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This paper presents an adaptive teleoperation which is robust to time-delay and environmental
uncertainties while assuring the transparent performance. A novel theoretical framework and
algorithms for the teleoperation system have been built up with neural network-based multiple
model control and time forward state observer. Conditions for stability and transparency
performance are also identified. Simulations show that the system is stable and in good
performance.

1. Introduction

Applications of master-slave teleoperation system can be found in many areas from
micro to macro scales. A teleoperation system or a bilateral telemanipulation system is a
complex electro-mechanical system with a master and a slave device, interconnected by
a communication channel and controller. Through interaction with the master device, the
human operator is able to communicate control signals for the slave. The slave device actually
interacts with the remote environments, thereby staying under full control of the human
operator. Information gathered at the remote environments is transmitted back to the human
operator through the master device. Usually a camera is installed at the slave device to
provide the visual information to the operator.

The existence of varying time delays in the communication channel and the uncer-
tainty of the remote environments are the most important problems regarding the stability of
the teleoperation systems since they will cause bad performance or instability to the system.
Another important aspect is the transparency or the transparent performance of the systems.
The transparency is defined as the impedance felt by the human operator on the local site.
This allows the operator to feel the real sense of the remote environments. It can be applied
in the case, for example, where the medical doctors cannot approach the patients directly.
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Delays in the communication channel make the standard control law nonpassive
system. But by mimicking the lossless transmission line, the system becomes passive and,
hence, stable. Kikuchi el al. [1] proposed a teleoperation system in dynamic environment
with varying communication time delays. The proposed system consists of the stable bilateral
teleoperation subsystem that offers pictures in remote site and the environment prediction
display subsystem that offers the prediction of the slave manipulator and the environment.
Zhu and Salcudean [2] introduced a novel stability guaranteed controller design for bilateral
teleoperation under both position and rate control modes with arbitrary motion/force
scaling. Boukhnifer and Ferreira [3] presented a bilateral controller for a micro-teleoperation
system using passivity approaches. They showed that the application of wave variable
formation allows the passivity of the system in spite of the communication delays and the
varying scaling factors.

Transparency and stability in bilateral teleoperation systems have also been analyzed
when communication delays are present. Lawrence [4] explored the trade-off algorithm
between transparency and stability based on the concept of impedance, a quantity that maps
the input position of a system to the output force. When a teleoperation system is ideal, the
operator feels as if he is operating directly the remote environments. Slawiñski and Mut [5]
proposed defining transparency in the time domain and established a quantitative measure
of how the human operator feels the remote system. It allows analyzing the effect of the time-
varying delays on the system transparency.

The complexity of the uncertain remote environments makes the development of
such exact models for all potential environments impossible. For the model detection,
various methods have been developed. One of the most effective approaches is the use of
multiple-model neural network. By very fast calculation, the neural network can select the
most reliable model and provide the online optimal control action for the system. Most
of the current employed neural networks for artificial intelligence are based on statistical
estimation, optimization, and control theory. Chen et al. [6] proposed a neural network-based
multiple-model adaptive control for teleoperation system. Decision controller is designed
to adaptive switch among all predictive controllers according to the performance target.
This method can ensure the stability and transparent performance of the system. Smith and
Hashtrudi-Zaad [7] used two neural networks at the master and slave devices to improve the
transparency and to compensate the effect of the time delays.

