1,2 = (1/2)[q0 ± (iq′0)/λ] or σ1,2 = |σ| exp(±iχ) where |σ| =
√
(Re(σ1,2))

2 + (Im(σ1,2))
2

is the length of the vector σ1,2. Substituting in (2.7), we have

q(tn) = 2|σ| cos
(
χ + nz

)
. (2.8)

Now let us assume that the eigenvalues of D are ρ1, ρ2 and the corresponding
eigenvectors are [1, ν1]

T , [1, ν2]
T , νi = A′/(ρi − B′), i = 1, 2. The numerical solution of (2.5) is

qn = c1ρ
n
1 + c2ρ

n
2 , (2.9)

where

c1 = −
ν2q0 − hq′0
ν1 − ν2

, c2 =
ν1q0 − hq′0
ν1 − ν2

. (2.10)
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If ρ1, ρ2 are complex conjugates, then c1,2 = |c| exp(±iω) and ρ1,2 = |ρ| exp(±iϕ) where
|c| and |ρ| is the length of the vector c1,2 and ρ1,2, respectively. By substituting in (2.9), we have

qn = 2|c|
∣
∣ρ
∣
∣n cos

(
ω + nϕ

)
. (2.11)

Equations (2.8) and (2.11) led us to the following definition.

Definition 2.1. For the RKN method corresponding to the characteristic equation (2.6) the
quantities

φ(z) = z − ϕ, α(z) = 1 −
∣
∣ρ
∣
∣ (2.12)

are the phase-lag (or dispersion) and dissipation (or amplification error), respectively. If
φ(z) = O(zu+1), then the RKN method is said to have phase-lag order u and if α(z) = O(zv+1),
then the RKN method is said to have dissipation order v. If at a point z, α(z) = 0, then the
RKN method has zero dissipation.

From Definition 2.1 it follows that

φ(z) = z − cos−1

(
R
(
z2)

2
√
S(z2)

)

, α(z) = 1 −
√
S(z2), (2.13)

where R(z2) and S(z2) defined by

R
(
z2
)
= tr(D) = 2 +

m∑

i=1

(−1)iαiz2i,

S
(
z2
)
= det(D) = 1 +

m∑

i=1

(−1)iβiz2i.

(2.14)

Following [6], for a zero-dissipative RKN method and sinceR(z2) is at most degree 2m
then the maximal attainable order of dispersion is u = 2m. The method with maximum order
of the phase-lag is said to be a method with minimal phase-lag. The dispersion relations up
to order four are already satisfied due to consistency condition of the method. Altogether, the
condition to have phase-lag order six, the highest possible for a three-stage zero-dissipative
explicit method, is

α3 =
1

360
. (2.15)

We next discuss the stability properties of method for solving (1.1) by considering once
again the expression (2.5). The matrix D in (2.5) can be written as

D(H) =

(
1 −HbT (I +HA)−1e 1 −HbT (I +HA)−1c

−Hb
′T (I +HA)−1e 1 −Hb

′T (I +HA)−1c

)

, (2.16)



Mathematical Problems in Engineering 5

whereH = z2, e = [1 · · · 1]T , c = [c1 · · · cm]T . TheD(H) is called the stability matrix. Following
[7], we say that the numerical method (2.1) has interval of periodicity or interval of zero
dissipation (0,Hp) if |R(H)| < 2 and S(H) ≡ 1 for all H ∈ (0,Hp). Notice that S(H) ≡ 1
is a necessary condition for the existence of a nonempty periodicity interval. Method with
zero-dissipation is also known as method with dissipation of order infinity.

Definition 2.2. An interval (0,Hp) is called interval of periodicity of the method (2.1) if, for all
H ∈ (0,Hp), |ξ1,2| = 1 and ξ1 /= ξ2.

3. Construction of the Method

In the following we shall derive zero-dissipative minimal phase-lag RKN method. The RKN
parameters must satisfy the following algebraic conditions as given in [8, 9]:

order 1 : b
′Te = 1,

order 2 : bTe =
1
2
, b

′Tc =
1
2
,

order 3 : bTc =
1
6
,

1
2
b
′Tc2 =

1
6
.

