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This paper indicates that the filled function which appeared in one of the papers by Y. L. Shang et
al. (2007) is also a tunneling function; that is, we prove that under some general assumptions this
function has the characters of both tunneling function and filled function. A solution algorithm
based on this T-F function is given and numerical tests from test functions show that our T-F
function method is very effective in finding better minima.

1. Introduction

Because of the advances in science, economics, and engineering, studies on global optimiza-
tion for the multiminimum nonlinear programming problem have become a topic of great
concern. The existence of multiple local minima of a general nonconvex objective function
makes global optimization a great challenge [1–3]. Many deterministic methods using an
auxiliary function have been proposed to search for a globally optimal solution of a given
function of several variables, including filled function method [4] and tunneling method [5].

The filled function method was first introduced by Ge in the paper in [4]. The key idea
of the filled functionmethod is to leave from a local minimizer x∗

1 to a better minimizer of f(x)
with the auxiliary function P(x) constructed at the local minimizer x∗

1 of f(x). Geometrically,
P(x) flattens in the higher basin of f(x) than B∗

1. So a local minimizer x of P(x) can be found,
which lies in the lower basin of f(x) than B∗

1. To minimize f(x) with initial point x, one
can find a lower minimizer x∗

2 of f(x). with x∗
2 replacing x∗

1, one can construct a new filled
function and then find a much lower minimizer of f(x) in the same way. Repeating the above
process, one can finally find the global minimizer x∗

g of f(x).
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The basin of f(x) at an isolated minimizer of f(x), x∗, is defined in the paper in [4]
as a connected domain B∗ which contains x∗ and in which the steepest descent trajectory of
f(x) converges to x∗ from any initial point. The hill of f(x) at x∗

1 is the basin of −f(x) at its
isolated minimizer x∗

1.
The concept of the filled function is introduced in the paper in [4]. Assume that x∗ is

a local minimizer of f(x). A function P(x) is called a filled function of f(x) at x∗ if P(x) has
the following properties.

(P1) x∗ is a maximizer of P(x) and the whole basin B∗ of f(x) at x∗ becomes a part of a
hill of P(x).

(P2) P(x) has no minimizers or saddle points in any higher basin of f(x) than B∗.

(P3) if f(x) has a lower basin than B∗, then there is a point x′ in such a basin that
minimizes P(x) on the line through x and x∗.

The form of the filled function proposed in paper [4] is as follows:

P
(
x, x∗, r, q

)
=

1
r + f(x)

exp

(

−‖x − x∗‖2
q2

)

, (1.1)

where r and q are two adjustable parameters.
However, this function still has some unexpected features.

First, this function has only a finite number of local minimizers.

Second, the efficiency of the algorithm strongly depends on two parameters: r and
q. They are not so easy to be adjusted to make them satisfy the needed conditions.

Thirdly, when the domain is large or q is small, the factor exp(−‖x − x∗‖/q2) will
be approximately zero; that is, when the domain is large, this function will become
very flat. This makes the efficiency of the algorithm decrease.

The tunneling function method was first introduced by Levy and Montalvo in the
paper in [5]. The definition of the tunneling function in the paper in [5] is as follows.

Let x∗ be a current minimizer of f(x). A function P(x, x∗) is called a tunneling function
of f(x) at a local minimizer x∗ if, for any x0 ∈ Rn, P(x0, x∗) = 0 if and only if f(x0)−f(x∗) = 0.

Although some other filled functions were proposed later [6–9], they are not
satisfactory for global optimization problem, all of them have the same disadvantages
mentioned above. Paper [10] proposes a new definition of the filled function and gives a
new filled function form which overcomes these disadvantages.

This paper is organized as follows. In Section 2, some assumptions and some new
definitions are proposed; the definition of the filled function given in this paper is different
from the paper in [4]. A T-F function satisfying the new definition of the T-F function is given
in Section 3. This function has the properties of both the filled function and the tunneling
function. Next, in Section 4, a T-F function algorithm is presented. A global minimum of an
unconstrained optimization problem can be obtained by using these methods. The results of
numerical experiments for testing functions are reported in Section 5. Finally, conclusions are
included in Section 6.
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2. Some Assumptions and Some Definitions

Consider the following unconstrained global optimization problem:

(P)∗ : min f(x), subject to x ∈ Rn. (2.1)

Throughout this paper, similar to the paper in [10], we assume that the following conditions
are satisfied.