This paper presents a novel scheme to control the displacement and force for a bilateral
teleoperation system in variant time delays and environmental uncertainties. The aim of the
paper is to develop a simple and low cost teleoperation connected via the global internet
system (Internet Protocol Suite—TCP/IP) and without a camera in the slave device. The
system can be supported by a telephone or voice chat over Internet Protocol (VoIP) for a
medical doctor who can use the hands/fingers to examine the remote patients. The idea
of the system is initiated from the design of a medical teleanalyzer in Suebsomran and
Parnichkun [8] who introduced a hybrid teleoperation controller of displacement and force,
which is robust to internal and external disturbances, model uncertainty, load, and fiction.
The teleoperation transparency in time delays and the effect of local force feedback were
also investigated by Hashtrudi-Zaad and Salcudean [9] where the stability robustness of the
system was analyzed and the transparency conditions for a general teleoperation system are
presented. The environment uncertainty modeling and verification are referred to by Minh
V.T et al. in [10]. The stability of uncertain cellular neural networks and the stability criterion
for bidirectional associate memory neural networks with interval time-varying delays are
also referred to by Kwon and Park in [11, 12].
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Figure 1: Teleopration system configuration.
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Figure 2: Physical model of master and slave manipulator.

The followings are the content of this paper: Section 2 introduces the system modeling;
Section 3 develops the system time forward observer; Section 4 sets up stability and
transparency conditions for the system controller; Section 5 illustrates simulation results; and
finally conclusions are drawn in Section 6.

2. System Modeling

As mentioned in the introduction part, a teleoperation system consists of four fundamental
components: the human operator, the communication channel, the slave manipulator,
and the environment. Through these five components, information is exchanged in two
directions. The control channel enables the human operator to assign tasks to the slave
and control the slave as desired. Then, information about the task execution is fed back to
the human operator. Both channels are interconnected via the normal internet system. For
the simplification and low cost purpose, there is no camera installed in the slave device—a
voice chat over Internet Protocol can support the communication between the doctor and the
patient instead. Figure 1 shows the basic configuration for a bilateral control setting adopted
by the position-force controller architecture by Lawrence [4]: the operator moves the master
manipulator and via the Internet channel communication, the slave manipulator follows.
Forces exerted by the environment on the slave are transmitted back to the master and felt by
the operator.

The human force on the master fh and the master motion xm should have the same
relationship with the force on the environment fe and the slave motion xs, that is, for the
same forces, fe = fh, the motions should be the same, xs = xm. This requirement assures
that the system is completely transparent. So the operator feels the real sense of the remote
environments. Notations, u, udm, ud, and us, are the signals transmitted among the system’s
components.

The master and slave are all modeled as mechanical devices with masses, dampers,
and springs, as shown in Figure 2.

The human force fh is applied to the master manipulator and xm is the position of the
master; fe is the contact force between the slave manipulator and the environment, and xs
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is the position of the slave; udm is the feedback signal from the slave, and ud is the control
signal given by the master through the Internet. Notations, mm, ms, bm, bs, km, and ks, are the
inertia, damping, and spring stiffness of the master and slave manipulator, respectively.

The dynamics of the master and the slave are given by the following equations:

fh − udm = mmẍm + bmẋm + kmxm, (2.1)

ud − fe = msẍs + bsẋs + ksxs. (2.2)

For the variant time delays and the environmental uncertainties, it is assumed that the
dynamics of the environment are also regulated by a finite set of mechanical devices with
masses, dampers, and springs, shown in Figure 3: xsi denotes the position of the slave device
and fei denotes the force applied on the environment i. Similarly, mei, kei, and bei are mass,
stiffness and damping parameters of the unknown and time-variant environment models.

The dynamics of the environment model are formulated by the following equation:

fe = meẍs + beẋs + kexs or fei = meiẍsi + beiẋsi + keixsi, for i = 1, . . . , n. (2.3)

Since the environment models are uncertain, a neural network with the radial basis function
(RBF) is used to detect the environmental dynamics since RBF network is easy to approximate
the parameters and the training speed is fast. For n given environment models, the input
vectors U is the movement of the slave device

U =

⎡

⎢

⎣

xs1 · · · xsn

ẋs1
. . . ẋsn

ẍs1 · · · ẍsn

⎤

⎥

⎦
, (2.4)

and the target vectors Y is the environment model parameters:

Y =

⎡

⎢

⎣

ke1 · · · ken

be1
. . . ben

me1 · · · men

⎤

⎥

⎦
. (2.5)