(3.1)

All indexes are from 1 to m. Also the Nyström row sum conditions need to be satisfied

1
2
c2
i =

m∑

j=1

aij (i = 1, . . . , m). (3.2)

In addition, we try to minimize the following norms of truncation error which is
discussed by Dormand [9]:

∥∥∥τ (4)
∥∥∥

2
=

(
2∑

i=1

(
τ
(4)
i

)2
)1/2

,
∥∥∥τ

′(4)
∥∥∥

2
=

(
3∑

i=1

(
τ
′(4)
i

)2
)1/2

, (3.3)

where τ (4)i and τ
′(4)
i are defined as in [2],

τ
(4)
1 =

1
2
bTc2 − 1

24
, τ

(4)
2 = bTAe − 1

24
,

τ
′(4)
1 =

1
6
bTc3 − 1

24
, τ

′(4)
2 = b

′T (c.Ae) − 1
8
, τ

′(4)
3 = b

′TAc − 1
24
.

(3.4)

The algebraic conditions (3.1)-(3.2) together with dispersion relation (2.15) and zero-
dissipation condition S(H) ≡ 1 (i.e., β3 = 0) formed a system of nonlinear equations.
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Letting c3 as the free parameter and solving all nonlinear equations simultaneously yield
the following one-parameter family of solution in term of c3:

c2 =
1
30

(
−F + 3

(
5 +
√

5
))
, a21 =

1
1800

(
−15 − 3

√
5 + F

)2
,

a31 = − 1
160

c3

(
F
(√

5 + 3
)(

1 −
√

5 + 2c3

)
+ 4
√

5 − 20 − 20c3 − 12c3
√

5
)
,

a32 =
1

160
c3

(
F
(√

5 + 3
)(

1 −
√

5 + 2c3

)
+ 60c3 − 12c3

√
5 + 4

√
5 − 20

)
,

b1 = −
[
F
(√

5 − 5
)(

10 + 2
√

5 − 45c3 − 9c3
√

5 + 30c3
2
)
+ 1800c3

2

− 900c3 − 180c3
√

5
]
/
[
240c3

(
15 + 3

√
5 − F − 30c3

)]
,

b2 = −
F
(√

5 − 5
)(
−5 −

√
5 + 10c3

)
+ 60
√

5 + 300 − 600c3

80
(
−15 − 3

√
5 + F + 30c3

) ,

b3 = − F

6c3

(
15 + 3

√
5 − F − 30c3

) ,

b′1 =
[
F
(√

5 − 5
)(

5 +
√

5 − 2c3
√

5 − 20c3 + 15c3
2
)
+ 300c3

2

+ 60
√

5 − 100 − 120c3
√

5
]
/
[
40c3

(
−15 − 3

√
5 + F + 30c3

)]
,

b′2 = −
F
(√

5 − 5
)
(−2 + 3c3) − 180c3 + 120

8
(
−15 − 3

√
5 + F + 30c3

) ,

b′3 =
−5 + 3

√
5 − F

2c3

(
15 + 3

√
5 − F − 30c3

) ,

(3.5)

where F =
√

30(−1 +
√

5).

The above set of solution will give ‖τ (4)‖2 = 2.635231381 × 10−2 and ‖τ ′(4)‖2 can be
written in terms of c3. By using minimize command in MAPLE, ‖τ ′(4)‖2 has a minimum
value zero at c3 = 1.047071398. Since RKN is a one-step method, we only consider the
case c3 ∈ [0, 1] where ‖τ ′(4)‖2 lies between [1.872175321 × 10−2, 5.796540889 × 10−2]. We
developed a equidistant nodes code where c3 = 0.0 + 0.01i, i = 0, 1, 2, . . . . The method gives
an accurate results for most of the problems tested when c3 = 1, which will also gives
‖τ ′(4)‖2 = 1.872175321 × 10−2 and the dispersion constant is −(1/40320)z7 + O(z9) with a
periodicity interval of approximately (0, 7.571916). The new method which is denoted by
RKN3NEW can be represented by the following array (see Table 1).

In Table 1 where c2 = 0.520623384839812. The coefficients of RKN3NEW is generated
using computer algebra package MAPLE whose environment variable Digits which control
the number of significant digits which is set to 15. Table 2 shows the comparisons of the
characteristics of the method derived against the methods due to Van de Vyver [2], RKN3V
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Table 1: The RKN3NEW method.

c2 0.135524354421032
1 0.209565839192364 0.290434160807636

0.244851841626020 0.184576153506666 0.070572004867314
0.179870955627651 0.667802796899833 0.152326247472516

Table 2: Summary of the characteristics of the RKN methods.