Assumption 2.1. f(x) is Lipschitz continuously differentiable on Rn; that is, there exists a
constant L > 0 such that |f(x) − f(y)| ≤ L‖x − y‖ holds for all x, y ∈ Rn.

Assumption 2.2. f(x) is a coercive function, that is, f(x) → +∞ as ‖x‖ → +∞.

Notice that Assumption 2.2 implies that there exists a bounded and closed set Ω ⊂ Rn

whose interior contains all minimizers of f(x). One assumes that the value of f(x) for x on
the boundary of Ω is greater than the value of f(x) for any x inside Ω. Then the original
problem (P)∗ is equivalent to the following problem:

(P) : min f(x), subject to x ∈ Ω. (2.2)

Assumption 2.3. The set F = {f(x∗) | x∗ ∈ L(P)} is finite, where L(P) is the set of all
minimizers of problem (P).

Note that Assumption 2.3 only requires that the number of local minimal values of
problem (2.2) be finite. The number of local minimizers can be infinite.

To overcome the disadvantages mentioned in Section 1, a new definition of the filled
function was proposed in the paper in [10] in the following. Throughout this paper, we let x∗

be the current local minimizer of f(x).

Definition 2.4 (see [10]). P(x, x∗) is called a filled function of f(x) at a local minimizer x∗ if
P(x, x∗) has the following properties.

(i) x∗ is a local maximizer of P(x, x∗).

(ii) If f(x) ≥ f(x∗) and x /=x∗, then ∇P(x, x∗)/= θ.

(iii) If there is a local minimizer x∗
1 of f(x) satisfying f(x∗

1) < f(x∗), then P(x, x∗) does
have a minimizer x∗

1 ∈ B(x∗
1, δ) and f(x∗

1) < f(x∗).

These properties of this filled function ensure that, when a descent method, for
example, a quasi-Newton method, is employed to minimize the constructed filled function,
the sequence of iteration point will not terminate at any point in which the value of f(x)
is larger than f(x∗) and that, when there exist basins of f(x) lower than B∗, there exists a
minimizer of the filled function such that the value of f(x) at this point is less than f(x∗);
that is, any local minimizer of P(x, x∗) belongs to the set S = {x ∈ Rn : f(x) < f(x∗)}.
Consequently, we can obtain the better local minimizer of f(x) starting from any point in
the S.



4 Mathematical Problems in Engineering

We give a modified definition of the tunneling function of f(x) as follows.

Definition 2.5. P(x, x∗) is called a tunneling function of f(x) at a local minimizer x∗ if, for any
x0 ∈ Rn with r > 0, P(x0, x∗) = 0 if and only if f(x0) − f(x∗) + r ≤ 0.

The properties of this new tunneling function ensure that a function must satisfy
[5, Definition 1.2] when it satisfies Definition 2.5, so it is a modified tunneling function.
Consequently, we can obtain the better local minimizer of f(x) by using the tunneling
function method given in the paper in [5].

We give a modified definition of the T-F function of f(x) as follows.

Definition 2.6. P(x, x∗) is called a modified T-F function of f(x) at a local minimizer x∗ if it
is both a tunneling function and a filled function; that is, it satisfies Definitions 2.4 and 2.5 at
the same time.

3. Modified T-F Function and Its Properties

We propose an auxiliary function of f(x) for problem (P) as follows:

P
(
x, x∗, r, q

)
=

ln
(
1 + q

∣∣f(x) − f(x∗) + r
∣∣)

1 + q‖x − x∗‖ , (3.1)

where r > 0 and q > 0 are two parameters and r satisfies

0 < r < min
x∗
1∈L(P)

(
f(x∗) − f

(
x∗
1

))
, f

(
x∗
1

)
< f(x∗). (3.2)

The following Theorems, 3.2−3.6, already show that P(x, x∗, r, q) is a filled function
of f(x) satisfying Definition 2.4 under some conditions in the paper in [10]. Theorem 3.1
also proves that this function satisfies Definition 2.5; that is, this function is a modified T-F
function.

Theorem 3.1. Let x∗ be the current local minimizer of f(x). Then, for any x0 ∈ Rn with q, r > 0,
P(x0, x∗, r, q) = 0 if and only if f(x0) − f(x∗) + r ≤ 0; that is, P(x, x∗, r, q) is a modified tunneling
function of f(x).