From the online archived slave movements, [xsi ẋsi ẍsi]
′, RBF will on line calculate the

corresponding environment parameters,[̂kei ̂bei m̂ei]
′
, and, then, the corresponding model

errors ∈i =
√

[mei − m̂ei]
2 + [bei − ̂bei]

2
+ [kei − ̂kei]

2
. If the ∈m is the smallest, the mth
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Figure 4: Schematic Diagram of the Teleoperation System.

environment model which fits the best to the current dynamics is selected. The environment
modeling and verification are referred to by Minh. et al. in [10]. It is assumed that the
environmental uncertainties can be represented by mathematical models. To each model, the
system behavior changes and should be estimated by a different modes. The system mode
may jump up or vary continuously in a discrete set.

Since the master and the slave devices are connected via the Internet, the time delay is
significant and variant. Thus, the equations for signal transmitted via communication channel
must include the forward time delay, TR(t), and the backward time delay, TL(t):

ud = u(t − TR(t)),

udm = us(t − TL(t)).
(2.6)

Finally the overall schematic diagram of the proposed system is show in Figure 4.
The operator moves the master plant, which causes a transmitted signal, u(t). In

conventional methods proposed by Lawrence [4] and Hashtrudi-Zaad and Salcudean [9],
the transmitted signals include position, velocity, and acceleration. But in this proposed
system, the operator (medical doctor) wants to directly and gently touch the patient, and
the acceleration is difficult to be realized and can be omitted from the dynamic equations in
order to guarantee the high transparency for the operator. Thus,

u(t) = f11xm(t) + f12ẋm(t) + c11fh(t), (2.7)

where f11, f12, and c11 are the feedback coefficients. Because the forward time delay, TR(t),
causes ud(t)/=u(t), we use xs(t), ẋs(t), and fe(t) to adjust ud(t) as follows:

ud(t) = f11xm(t − TR(t)) + f12ẋm(t − TR(t)) + c11fh(t − TR(t)) + f13xs(t) + f14ẋs(t) + c12fe(t),
(2.8)

where f13, f14, and c12 are also the feedback coefficients.
Similarly, the slave transmitted signal, us(t), should include force, position, and

velocity:

us(t) = f23xs(t) + f24ẋs(t) + c22fe(t), (2.9)
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where f23, f24, and c22 are the feedback coefficients. And since udm(t)/=us(t) is caused by the
backward time delay, TL(t), we use xm(t− T(t)), ẋm(t = T(t)), and fh(t− T(t)) to adjust udm(t)
as follows:

udm(t) = f23xs(t − TL(t)) + f24ẋs(t − TL(t)) + c22fe(t − TL(t))

+ f21xm(t − T(t)) + f22ẋm(t) + c21fh(t − T(t)),
(2.10)

where T(t) = TR(t) + TL(t) is the total of time delay and f21, f22, and c21 are the feedback
coefficients. In this equation, udm(t) can respond the control effect of u(t − T(t)). As a result,
if we use the predicted value of udm(t + T(t)) as the feedback value from the slave, then the
operator can feel that the time delay does not exist since the time delay on the transparency
has been eliminated.

Predicted value of udm(t + T(t)) is labeled as ûdm(t) and

ûdm(t + T(t)) = f21xm(t) + f22ẋm(t) + c21fh(t)

+ f23x̂s(t + TR(t)) + f24 ˙̂xm(t + TR(t)) + c22 ̂fe(t + TR(t)),
(2.11)

where x̂s(t + TR(t)), ˙̂xm(t + TR(t)), and ̂fe(t + TR(t)) are the predicted values of xs(t + TR(t)),
ẋm(t + TR(t)), and fe(t + TR(t)).

According to the environment model, ̂fe(t + TR(t)) can be estimated by the following
equation:

̂fe(t + TR(t)) = me
¨̂xs(t + TR(t)) + be ˙̂xs(t + TR(t)) + kex̂s(t + TR(t)). (2.12)

Then, the predicted values of x̂s(t + TR(t)) and ˙̂xs(t + TR(t)) can be achieved through the time
forward observer design in the next section.