Method u v ‖τ (r+1)‖2 ‖τ ′(r+1)‖2 D.C S.I/P.I
RKN3NEW 6 ∞ 2.64 × 10−2 1.87 × 10−2 − (0, 7.57)
RKN3V 6 ∞ 2.70 × 10−3 9.01 × 10−4 − (0, 7.57)
RKN4C 4 ∞ 4.01 × 10−4 3.10 × 10−4 7.37 × 10−5 (0, 9.33)
RKN3HS 12 3 1.12 × 10−2 1.59 × 10−2 1.83 × 10−2 (0, 9.42)
RKN4G 4 5 6.94 × 10−4 3.13 × 10−3 1/1440 (0, 8.77)

Note: u means dispersion order, v means dissipation order, D.C means dissipation constant, S.I means stability interval, P.I
means periodicity interval.

Calvo and Sanz-Serna [10], RKN4C van der Houwen and Sommeijer [6], RKN3HS and Garcı́a
et al. [11], RKN4G.

Please note that the RKN3NEW, RKN3V, RKN4G, and RKN3HS methods have three
function evaluations per step. The RKN4C method has five stages with FSAL technique
applied meaning that it has four effective stages per step.

4. Problem Tested

In order to evaluate the preciseness and effectiveness of the new RKN3NEW method, we
solved several physical problems which have oscillatory solutions using constant time step.
The RKN3NEW algorithm is coded and executed on Intel Pentium IV processor with double
precision arithmetic. Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 show the numerical results
for all methods used. These codes have been denoted by the following.

(i) RKN3NEW: The new zero-dissipative three-stage third-order RKN method with
minimal phase-lag derived in this paper.

(ii) RKN3V: The zero-dissipative three-stage third-order RKN method given in Van de
Vyver [2].

(iii) RKN4C: The zero-dissipative five-stage fourth-order RKN method with FSAL
technique given in Calvo and Sanz-Serna [10].

(iv) RKN3HS: The dissipative three-stage third-order RKN method given in van der
Houwen and Sommeijer [6].

(v) RKN4G: The dissipative three-stage fourth-order RKN method derived by Garcı́a
et al. [11].

To illustrate some properties of zero-dissipative with minimal phase-lag integrator, the
following physical problems are tested.

Problem 1 (Harmonic oscillator). One has

q′′(t) = −ω2q(t), q(0) = q0, q′(0) = q′0, t ∈ [0, tend]. (4.1)
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Figure 1: (Energy Conservation). The logarithm error of energy (ERR) at each integration point when
solving the harmonic oscillator for ω = 1 with initial condition q0 = 1, q′0 = 0 and Δt = 1/5.
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Figure 2: The error at each integration point when solving the harmonic oscillator with ω = 8 with initial
condition q0 = 1, q′0 = −2 and Δt = 1/20.

Exact solution: q(t) = c1 sin(ωt) + c2 cos(ωt)
Total energy as given in [1],

E
(
q, q′
)
=
q2

2
+
q
′2

2
=
a2

2
, (4.2)

where a depends on the initial conditions.

Problem 2 (An “almost” Periodic Orbit problem studied by Stiefel and Bettis [12]). One has

z′′ + z = 0.001eit, z(0) = 1, z′(0) = 0.9995i, t ∈ [0, tend]. (4.3)
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Figure 3: The global error at each integration point when solving the “almost” periodic problem (Problem
2) with Δt = 1/40.
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Figure 4: The global error at each integration point when solving the “almost” periodic problem (Problem
3) with Δt = 1/2.

Exact solution:

z(t) = (1 − 0.0005it)eit. (4.4)

We write in the equivalent form

q′′1 + q1(t) = 0.001 cos(t), q1(0) = 1, q′1(0) = 0,

q′′2 + q2(t) = 0.001 sin(t), q2(0) = 0, q′2(0) = 0.9995.
(4.5)

Exact solution q1(t) = cos(t) + 0.0005t sin(t), q2(t) = sin(t) − 0.0005t cos(t)
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Figure 5: The global error at each integration point when solving the inhomogeneous problem with Δt =
1/10.
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Figure 6: The error at each integration point when solving the inhomogeneous system with Δt = 1/20.

Problem 3 (An “almost” Periodic Orbit problem studied by Franco and Palacios [13]). One
has

z′′ + z = εeiψt, z(0) = 1, z′(0) = i, t ∈ [0, tend], (4.6)

where ε = 0.001 and ψ = 0.01. The analytical solution z(t) = u(t) + iv(t) is given by

u(t) =
1 − ε − ψ2

1 − ψ2
cos(t) +

ε

1 − ψ2
cos
(
ψt
)
,

v(t) =
1 − εψ − ψ2

1 − ψ2
sin(t) +

ε

1 − ψ2
sin
(
ψt
)
.

(4.7)
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Figure 7: The error at each integration point when solving the Duffing’s equation with Δt = 1/2.
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Figure 8: The efficiency curve for Problem 1 with ω = 5, tend = 105 and time step Δt = 0.1/2i, i = 0, . . . , 4.