Proof. For any x0 ∈ Rn with r > 0,

P
(
x0, x∗, r, q

)
=

ln
(
1 + q

∣∣f
(
x0) − f(x∗) + r

∣∣)

1 + q‖x0 − x∗‖ = 0, (3.3)

if and only if

ln
(
1 + q

∣∣∣f
(
x0
)
− f(x∗) + r

∣∣∣
)
= 0, (3.4)
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if and only if

f
(
x0
)
− f(x∗) + r = 0. (3.5)

Hence P(x, x∗, r, q) is a modified tunneling function of f(x).

Theorem 3.2 (see [10]). x∗ is a strictly local maximizer of P(x, x∗, r, q) when q is sufficiently large
and r satisfies formula (3.2).

Proof. One has that

P
(
x, x∗, r, q

)
=

ln
(
1 + q

∣
∣f(x) − f(x∗) + r

∣
∣)

1 + q‖x − x∗‖ ≤ ln
(
1 + q(L‖x − x∗‖ + r)

)

1 + q‖x − x∗‖ ,

P
(
x∗, x∗, r, q

)
= ln

(
1 + qr

)
.

(3.6)

Let F(x) = ln(1 + q(L‖x − x∗‖ + r)) and x /=x∗.
It follows from the mean value theorem that

F(x) = F(x∗) +∇FT (x∗ + λ(x − x∗))(x − x∗), x ∈ B(x∗, σ), σ > 0, λ ∈ (0, 1). (3.7)

that is,

ln
(
1 + q(L‖x − x∗‖ + r)

)
= ln

(
1 + qr

)
+

qL(x − x∗)T (x − x∗)
(
1 + q(Lλ‖x − x∗‖ + r)

)‖x − x∗‖ ,

ln
(
1 + q(L‖x − x∗‖ + r)

)

1 + q‖x − x∗‖ =
ln
(
1 + qr

)

1 + q‖x − x∗‖ +
qL‖x − x∗‖

(
1 + q‖x − x∗‖)(1 + q(Lλ‖x − x∗‖ + r)

)

≤ ln
(
1 + qr

)

1 + q‖x − x∗‖ +
qL‖x − x∗‖

(
1 + q‖x − x∗‖)(1 + qr

) .

(3.8)

When q is sufficiently large, we have

−(1 + qr
)
ln
(
1 + qr

)
+ L < 0. (3.9)

That is,

− ln
(
1 + qr

)
+

L

1 + qr
< 0. (3.10)
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It follows from (3.10) that

ln
(
1 + qr

)
(

1
1 + q‖x − x∗‖ − 1

)
+

qL‖x − x∗‖
(
1 + q‖x − x∗‖)(1 + qr

)

= ln
(
1 + qr

)
( −q‖x − x∗‖
1 + q‖x − x∗‖

)
+

qL‖x − x∗‖
(
1 + q‖x − x∗‖)(1 + qr

)

=
q‖x − x∗‖

1 + q‖x − x∗‖
(
− ln

(
1 + qr

)
+

L

1 + qr

)
< 0.

(3.11)

That is,

ln
(
1 + qr

)

1 + q‖x − x∗‖ +
qL‖x − x∗‖

(
1 + q‖x − x∗‖)(1 + qr

) < ln
(
1 + qr

)
. (3.12)

Therefore, P(x∗, x∗, r, q) > P(x, x∗, r, q) holds for all x ∈ B(x∗, σ) and x /=x∗. Hence x∗ is a
strictly local maximizer of P(x, x∗, r, q).

Theorem 3.3 (see [10]). If x /=x∗ and satisfies condition f(x) ≥ f(x∗), when r > 0 and q > 0 satisfy
the following inequality:

(
1 + qW0

)∇f0 −
(
1 + qr

)
ln
(
1 + qr

)
< 0, (3.13)

Then one has ∇P(x, x∗, r, q)/= θ, whereW0 = maxx∈Ω‖x − x∗‖ and ∇f0 = maxx∈Ω‖∇f(x)‖.

Proof. Since f(x) ≥ f(x∗), we have

P
(
x, x∗, r, q

)
=

ln
(
1 + q

(
f(x) − f(x∗) + r

))

1 + q‖x − x∗‖ ,

∇P
(
x, x∗, r, q

)T · x − x∗

‖x − x∗‖ =
q

(
1 + q‖x − x∗‖)2(1 + q

(
f(x) − f(x∗) + r

))

·
{
(
1 + q‖x − x∗‖)∇f(x)T

x − x∗

‖x − x∗‖

−(1 + q
(
f(x) − f(x∗) + r

))
ln
(
1 + q

(
f(x) − f(x∗) + r

))
}

≤ q
(
1 + q‖x − x∗‖)2(1 + q

(
f(x) − f(x∗) + r

))

· {(1 + qW0
)∇f0 −

(
1 + qr

)
ln
(
1 + qr

)}
.