3. Observer Design

Teleoperation observer is used to estimate the system parameters for the time delay
compensation. The system can only achieve a high level of transparency with a good observer
based on the predicted system dynamics. In order to predict xs(t + TR(t)) and ẋs(t + TR(t)),
(2.8) is substituted into (2.2):

f11xm(t − TR(t)) + f12ẋm(t − TR(t)) + c11fn(t − TR(t))

+ f13xs(t) + f14ẋm(t) + c12fe(t) − fe(t)

= msẍs(t) + bsẋs(t) + ksxs(t).

(3.1)

We define

ud(t) = f11xm(t − TR(t)) + f12ẋm(t − TR(t)) + c11fh(t − TR(t)). (3.2)
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Equation (3.1) becomes

ud(t) = msẍs(t) +
(

bs − f14
)

ẋs(t) +
(

ks − f13
)

xs(t) + (1 − c12)fe(t). (3.3)

Substituting (2.3) into (3.3),

ud(t) = (ms + (1 − c12)me)ẍs(t)

+
((

bs − f14
)

+ (1 − c12)be
)

ẋs(t)

+
((

ks − f13
)

+ (1 − c12)ke
)

xs(t).

(3.4)

Converting (3.4) into state-space form, we have

ẋs(t) = Asxs(t) + Bsud(t),

y(t) = Csxs(t),
(3.5)

where

xs(t) =

[

xs(t)

ẋs(t)

]

, Cs =
[

1 0
]

, Bs =

[

0

1/ms(1 − c12)me

]

,

As =

⎡

⎢

⎣

0 1

−
(

ks − f13
)

+ (1 − c12)ke
ms + (1 − c12)me

−
(

bs − f14
)

+ (1 − c12)be
ms + (1 − c12)me

⎤

⎥

⎦
.

(3.6)

From (3.5), in order to predict udm(t + T(t)), we have to prognosticate xs(t + TR(t)) and ẋs(t +
TR(t)) by forwarding into the future with TR(t) units:

ẋs(t + TR(t)) =
(

1 + ṪR(t)
)

Asxs(t + TR(t)) +
(

1 + ṪR(t)
)

Bsud(t + TR(t)),

y(t + TR(t)) = Csxs(t + TR(t)).
(3.7)

However, it is difficult to estimate ṪR(t). According o the characteristic of the Internet, we can
model TR(t) as uncertain parameters, and (3.7) becomes

ẋs(t + TR(t)) = (As + ΔAs)xs(t + TR(t)) + (Bs + ΔBs)ud(t + TR(t)),

y(t + TR(t)) = Csxs(t + TR(t)),
(3.8)

where Δt = ṪR(t) and ΔAs and ΔBs are modeled as uncertain parameters, ΔAs = ΔtAs and
ΔBs = ΔtBs. In (3.8), when the time delay is constant, ṪR(t) = 0, these uncertain parameters
do not exist.
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Value of xs(t + TR(t)) can be also calculated directly by the current master dynamics
xm(t), ẋm(t), and fh(t) via the following observer:

ż(t) = Asz(t) + Bs

(

f11xm(t) + c11fh(t)
)

+ L
(

y(t + TR(t)) − ys(t)
)

,

ys(t) = Csz(t),
(3.9)

where L is the observer gain, xm(t) =
[

xm(t)
ẋm(t)

]

, and z(t) =
[

x̂s(t)
˙̂xs(t)

]

.
Since the master output, y(t + TR(t)), cannot be measured, we can use the available

adjustment of t − TL(t) as follows:

ż(t) = Asz(t) + Bs

(

f11xm(t) + c11fh(t)
)

+ L
(

y(t − TL(t)) − ys(t − TR(t) − TL(t))
)

,

ys(t) = Csz(t).
(3.10)

Let the observing error e(t) = xs(t + TR(t) − z(t)), then

ė(t) = Ase(t) + ΔAsxs(t + TR(t)) − LCse(t − TR(t) − TL(t)) + ΔBs

(

f11xm(t) + c11fh(t)
)

(3.11)

RBF will on line calculate the smallest em(t), and the mth environment model which fits the
best to the current environmental dynamics is selected for the system controller. Conditions
for a stabilized and transparent controller are developed in the next section.