Problem 4 (Problem studied by van der Houwen and Sommeijer [6]). One has

q′′(t) = −v2q(t) +
(
v2 − 1

)
sin(t), q(0) = 1, q′(0) = v + 1, (4.8)

where v � 1, t ∈ [0, tend].
Exact solution is q(t) = cos(vt) + sin(vt) + sin(t). Numerical result is for the case

v = 10.
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Figure 9: The efficiency curve for Problem 2 with tend = 2 · 105 and time step Δt = 1/(5 · 2i), i = 0, . . . , 4.
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Figure 10: The efficiency curve for Problem 3 with tend = 105 and time step Δt = 0.8/2i, i = 0, . . . , 4.

Problem 5 (Inhomogeneous system studied by Franco [5]). One has

q′′(t) +

⎛

⎜⎜⎜⎜⎜
⎝

101
2
−99

2

−99
2

101
2

⎞

⎟⎟⎟⎟⎟
⎠
q(t) = ε

⎛

⎜⎜⎜⎜⎜
⎝

93
2

cos(2t) −99
2

sin(2t)

93
2

sin(2t) −99
2

cos(2t)

⎞

⎟⎟⎟⎟⎟
⎠
,

q(0) =

(
−1 + ε

1

)

, q′(0) =

(
−10

10 + 2ε

)

, t ∈ [0, tend].

(4.9)
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Figure 12: The efficiency curve for Problem 5 with tend = 5 · 104 and time step Δt = 0.03 − 0.05i, i = 0, . . . , 4.

Exact solution:

q(t) =
(
− cos(10t) − sin(10t) + ε cos(2t)
cos(10t) + sin(10t) + ε sin(2t)

)
. (4.10)

Problem 6 (The undamped Duffing’s equations as given in [14]). One has

q′′(t) + q(t) +
(
q(t)
)3 = 0.002 cos(1.01t),

q(0) = 0.200426728067, q′(0) = 0, t ∈ [0, tend].
(4.11)
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Figure 13: The efficiency curve for Duffing’s equation with tend = 105 and time step Δt = 1/2i, i = 1, . . . , 5.

The exact solution computed by the Galerkin method and given by

q(t) =
4∑

i=0

a2i+1 cos[1.01(2i + 1)t], (4.12)

with a1 = 0.200179477536, a3 = 0.246946143× 10−3, a5 = 0.304014× 10−6, a7 = 0.374× 10−9, and
a9 < 10−12.

The results show the typical properties of zero-dissipative with minimal phase-lag
integrator, RKN3NEW which we have derived. We compare the method with the dissipative
method of high order of dispersion, RKN3HS [6]. Figure 1 shows the error of energy at each
integration point. It can be seen that the zero-dissipative with minimal phase-lag algorithm
conserved the energy with energy error one order magnitude smaller than the energy error
for dissipative algorithm. In Figures 2–7, we plotted the global error versus the time of
integration for different time step, Δt for various physical problems. From the figures we
observed that the global error produced by the RKN3NEW method do not increased over
time. This means that the approximate solutions remain in phase over a long-range of
integration. Clearly, the global error propagated faster over the time for dissipative RKN3HS
method. Next we study the global error growth and the efficiency of the method over a long
period of integration.

Figures 8–13 presented the efficiency of the method developed by plotting the graph
of the decimal logarithm of the maximum global error against the logarithm number of
function evaluations for long periods of computations. The RKN3NEW is significantly more
efficient than the RKN4C method and the dissipative RKN3HS and RKN4G methods for
the homogeneous and nonhomogeneous problems. It is also found that the RKN3NEW is
competitive when compared with the symplectic RKN3V method. This validate the fact that
the zero-dissipation with minimal phase-lag is an important element when solving ODEs in
which the solutions are in oscillating form. The dissipative methods RKN3HS and RKN4G are
less accurate and hence the global error accumulated faster when the integration is done over
a longer interval. For the nonlinear oscillator problem, it is necessary to compare the method
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with another method of the same algebraic order because the global error is dominated by
the truncation error due to algebraic order rather than the dispersion error, see [15].

5. Conclusion

In this paper we have derived an explicit zero-dissipative RKN3NEW method with minimal
phase-lag which is suitable for problems with oscillating solutions especially for long-range
integration. From the numerical results, we can conclude that the new RKN3NEW method
is more promising compared to dissipative method RKN3HS, RKN4G and with symplectic
method, RKN4C and as competitive when compared with symplectic RKN3V method. One
can obtain higher-order accuracy by extending the idea given in this paper.
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