(3.14)
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It follows from (3.13) that

∇P
(
x, x∗, r, q

)T · x − x∗

‖x − x∗‖ < 0. (3.15)

Therefore

∇P
(
x, x∗, r, q

)
/= θ. (3.16)

Theorem 3.4. If there is a local minimizer x∗
1 of f(x) satisfying f(x∗

1) < f(x∗), then P(x, x∗) does
have a minimizer x∗

1 ∈ B(x∗
1, δ) and f(x∗

1) < f(x∗).

Theorems 3.2, 3.3, and 3.4 show that under some assumptions the function (3.1) is a
filled function satisfying Definition 2.4. The following two theorems further show that the
function (3.1) has some properties which classical filled function have.

Theorem 3.5. Suppose that x1, x2 ∈ Ω and satisfy ‖x1 − x∗‖ > ‖x2 − x∗‖ > 0, f(x1) ≥ f(x∗), and
f(x2) ≥ f(x∗). If q is sufficiently large, then one has P(x1, x

∗, r, q) < P(x2, x
∗, r, q).

Theorem 3.6. Suppose that x1, x2 ∈ Ω and satisfy ‖x1 − x∗‖ > ‖x2 − x∗‖ > 0. If f(x2) ≥ f(x∗) >
f(x1) and f(x1) − f(x∗) + r > 0, then one has P(x1, x

∗, r, q) < P(x2, x
∗, r, q).

4. New T-F Function Algorithm

The theoretical properties of themodified T-F function P(x, x∗, r, q) discussed in the foregoing
sections give us a new approach for finding a global minimizer of f(x). Similar to the paper
in [10], we present a new T-F function algorithm in the following.

(1) Initial Step

Choose ε > 0 and r > 0 as the tolerance parameters for terminating the
minimization process of problem (2.2).

Choose q > 0 and M > 0 and δ, a very small positive number.

Choose direction ei, i = 1, 2, . . . , k, and integer k0 > 2n, where n is the number of
variable.

Choose an initial point x0
1 ∈ Ω.

(2) Main Step

(10) Obtain a local minimizer of the prime problem by implementing a local
downhill search procedure starting from the x0

k
. Let x∗

k
be the local minimizer

obtained. Let i = 1 and k = 1.

(20) If i > k0, then stop, x∗
k is a global minimizer; otherwise, let x∗

k = x∗
k + δei (where

δ is a very small positive number). If f(x∗
k) < f(x∗

k), then let k = k + 1, x0
k = x∗

k, and
go to (10); otherwise, go to (30).
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(30) Let

P
(
y, x∗

k, r, q
)
=

ln
(
1 + q

∣
∣f(x) − f

(
x∗
k

)
+ r

∣
∣)

1 + q
∥
∥x − x∗

k

∥
∥ , (4.1)

and y0 = x∗
k. Turn to Inner Loop.

(3) Inner Loop

(10) One has ym+1 = ϕ(ym), where ϕ is an iteration function. It denotes a local
downhill search method from the initial point y0 with respect to P(y, x∗

k, r, q).

(20) If ‖ym+1 − x0
1‖ ≥ M, then let i = i + 1 and go to Main Step (20).

(30) If f(ym+1) ≤ f(x∗
k), then let k = k + 1, x0

k = ym+1 and go to Main Step (10);
otherwise, let m = m + 1 and go to Inner Loop (10).

5. Numerical Results

5.1. Testing Functions

(i) The 6-hump back camel function [6, 7, 10] is given as

f(x) = 2x2
1 − 2.1x4

1 +
1
3
x6
1 − x1x2 − 4x2

2 + 4x4
2,

−3 ≤ x1, x2 ≤ 3.
(5.1)

The global minimum solutions are x∗ = (0.0898, 0.7127) or (−0.0898,−0.7127) and
f∗ = −1.0316.

(ii) The Goldstein and Price function [6, 10] is given as

f(x) =
[
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]

×
[
30 + (2x1 − 3x2)2

(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)]
,

− 3 ≤ x1, x2 ≤ 3.

(5.2)

The global minimum solution are x∗ = (0.0000,−1.0000) and f∗ = 3.0000.