4. Controller Design

In this part, the controller design with guaranteed conditions for the system transparency and
stability is established. The time forward state calculation for the slave state at (t + TR(t)) has
been performed in the previous section. Using ûdm(t + T(t)) in (2.11) to take place of udm(t)
in (2.1), we have:

fh(t) −
(

f21xm(t) + f22ẋm(t) + f23x̂s(t + TR(t)) + f24 ˙̂xs(t + TR(t)) + c21fh(t) + c22 ̂fe(t + TR(t))
)

= mmẍm(t) + bmẋm(t) + kmxm(t).
(4.1)

Rearranging (4.1) yields

mmẍm(t) +
(

bm + f22
)

ẋm(t) +
(

km + f21
)

xm(t)

= −
(

f23x̂s(t + TR(t)) + f24 ˙̂xs(t + TR(t)) + c22 ̂fe(t + TR(t))
)

.
(4.2)
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Substituting (2.12) into (4.2) and modifying, we have

mmẍm(t) +
(

bm + f22
)

ẋm(t) +
(

km + f21
)

xm(t)

= −
((

f23 + c22ke
)

x̂s(t + TR(t)) +
(

f24 + c22be
) ˙̂xs(t + TR(t)) + c22me

¨̂xs(t + TR(t))
)

+ (1 − c21)fh(t).

(4.3)

Using z(t) in (3.9) replacing x̂s(t) in (4.3), we have

ẍm(t) +

(

bm + f22
)

mm
ẋm(t) +

(

km + f21
)

mm
xm(t) =

(1 − c21)
mm

fh(t) − (Aez(t) + Beż(t)), (4.4)

where

Ae =
[
(

f23 + c22ke
)

mm

(

f24 + c22be
)

mm

]

, Be =
[

0
c22me

mm

]

. (4.5)

Substituting (3.9) into (4.4) and altering, we have

ẍm(t) +

(

bm + f22
)

mm
ẋm(t) +

(

km + f21
)

mm
xm(t)

= −(Ae + BeAs)z(t) + BeBs

(

f11xm(t) + c11fh(t)
)

+ BeLCse(t − t(T)) +
(1 − c21)

mm
fh(t)

(4.6)

or

ẍm(t) +

(
(

bm + f22
)

mm
+ BeBsf12

)

ẋm(t) +

(
(

km + f21
)

mm
+ BeBsf11

)

xm(t)

=
(

(1 − c21)
mm

+ BeBsc11

)

fh(t) − ((Ae + BeAs)z(t) + BeLCse(t − T(t))).

(4.7)

Converting (4.7) into state-space form, we have

ẋm(t) = Amxm(t) + Bmfh(t) − (Az(xs(t + TR(t)) − e(t)) + Bze(t − T(t))),

ym(t) = Cmxm(t),
(4.8)
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where

Am =

⎡

⎢

⎣

0 1

−
(

km + f21

mm
+ BeBsf11

)

−
(

bm + f22

mm
+ BeBsf12

)

⎤

⎥

⎦
, Cm =

[

1 0
]

, (4.9)

Bm =

⎡

⎢

⎣

0

1 − c11

mm
+ BeBsc11

⎤

⎥

⎦
, Az =

[

0

Ae + BeAs

]

, Bz =

[

0

BeLCs

]

. (4.10)

From (3.8), (3.11), and (4.8), the model of total system is established as

x(t) = Ax(t) +Atx(t − T(t)) + Bfh(t),

y(t) = Cx(t),
(4.11)

where

x(t) =

⎡

⎢

⎢

⎣

xm(t)

xs(t + TR(t))

e(t)

⎤

⎥

⎥

⎦

, A =

⎡

⎢

⎢

⎣

Am −Az Az

(Bs + ΔBs)f11 As + ΔAs 0

ΔBsf11 ΔAs As

⎤

⎥

⎥

⎦

, C =

⎡

⎢

⎢

⎣

Cm 0 0

0 Cs 0

0 0 0

⎤

⎥

⎥

⎦

,

B =

⎡

⎢

⎢

⎣

Bm

(Bs + ΔBs)c11

ΔBsc11

⎤

⎥

⎥

⎦

, At =

⎡

⎢

⎢

⎣

0 0 −Bz

0 0 0

0 0 −LCs

⎤

⎥

⎥

⎦

.

(4.12)

The model of total system in (4.11) is now subject to conditions for the system transparency
as referred to by Lawrence [4] that a teleoperation system achieves stability and ideal
transparency if the following relation is maintained:

Fe(s)
Xs(s)

=
Fh(s)
Xm(s)

, (4.13)

where Fe(s), Xs(s), Fh(s), and Xm(s) are the Laplace transform of fe(t), xs(t), fh(t), and xm(t),
respectively.
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Substituting (2.2), (2.3), (2.8), and (2.10) into (4.13), following conditions for the
system transparency yield:

((1 − c21)(ms + (1 − c12)me) − c11c22me)me = (ms + (1 − c12)me)mm,

((1 − c21)(ms + (1 − c12)me) − c11c22me)be

+ (1 − c12)
(

bs − f14 + (1 − c12)be − c11
(

f24 + c22be
))

me

=
(

bs − f14 + (1 − c12)be
)

mm + (ms + (1 − c12)me)
(

bm + f22
)

+ c22mef12,

((1 − c21)(ms + (1 − c12)me) − c11c22me)ke

+
(

(1 − c12)
(

bs − f14 + (1 − c12)be − c11
(

f24 + c22be
))

be

+(1 − c21)
(

ks − f13 + (1 − c12)ke
)

− c11
(

f23 + c22ke
))

me

=
(

ks − f13 + (1 − c12)ke
)

mm +
(

bs − f14 + (1 − c12)be
)(

bm + f22
)

+ (ms + (1 − c12)me)
(

km + f21
)

+ c22mef11 +
(

f24 + c22be
)

f12

(

(1 − c21)
(

bs − f14 + (1 − c12)be
)

− c11
(

f24 + c22be
))

ke

+ (1 − c21)
(

ks − f13 + (1 − c12)ke
)

− c11
(

f23 + c22ke
)

be

=
(

ks − f13 + (1 − c12)ke
)(

bm + f22
)

+
(

bs − f14 + (1 − c12)be
)(

bm + f21
)

+
(

f24 + c22be
)

f11 +
(

f23 + c22ke
)

f12,

(

(1 − c21)
(

ks − f13 + (1 − c12)ke
)

− c11
(

f23 + c22be
))

ke

=
(

ks − f13 + (1 − c12)ke
)(

km + f21
)

+
(

f23 + c22ke
)

f11.

(4.14)

Consequently, if (4.14) is feasible, the system will achieve the stability and ideal transparency.
Simulations for this controller are examined in the next section.

5. Simulation Results

Simulation of this proposed model is developed with Matlab/Simulink for time-variant
delays and environment uncertainties. The controller is also tested for the ability to reject
disturbances while maintaining its closed-loop stability.