(iii) The Treccani function [9, 10] is ginen as

f(x) = x4
1 + 4x3

1 + 4x2
1 + x2

2,

−3 ≤ x1, x2 ≤ 3.
(5.3)

The global minimum solutions are x∗ = (0.0000, 0.0000) or (−2.0000, 0.0000) and
f∗ = 0.0000.
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(iv) The Rastrigin function [8, 10] is given as

f(x) = x2
1 + x2

2 − cos(18x1) − cos(18x2),

−1 ≤ x1, x2 ≤ 1.
(5.4)

The global minimum solutions are x∗ = (0.0000, 0.0000) and f∗ = −2.0000.
(v) The 2-dimensional function in [8, 10] is given as

f(x) = [1 − 2x2 + c sin(4πx2) − x1]2 + [x2 − 0.5 sin(2πx1)]2,

−10 ≤ x1, x2 ≤ 10,
(5.5)

where c = 0.2, 0.5, 0.05. The global minimum solution: f∗ = 0.0000 for all c.

(vi) The 2-dimensional Shubert function III [8] is given as

f(x) =

{
5∑

i=1

i cos[(i + 1)x1 + 1]

}{
5∑

i=1

i cos[(i + 1)x2 + 1]

}

,

−10 ≤ x1, x2 ≤ 10.

(5.6)

The global minimum solutions are x∗ = (−1.4252,−0.8003) and f∗ = −186.7309.
(vii) The n-dimensional Sine-square function I [10] is given as

f(x) =
π

n

{

10 sin2(πx1) +
n−1∑

i=1

[
(xi − 1)2

(
1 + 10 sin2

)
(πxi+1)

]
+ (xn − 1)2

}

,

−10 ≤ xi ≤ 10, i = 1, 2, . . . , n.

(5.7)

The function is tested for n = 2,6,10. The global minimum solution is uniformly
expressed as: x∗ = (1.0000, 1.0000, . . . , 1.0000) and f∗ = 0.0000.

5.2. Computational Results and a Comparison with Other Papers

In the following, computational results of the test problems using the algorithms in the papers
in [5, 10] and this paper, respectively, are summarized in Tables 1 and 2 for each function. The
symbols used are described as follows:

PROB: The number of the test problems;

DIM: the dimension of the test problems;

N: The number of evaluations of the functions when T-F function algorithm
terminated;

N5: The number of evaluations of the functions when the algorithm in the paper in
[5] terminated;
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Table 1: Comparison of the evaluation times of the functions.

PROB DIM N N5 N10

(i) 2 263 296 279
(ii) 2 475 698 559
(iii) 2 564 569 488
(iv) 2 1758 2107
(v) 2 1611 1716 1526
(vi) 2 1914 2647 2280
(vii) 2 4124 4152
(vii) 6 9017 8936 9598
(vii) 10 13752 16283

Table 2: Comparison of the CPU times of the algorithms.

PROB x0 T T5 T10

(i) (−2.00,1.00) 1310 1511 1408
(ii) (0.50,0.50) 1876 1906 1820
(iii) (2.00,−1.00) 902 998 1156
(iv) (0.80,0.80) 4110 5137 4585
(v) (3.00,3.00) 1611 1716 1578
(vi) (1.00,1.00) 3964 4840 4160

N10: The number of evaluations of the functions when the algorithm in the paper
in [10] terminated;

x0: the initial point in our program;

T : the CPU time in seconds to obtain the final result using the algorithm in this
paper;

T5: the CPU time in seconds to obtain the final result using the algorithm in the
paper in [5];

T10: the CPU time in seconds to obtain the final result using the algorithm in the
paper in [10].

Although the total number of evaluations of the objective function depends on a
variety of factors such as the initial point, the termination criterion, and the accuracy required,
in dealing with unconstrained global optimization problems, our T-F function algorithm
seems as effective and reliable as those of algorithms in the papers in [5, 10]. However, our
T-F function algorithm can be used in Rn unconstrained global optimization, so it has more
wide applications.

6. Conclusions

This paper proves that the filled function which appeared in the paper in [10] is also a
tunneling function; that is, under some general assumptions, this paper indicates that the
function which appeared in the paper in [10] has the characters of both the tunneling function
and the filled function. A solution algorithm based on this T-F function is given and numerical
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tests from test functions show that our T-F function method is very effective in finding better
minima on unconstrained global optimization problems.
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