In the simulation, the parameters of the master and slave manipulator are selected as
mm = 1.5 kg, bm = 0.45 Ns/m, km = 1 N/m, ms = 1.5 kg, bs = 0.45 Ns/m, and ks = 1 N/m.
It is assumed that the environment uncertainties consist of three models M1, M2, and M3

activated randomly.
The parameters of environment model M1 are selected as me1 = 1.1 kg, be1 = 0.6 Ns/m,

and ke1 = 0.6 N/m. The initial controller parameters are chosen as c11 = 30, f11 = 2, f12 = 1,
f21 = 1456, and f22 = 987. To assure the system transparency, other controller parameters
are calculated as solutions of (4.14) as c12 = −27.636, c21 = −29, c22 = 28.636, f13 = −1.8182,
f14 = −1.3682, f23 = −1456.2, and f24 = −986.63.

Similarly, the parameters of environment model M2 are selected as me2 = 1.0 kg, be2 =
0.4 Ns/m, and ke2 = 0.8 N/m. Then, other initial controller parameters are chosen as c11 = 20,
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Figure 5: Matlab Simulink diagram.

f11 = 2, f12 = 1, f21 = 1500, and f22 = 1200. For transparency conditions, the remaining
controller parameters are calculated as c12 = −17.5, c21 = −19, c22 = 18.5, f13 = −2.2, f14 =
−1.15, f23 = −1499.8, and f24 = −1199.8.

The parameters of environment model M3 are selected as me3 = 1.5 kg, be3 = 0.7 Ns/m,
and ke3 = 0.5 N/m. The initial controller parameters in this case are chosen as c11 = 30, f11 = 2,
f12 = 1, f21 = 1497, and f22 = 1356. Conditions for the system transparency lead to other
controller parameters as c12 = −28, c21 = −29, c22 = 29, f13 = −1.5, f14 = −1.25, f23 = −1497.5,
and f24 = −1355.8.

The time-variant delays in the communication channel are randomly selected with
0 < TR(t) ≤ 5 s and 0 < TL(t) ≤ 5 s. The three environmental uncertainties, M1, M2, and M3

are also randomly activated, and the RBF network is used to select the best fitted model. The
maximum allowable bound of time delay, TMax DeLay, for guaranteeing stability of the system
therefore is the sum of the maximum of forward time delay, TMax R(t), and the maximum of
backward time delay, TMax L(t), TMax DeLay ≤ TMax R(t) + TMax L(t) = 10 s.

The input human force, fh, with pulse generator activates the movement of the master
device, xm. Three environment models, M1, M2, and M3, are activated at time from timeline
from 0–30 s, 31–60 s, and 61–90 s, respectively. RBF identifies the environmental parameters
and activates the suitable adaptive controllers. A white noise is also injected to the system to
test the ability of the system to maintain its stability as shown in Figure 5.

Results of the simulation for the time-variant delays and the environmental
uncertainties are shown in Figure 6. The subplots indicate the forces and movements of the
master and the slave. The adaptive predictive controller is accurate, and the system is stable
and in good performance since the slave profiles tracking well to the master amid the time-
variant delays and the environment uncertainties.

Lastly, the model is tested for the ability to maintain its closed-loop stability with
noise disturbances. Simulation results for the time-variant delays and the environmental
uncertainties with noises are shown in Figure 7.

Simulation results show that the system is stable under the white-noise disturbances.
The outputs can track the input properly without steady-state error. The controller is robust
to the disturbances.
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Figure 6: Position of master and slave with time-variant delays and environmental uncertainties.
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Figure 7: Position of master and slave with time-variant delays and noises.
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6. Conclusion

This paper presents a novel theoretical framework to design a teleoperation system dealing
with time-variant delays and environmental uncertainties. Using predictive strategies and
RBF network, the stability and transparency of the system are guaranteed amid the noise
disturbance. The RBF neural network is trained off line using a set of environmental
models and selects the best fitted model in the current environment dynamics. Issue of
communication uncertain delays in teleoperation is also addressed. A neural network-based
multiple-model adaptive controller is proposed to design the time forward state observer.
Simulations show that the system is stable and in good performance. However, the system
becomes unstable if conditions for the stability and transparency are not feasible. Further
analysis is needed for the effectiveness with respect to the achievable performance and
reliability of this design.
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